Kan extensions and adjoint functors
Kanovy extenze a adjungované funktory
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/183873Identifiers
Study Information System: 257380
Collections
- Kvalifikační práce [11216]
Author
Advisor
Referee
Žemlička, Jan
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Algebra
Date of defense
4. 9. 2023
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
Kanova extenze|adjungovaný funktor|limita|kompletní kategorie|kategorie prvkůKeywords (English)
Kan extension|adjoint functor|limit|complete category|category of elementsTato práce se věnuje Kanovým extenzím. Nejdříve představíme potřebné definice a dokážeme větu, která nám dává existenční podmínku pro Kanovy extenze. Důkaz této věty také poskytuje návod ke konstrukci Kanových extenzí. Hlavní cíl je dokázat větu, která dává do souvislosti Kanovy extenze a adjungované funktory. Tuto větu také pro- pojíme s globálními Kanovými extenzemi. V poslední kapitole formulujeme a vyřešíme příklad týkající se adjungovaných funktorů mezi kategoriemi G−setů, kde použijeme vše z předchozích částí této práce. 1
This thesis is devoted to Kan extensions. First, we provide needed definitions and prove a theorem which gives us an existence condition for a Kan extensions. The proof of this theorem also contains a guide to constructing Kan extensions. The main goal is to present a result which puts Kan extensions and adjoint functors in relation. We also connect this theorem to global Kan extensions. We apply these abstract results in the last chapter, where we formulate and solve a particular problem concerning adjoint functors between the categories of G-sets. 1