dc.contributor.advisor | Loukes Gerakopoulos, Georgios | |
dc.creator | Stratený, Michal | |
dc.date.accessioned | 2023-11-07T02:19:23Z | |
dc.date.available | 2023-11-07T02:19:23Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/184042 | |
dc.description.abstract | This thesis studies the dynamics of geodesic motion within a curved spacetime around a Schwarzschild black hole, perturbed by a gravitational field of a far axisymmetric dis- tribution of mass enclosing the system. This particular spacetime can serve as a versatile model for a diverse range of astrophysical scenarios. At the beginning of the thesis, a brief overview of the theory of classical mechanical systems and properties of geodesic motion are provided. A brief introduction to the theory of integrability and non-integrability, along with essential tools for analysis of non-integrable systems, including Poincaré sur- face of section and rotation numbers, is provided as well. These methods are subsequently applied to the under study spacetime through numerical methods. By utilising the rota- tion numbers, the widths of resonances are calculated, which are then used in establishing the relation between the perturbation parameter and the parameter characterising the perturbed metric. 1 | en_US |
dc.description.abstract | Táto práca študuje dynamiku geodetického pohybu v zakrivenom priestoročase okolo Schwarzschildovej čiernej diery, perturbovanej gravitačným poľom vzdialenej osovo sy- metrickej distribúcie hmoty obklopujúcej systém. Tento konkrétny priestoročas môže slúžiť ako všestranný model pre rôznorodé astrofyzikálne scenáre. V úvode práce je poskytnutý stručný prehľad teórie klasických mechanických systémov a vlastností geodet- ického pohybu. Taktiež je poskytnuté stručné uvedenie do teórie integrability a neinte- grability spolu s podstatnými nástrojmi pre analýzu neintegrabilných systémov, zahrňu- júc Poincarého rezy a rotačné čísla. Tieto metódy sú následne aplikované na skúmaný priestoročas pomocou numerických metód. Využitím rotačných čísel sú vypočítané šírky rezonancií, ktoré sú neskôr použité k stanoveniu vzťahu medzi pertubačným parametrom a parametrom charakterizujúcim perturbovanú metriku. 1 | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Geodetický pohyb|Čierne diery|Chaos | cs_CZ |
dc.subject | Geodesic motion|Black holes|Chaos | en_US |
dc.title | Orbital dynamics around a black hole surrounded by matter | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-09-05 | |
dc.description.department | Ústav teoretické fyziky | cs_CZ |
dc.description.department | Institute of Theoretical Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 253662 | |
dc.title.translated | Orbitální dynamika v okolí černé díry obklopené hmotou | cs_CZ |
dc.contributor.referee | Witzany, Vojtěch | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Fyzika | cs_CZ |
thesis.degree.discipline | Physics | en_US |
thesis.degree.program | Fyzika | cs_CZ |
thesis.degree.program | Physics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav teoretické fyziky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Theoretical Physics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Fyzika | cs_CZ |
uk.degree-discipline.en | Physics | en_US |
uk.degree-program.cs | Fyzika | cs_CZ |
uk.degree-program.en | Physics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Táto práca študuje dynamiku geodetického pohybu v zakrivenom priestoročase okolo Schwarzschildovej čiernej diery, perturbovanej gravitačným poľom vzdialenej osovo sy- metrickej distribúcie hmoty obklopujúcej systém. Tento konkrétny priestoročas môže slúžiť ako všestranný model pre rôznorodé astrofyzikálne scenáre. V úvode práce je poskytnutý stručný prehľad teórie klasických mechanických systémov a vlastností geodet- ického pohybu. Taktiež je poskytnuté stručné uvedenie do teórie integrability a neinte- grability spolu s podstatnými nástrojmi pre analýzu neintegrabilných systémov, zahrňu- júc Poincarého rezy a rotačné čísla. Tieto metódy sú následne aplikované na skúmaný priestoročas pomocou numerických metód. Využitím rotačných čísel sú vypočítané šírky rezonancií, ktoré sú neskôr použité k stanoveniu vzťahu medzi pertubačným parametrom a parametrom charakterizujúcim perturbovanú metriku. 1 | cs_CZ |
uk.abstract.en | This thesis studies the dynamics of geodesic motion within a curved spacetime around a Schwarzschild black hole, perturbed by a gravitational field of a far axisymmetric dis- tribution of mass enclosing the system. This particular spacetime can serve as a versatile model for a diverse range of astrophysical scenarios. At the beginning of the thesis, a brief overview of the theory of classical mechanical systems and properties of geodesic motion are provided. A brief introduction to the theory of integrability and non-integrability, along with essential tools for analysis of non-integrable systems, including Poincaré sur- face of section and rotation numbers, is provided as well. These methods are subsequently applied to the under study spacetime through numerical methods. By utilising the rota- tion numbers, the widths of resonances are calculated, which are then used in establishing the relation between the perturbation parameter and the parameter characterising the perturbed metric. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav teoretické fyziky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |