dc.contributor.advisor | Hnětynková, Iveta | |
dc.creator | Tóthová, Katarína | |
dc.date.accessioned | 2021-03-25T17:27:15Z | |
dc.date.available | 2021-03-25T17:27:15Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/36652 | |
dc.description.abstract | Cieľom tejto práce je podať ucelený prehľad vybraných numerických metód spracovania obrazu, konkrétne popísať konštrukciu, vlastnosti a spôsoby riešenia problémov zaostrovania obrazu popísaných pomocou sústavy Ax = b. Tieto úlohy častokrát spadajú do skupiny tzv. ill-posed problémov so zle podmienenou maticou A, čím si vyžadujú špeciálny prístup. V tejto práci ponúkame stručný prehľad vybraných regularizačných techník, ktoré môžu byť v tomto prípade použité - či už ide o metódy priame (TSVD, Tikhonova regularizácia) alebo iteračné (CGLS, LSQR), spolu s príslušnými metódami pre voľbu regularizačného parametra - L-krivkou, GCV a princípom diskrepancie. Výklad je doplnený o numerické experimenty pracujúce s reálnymi obrazovými dátami. | cs_CZ |
dc.description.abstract | The aim of this thesis is to provide a concise overview of the numerical techniques in digital image processing, specifically to discuss the construction, properties and methods of solving of the image deblurring problems modelled by a linear system Ax = b. Often, these problems fall within a group of the ill-posed problems with severely ill-conditioned matrix A and hence require special numerical treatment. We provide a brief overview of selected regularization methods that can be used in this situation, including direct (TSVD, Tikhonov regularization) and iterative ones (CGLS, LSQR), together with the pertinent parameter-choice methods - L-curve, GCV and the discrepancy principle. The theoretical discussion is supplemented by the numerical experiments with real-life image data. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | image deblurring | en_US |
dc.subject | ill-posed problems | en_US |
dc.subject | regularization | en_US |
dc.subject | parameter- choice methods | en_US |
dc.subject | zaostrovanie obrazu | cs_CZ |
dc.subject | ill-posed úlohy | cs_CZ |
dc.subject | regularizácia | cs_CZ |
dc.subject | zastavovacie kritériá | cs_CZ |
dc.title | Numerické metody zpracování obrazu | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-06-22 | |
dc.description.department | Katedra numerické matematiky | cs_CZ |
dc.description.department | Department of Numerical Mathematics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 78241 | |
dc.title.translated | Numerické metody zpracování obrazu | cs_CZ |
dc.contributor.referee | Zítko, Jan | |
dc.identifier.aleph | 001369659 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra numerické matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Numerical Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Cieľom tejto práce je podať ucelený prehľad vybraných numerických metód spracovania obrazu, konkrétne popísať konštrukciu, vlastnosti a spôsoby riešenia problémov zaostrovania obrazu popísaných pomocou sústavy Ax = b. Tieto úlohy častokrát spadajú do skupiny tzv. ill-posed problémov so zle podmienenou maticou A, čím si vyžadujú špeciálny prístup. V tejto práci ponúkame stručný prehľad vybraných regularizačných techník, ktoré môžu byť v tomto prípade použité - či už ide o metódy priame (TSVD, Tikhonova regularizácia) alebo iteračné (CGLS, LSQR), spolu s príslušnými metódami pre voľbu regularizačného parametra - L-krivkou, GCV a princípom diskrepancie. Výklad je doplnený o numerické experimenty pracujúce s reálnymi obrazovými dátami. | cs_CZ |
uk.abstract.en | The aim of this thesis is to provide a concise overview of the numerical techniques in digital image processing, specifically to discuss the construction, properties and methods of solving of the image deblurring problems modelled by a linear system Ax = b. Often, these problems fall within a group of the ill-posed problems with severely ill-conditioned matrix A and hence require special numerical treatment. We provide a brief overview of selected regularization methods that can be used in this situation, including direct (TSVD, Tikhonov regularization) and iterative ones (CGLS, LSQR), together with the pertinent parameter-choice methods - L-curve, GCV and the discrepancy principle. The theoretical discussion is supplemented by the numerical experiments with real-life image data. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematiky | cs_CZ |
thesis.grade.code | 1 | |
dc.contributor.consultant | Strakoš, Zdeněk | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |
dc.identifier.lisID | 990013696590106986 | |