Míry závislosti
Measures of dependence
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/121306Identifikátory
SIS: 217296
Kolekce
- Kvalifikační práce [11342]
Autor
Vedoucí práce
Oponent práce
Dvořák, Jiří
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
16. 9. 2020
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
závislost, korelace, korelační koeficient, maximální korelace, vzdálenostní korelaceKlíčová slova (anglicky)
dependence, correlation, correlation coefficient, maximal correlation, distance correlationNejčastěji se setkáváme se základní mírou závislosti, s korelačním koeficientem. Ten ovšem může být roven nule pro dvě závislé náhodné veličiny. V práci se zaměřujeme na dvě míry závislosti, které se rovnají nule právě tehdy, když jsou veličiny nezávislé. Porovnáváme je s Pearsonovým korelačním koeficientem. Jako první zavádíme maximální korelaci, která jde většinou obtížně vypočítat, proto definujeme maximální polynomiální korelaci, jejíž výpočet je snadnější a je neklesající ve stupni polynomu. Druhá zavedená míra je vzdálenostní korelace, u níž uvádíme různé způsoby vyjádření, které se hodí k výpočtu. U obou měr diskutujeme, co se děje v případě sdruženého normálního rozdělení a na závěr ukazujeme na několika příkladech výpočet zavedených měr závislosti. 1
The most common measure of dependence is the correlation coefficient. Its problem is that it can be zero for two dependent random variables. We will discuss two measures of dependence, which are equal to zero if and only if the two random variables are inde- pendent. We will compare them with Pearson's correlation coefficient. The first one will be the maximal correlation, which is often difficult to calculate. That is why we define the maximal polynomial correlation, which is easier to calculate and is non-decreasing in a degree of a polynomial. We also define the distance correlation and we discuss other ways of the expression of distance correlation, which can be used in the calculation. We deal with the case of normal distribution and we show some calculations of these measures of dependence. 1