dc.contributor.advisor | Večeř, Jan | |
dc.creator | Kožnar, František | |
dc.date.accessioned | 2022-10-04T14:29:33Z | |
dc.date.available | 2022-10-04T14:29:33Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/176009 | |
dc.description.abstract | The goal of this thesis is to characterize payoffs that maximize expected utility function in different market setups. One can solve this problem in its generality in terms of a function of a likelihood ratio between the subjective measure of an agent P and a risk neutral measure Q. Such payoffs should be transformed to the function of the terminal stock price. The question is what measure P should be chosen, the natural candidates would correspond to either the frequentist or the Bayesian choice of the parameters. The thesis should provide a link to the Kelly Criterion in the binomial evolution of the stock price and to the Merton's Portfolio Problem in the geometric Brownian motion exam- ple showing the possible extensions of these well known problems in the novel Bayesian setup. The thesis should discuss pricing and hedging of these contracts together with their asymptotic behavior. 1 | en_US |
dc.description.abstract | Cílem práce je charakterizovat zisk maximalizující užitkovou funkci. Jedním způso- bem je řešení věrohodnostního poměru mezi subjektivními pravděpodobnostními mírami agenta P a rizikově neutrální mírou trhu Q. Takovéto výnosy by měly být převedeny na funkci konečné ceny aktiv. Otázkou je, jakou míru P zvolit. Práce by měla shrnout Kellyho kritérium pro binomický vývoj ceny akcií a také problém Mertonova portfolia uvažující geometrický Brownův pohyb. Dále se ukáže spojitost s Bayesovskou statisti- kou, která umožňuje rozšíření z již dobře známých výsledků. Práce by měla pojednávat o cenách a zajištění kontraktů spolu s jejich asymptotickým chováním. 1 | cs_CZ |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Financial Contracts|Options|Equilibrium|Utility Maximization | en_US |
dc.subject | Finanční kontrakty|opce|ekvilibrium|maximalizace užitkové funkce | cs_CZ |
dc.title | Finanční konktrakty maximalizující užitkovou funkci | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2022 | |
dcterms.dateAccepted | 2022-09-12 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 217393 | |
dc.title.translated | Optimal FInancial Payoffs Maximizing Utility Function | en_US |
dc.contributor.referee | Kříž, Pavel | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Probability, Mathematical Statistics and Econometrics | en_US |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.program | Probability, Mathematical Statistics and Econometrics | en_US |
thesis.degree.program | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, Mathematical Statistics and Econometrics | en_US |
uk.degree-program.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-program.en | Probability, Mathematical Statistics and Econometrics | en_US |
thesis.grade.cs | Dobře | cs_CZ |
thesis.grade.en | Good | en_US |
uk.abstract.cs | Cílem práce je charakterizovat zisk maximalizující užitkovou funkci. Jedním způso- bem je řešení věrohodnostního poměru mezi subjektivními pravděpodobnostními mírami agenta P a rizikově neutrální mírou trhu Q. Takovéto výnosy by měly být převedeny na funkci konečné ceny aktiv. Otázkou je, jakou míru P zvolit. Práce by měla shrnout Kellyho kritérium pro binomický vývoj ceny akcií a také problém Mertonova portfolia uvažující geometrický Brownův pohyb. Dále se ukáže spojitost s Bayesovskou statisti- kou, která umožňuje rozšíření z již dobře známých výsledků. Práce by měla pojednávat o cenách a zajištění kontraktů spolu s jejich asymptotickým chováním. 1 | cs_CZ |
uk.abstract.en | The goal of this thesis is to characterize payoffs that maximize expected utility function in different market setups. One can solve this problem in its generality in terms of a function of a likelihood ratio between the subjective measure of an agent P and a risk neutral measure Q. Such payoffs should be transformed to the function of the terminal stock price. The question is what measure P should be chosen, the natural candidates would correspond to either the frequentist or the Bayesian choice of the parameters. The thesis should provide a link to the Kelly Criterion in the binomial evolution of the stock price and to the Merton's Portfolio Problem in the geometric Brownian motion exam- ple showing the possible extensions of these well known problems in the novel Bayesian setup. The thesis should discuss pricing and hedging of these contracts together with their asymptotic behavior. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
thesis.grade.code | 3 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |