Show simple item record

Statistická fyzika složitých optimalizačních problémů
dc.contributor.advisorJaniš, Václav
dc.creatorZdeborová, Lenka
dc.date.accessioned2021-01-15T17:41:14Z
dc.date.available2021-01-15T17:41:14Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/16402
dc.description.abstractOptimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly dicult, it is believed that the number of operations required to minimize the cost function is in the most dicult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleStatistical Physics of Hard Optimization Problemsen_US
dc.typedizertační prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-06-20
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId42583
dc.title.translatedStatistická fyzika složitých optimalizačních problémůcs_CZ
dc.contributor.refereeMertens, Stephan
dc.contributor.refereeZecchina, Riccardo
dc.identifier.aleph001006436
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineTheoretical Physics, Astronomy and Astrophysicsen_US
thesis.degree.disciplineTeoretická fyzika, astronomie a astrofyzikacs_CZ
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická fyzika, astronomie a astrofyzikacs_CZ
uk.degree-discipline.enTheoretical Physics, Astronomy and Astrophysicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.enOptimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly dicult, it is believed that the number of operations required to minimize the cost function is in the most dicult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameFyzikální ústav AV ČR, v.v.i.cs
dc.identifier.lisID990010064360106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV