Statistical Physics of Hard Optimization Problems
Statistická fyzika složitých optimalizačních problémů
dizertační práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/16402Identifikátory
SIS: 42583
Katalog UK: 990010064360106986
Kolekce
- Kvalifikační práce [11342]
Autor
Vedoucí práce
Oponent práce
Mertens, Stephan
Zecchina, Riccardo
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Teoretická fyzika, astronomie a astrofyzika
Katedra / ústav / klinika (externí)
Informace není k dispozici
Datum obhajoby
20. 6. 2008
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Prospěl/a
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly dicult, it is believed that the number of operations required to minimize the cost function is in the most dicult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint...