Zobrazit minimální záznam

Measures of dependence
dc.contributor.advisorPawlas, Zbyněk
dc.creatorMatoušková, Monika
dc.date.accessioned2020-10-07T10:03:15Z
dc.date.available2020-10-07T10:03:15Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/121306
dc.description.abstractNejčastěji se setkáváme se základní mírou závislosti, s korelačním koeficientem. Ten ovšem může být roven nule pro dvě závislé náhodné veličiny. V práci se zaměřujeme na dvě míry závislosti, které se rovnají nule právě tehdy, když jsou veličiny nezávislé. Porovnáváme je s Pearsonovým korelačním koeficientem. Jako první zavádíme maximální korelaci, která jde většinou obtížně vypočítat, proto definujeme maximální polynomiální korelaci, jejíž výpočet je snadnější a je neklesající ve stupni polynomu. Druhá zavedená míra je vzdálenostní korelace, u níž uvádíme různé způsoby vyjádření, které se hodí k výpočtu. U obou měr diskutujeme, co se děje v případě sdruženého normálního rozdělení a na závěr ukazujeme na několika příkladech výpočet zavedených měr závislosti. 1cs_CZ
dc.description.abstractThe most common measure of dependence is the correlation coefficient. Its problem is that it can be zero for two dependent random variables. We will discuss two measures of dependence, which are equal to zero if and only if the two random variables are inde- pendent. We will compare them with Pearson's correlation coefficient. The first one will be the maximal correlation, which is often difficult to calculate. That is why we define the maximal polynomial correlation, which is easier to calculate and is non-decreasing in a degree of a polynomial. We also define the distance correlation and we discuss other ways of the expression of distance correlation, which can be used in the calculation. We deal with the case of normal distribution and we show some calculations of these measures of dependence. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectzávislostcs_CZ
dc.subjectkorelacecs_CZ
dc.subjectkorelační koeficientcs_CZ
dc.subjectmaximální korelacecs_CZ
dc.subjectvzdálenostní korelacecs_CZ
dc.subjectdependenceen_US
dc.subjectcorrelationen_US
dc.subjectcorrelation coefficienten_US
dc.subjectmaximal correlationen_US
dc.subjectdistance correlationen_US
dc.titleMíry závislostics_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-09-16
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId217296
dc.title.translatedMeasures of dependenceen_US
dc.contributor.refereeDvořák, Jiří
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNejčastěji se setkáváme se základní mírou závislosti, s korelačním koeficientem. Ten ovšem může být roven nule pro dvě závislé náhodné veličiny. V práci se zaměřujeme na dvě míry závislosti, které se rovnají nule právě tehdy, když jsou veličiny nezávislé. Porovnáváme je s Pearsonovým korelačním koeficientem. Jako první zavádíme maximální korelaci, která jde většinou obtížně vypočítat, proto definujeme maximální polynomiální korelaci, jejíž výpočet je snadnější a je neklesající ve stupni polynomu. Druhá zavedená míra je vzdálenostní korelace, u níž uvádíme různé způsoby vyjádření, které se hodí k výpočtu. U obou měr diskutujeme, co se děje v případě sdruženého normálního rozdělení a na závěr ukazujeme na několika příkladech výpočet zavedených měr závislosti. 1cs_CZ
uk.abstract.enThe most common measure of dependence is the correlation coefficient. Its problem is that it can be zero for two dependent random variables. We will discuss two measures of dependence, which are equal to zero if and only if the two random variables are inde- pendent. We will compare them with Pearson's correlation coefficient. The first one will be the maximal correlation, which is often difficult to calculate. That is why we define the maximal polynomial correlation, which is easier to calculate and is non-decreasing in a degree of a polynomial. We also define the distance correlation and we discuss other ways of the expression of distance correlation, which can be used in the calculation. We deal with the case of normal distribution and we show some calculations of these measures of dependence. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV