Zobrazit minimální záznam

Cyclotomic extensions and the Kronecker-Weber theorem
dc.contributor.advisorKala, Vítězslav
dc.creatorJarrahová, Veronika
dc.date.accessioned2023-07-24T13:50:16Z
dc.date.available2023-07-24T13:50:16Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/182556
dc.description.abstractIn the thesis, we prove the Kronecker-Weber theorem, which states that every abelian extension of the field of rational numbers is a subfield of some cyclotomic field. This theorem is traditionally proved using class field theory, but we will use an alternative relatively elementary proof using Galois theory and algebraic number theory. We will first introduce the necessary theory and show the new definitions with an example. The key part of the whole proof will be to prove the Kronecker-Weber theorem for abelian expansions of prime power degree, where only this prime ramifies. Then, we can prove relatively easily that the theorem holds for general abelian extensions. 1en_US
dc.description.abstractV této práci dokážeme Kronecker-Weberovu větu, která říká, že každé abelovské roz- šíření tělesa racionálních čísel je podtělesem nějakého cyklotomického tělesa. Tato věta se tradičně dokazuje pomocí teorie třídových těles, ale my zpracujeme alternativní relativně elementární důkaz využívající Galoisovu teorii a algebraickou teorii čísel. Zavedeme nej- prve potřebnou teorii a nové pojmy ukážeme na příkladu. Klíčovou částí celého důkazu bude dokázat, že Kronecker-Weberova věta platí pro abelovská rozšíření stupně mocniny prvočísla, kde se větví jen toto prvočíslo. Z toho pak už relativně snadno dokážeme, že pak platí věta pro obecná abelovská rozšíření. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectKronecker-Weber theorem|cyklotomic extensions|Galois theory|abelian extensionsen_US
dc.subjectKronecker-Weberova věta|cyklotomická rozšíření|Galoisova teorie|abelovská rozšířenícs_CZ
dc.titleCyklotomická rozšíření a Kronecker-Weberova větacs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-06-21
dc.description.departmentKatedra algebrycs_CZ
dc.description.departmentDepartment of Algebraen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId257075
dc.title.translatedCyclotomic extensions and the Kronecker-Weber theoremen_US
dc.contributor.refereeFrancírek, Pavel
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineMatematika pro informační technologiecs_CZ
thesis.degree.disciplineMathematics for Information Technologiesen_US
thesis.degree.programMatematika pro informační technologiecs_CZ
thesis.degree.programMathematics for Information Technologiesen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematika pro informační technologiecs_CZ
uk.degree-discipline.enMathematics for Information Technologiesen_US
uk.degree-program.csMatematika pro informační technologiecs_CZ
uk.degree-program.enMathematics for Information Technologiesen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci dokážeme Kronecker-Weberovu větu, která říká, že každé abelovské roz- šíření tělesa racionálních čísel je podtělesem nějakého cyklotomického tělesa. Tato věta se tradičně dokazuje pomocí teorie třídových těles, ale my zpracujeme alternativní relativně elementární důkaz využívající Galoisovu teorii a algebraickou teorii čísel. Zavedeme nej- prve potřebnou teorii a nové pojmy ukážeme na příkladu. Klíčovou částí celého důkazu bude dokázat, že Kronecker-Weberova věta platí pro abelovská rozšíření stupně mocniny prvočísla, kde se větví jen toto prvočíslo. Z toho pak už relativně snadno dokážeme, že pak platí věta pro obecná abelovská rozšíření. 1cs_CZ
uk.abstract.enIn the thesis, we prove the Kronecker-Weber theorem, which states that every abelian extension of the field of rational numbers is a subfield of some cyclotomic field. This theorem is traditionally proved using class field theory, but we will use an alternative relatively elementary proof using Galois theory and algebraic number theory. We will first introduce the necessary theory and show the new definitions with an example. The key part of the whole proof will be to prove the Kronecker-Weber theorem for abelian expansions of prime power degree, where only this prime ramifies. Then, we can prove relatively easily that the theorem holds for general abelian extensions. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV