Numerické metody zpracování obrazu
Numerické metody zpracování obrazu
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/36652Identifikátory
SIS: 78241
Katalog UK: 990013696590106986
Kolekce
- Kvalifikační práce [11342]
Autor
Vedoucí práce
Konzultant práce
Strakoš, Zdeněk
Oponent práce
Zítko, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra numerické matematiky
Datum obhajoby
22. 6. 2011
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
zaostrovanie obrazu, ill-posed úlohy, regularizácia, zastavovacie kritériáKlíčová slova (anglicky)
image deblurring, ill-posed problems, regularization, parameter- choice methodsCieľom tejto práce je podať ucelený prehľad vybraných numerických metód spracovania obrazu, konkrétne popísať konštrukciu, vlastnosti a spôsoby riešenia problémov zaostrovania obrazu popísaných pomocou sústavy Ax = b. Tieto úlohy častokrát spadajú do skupiny tzv. ill-posed problémov so zle podmienenou maticou A, čím si vyžadujú špeciálny prístup. V tejto práci ponúkame stručný prehľad vybraných regularizačných techník, ktoré môžu byť v tomto prípade použité - či už ide o metódy priame (TSVD, Tikhonova regularizácia) alebo iteračné (CGLS, LSQR), spolu s príslušnými metódami pre voľbu regularizačného parametra - L-krivkou, GCV a princípom diskrepancie. Výklad je doplnený o numerické experimenty pracujúce s reálnymi obrazovými dátami.
The aim of this thesis is to provide a concise overview of the numerical techniques in digital image processing, specifically to discuss the construction, properties and methods of solving of the image deblurring problems modelled by a linear system Ax = b. Often, these problems fall within a group of the ill-posed problems with severely ill-conditioned matrix A and hence require special numerical treatment. We provide a brief overview of selected regularization methods that can be used in this situation, including direct (TSVD, Tikhonov regularization) and iterative ones (CGLS, LSQR), together with the pertinent parameter-choice methods - L-curve, GCV and the discrepancy principle. The theoretical discussion is supplemented by the numerical experiments with real-life image data.