Show simple item record

Kvantové grafy a jejich zobecnění
dc.contributor.advisorExner, Pavel
dc.creatorLipovský, Jiří
dc.date.accessioned2021-01-15T18:04:46Z
dc.date.available2021-01-15T18:04:46Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/47227
dc.description.abstractV předkládané práci studujeme spektrální a rezonanční vlastnosti kvantových grafů. Nejdříve uvažujeme grafy, délky jejichž některých hran jsou soudělné. V konkrétních případech studujeme trajektorie rezonancí, které vzniknou porušením poměru délek hran. Dokážeme, že počet rezonancí se při této perturbaci lokálně zachovává. Hlavní část práce se zabývá asymptotikou počtu rezonancí. Najdeme kritérium, jak rozlišit grafy s neweylovskou asymptotikou (konstanta u vedoucího členu je nižší, než se očekává). Navíc vysvětlíme toto neweylovské chování konstrukcí unitárně ekvivalentního grafu. Pokud umístíme graf do magnetického pole, jeho základní charakteristika (weylovskost/neweylovskost) se nezmění. Může se ale změnit "efektivní velikost" neweylovského grafu. V poslední části práce popíšeme ekvivalenci mezi radiálními stromovými grafy a množinou hamiltoniánů na polopřímkách. Tento výsledek využijeme pro důkaz absence absolutně spojitého spektra pro širokou třídu řídkých stromových grafů.cs_CZ
dc.description.abstractIn the present theses we study spectral and resonance properties of quantum graphs. First, we consider graphs with rationally related lengths of the edges. In particular examples we study trajectories of resonances which arise if the ratio of the lengths of the edges is perturbed. We prove that the number of resonances under this perturbation is locally conserved. The main part is devoted to asymptotics of the number of resonances. We find a criterion how to distinguish graphs with non-Weyl asymptotics (i.e. constant in the leading term is smaller than expected). Furthermore, due to explicit construction of unitary equivalent operators we explain the non-Weyl behaviour. If the graph is placed into a magnetic field, the Weyl/non-Weyl characteristic of asymptotical behaviour does not change. On the other hand, one can turn a non-Weyl graph into another non-Weyl graph with different "effective size". In the final part of the theses, we describe equivalence between radial tree graphs and the set of halfline Hamiltonians and use this result for proving the absence of the absolutely continuous spectra for a class of sparse tree graphs.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectquantum graphsen_US
dc.subjectSchrödinger operatorsen_US
dc.subjectresonancesen_US
dc.subjectWeyl's lawen_US
dc.subjectkvantové grafycs_CZ
dc.subjectSchrödingerovy operátorycs_CZ
dc.subjectrezonancecs_CZ
dc.subjectWeylův zákoncs_CZ
dc.titleQuantum Graphs and Their Generalïzationsen_US
dc.typedizertační prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-26
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId59980
dc.title.translatedKvantové grafy a jejich zobecněnícs_CZ
dc.contributor.refereeŠeba, Petr
dc.contributor.refereeBolte, Jens
dc.identifier.aleph001425172
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineTheoretical Physics, Astronomy and Astrophysicsen_US
thesis.degree.disciplineTeoretická fyzika, astronomie a astrofyzikacs_CZ
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická fyzika, astronomie a astrofyzikacs_CZ
uk.degree-discipline.enTheoretical Physics, Astronomy and Astrophysicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csV předkládané práci studujeme spektrální a rezonanční vlastnosti kvantových grafů. Nejdříve uvažujeme grafy, délky jejichž některých hran jsou soudělné. V konkrétních případech studujeme trajektorie rezonancí, které vzniknou porušením poměru délek hran. Dokážeme, že počet rezonancí se při této perturbaci lokálně zachovává. Hlavní část práce se zabývá asymptotikou počtu rezonancí. Najdeme kritérium, jak rozlišit grafy s neweylovskou asymptotikou (konstanta u vedoucího členu je nižší, než se očekává). Navíc vysvětlíme toto neweylovské chování konstrukcí unitárně ekvivalentního grafu. Pokud umístíme graf do magnetického pole, jeho základní charakteristika (weylovskost/neweylovskost) se nezmění. Může se ale změnit "efektivní velikost" neweylovského grafu. V poslední části práce popíšeme ekvivalenci mezi radiálními stromovými grafy a množinou hamiltoniánů na polopřímkách. Tento výsledek využijeme pro důkaz absence absolutně spojitého spektra pro širokou třídu řídkých stromových grafů.cs_CZ
uk.abstract.enIn the present theses we study spectral and resonance properties of quantum graphs. First, we consider graphs with rationally related lengths of the edges. In particular examples we study trajectories of resonances which arise if the ratio of the lengths of the edges is perturbed. We prove that the number of resonances under this perturbation is locally conserved. The main part is devoted to asymptotics of the number of resonances. We find a criterion how to distinguish graphs with non-Weyl asymptotics (i.e. constant in the leading term is smaller than expected). Furthermore, due to explicit construction of unitary equivalent operators we explain the non-Weyl behaviour. If the graph is placed into a magnetic field, the Weyl/non-Weyl characteristic of asymptotical behaviour does not change. On the other hand, one can turn a non-Weyl graph into another non-Weyl graph with different "effective size". In the final part of the theses, we describe equivalence between radial tree graphs and the set of halfline Hamiltonians and use this result for proving the absence of the absolutely continuous spectra for a class of sparse tree graphs.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameÚstav jaderné fyziky AV ČR, v.v.i.cs
dc.identifier.lisID990014251720106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV