dc.contributor.advisor | Šťovíček, Jan | |
dc.creator | Žurav, Martin | |
dc.date.accessioned | 2018-07-13T09:51:38Z | |
dc.date.available | 2018-07-13T09:51:38Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/99733 | |
dc.description.abstract | Hlavným cieľom tejto práce je podať patričný úvod do teórie invariantov pre konečné grupy. Našu charakterizáciu začneme pri symetrických polynómoch a ich základných vlastnostiach. Študujeme najmä okruh symetrických polynómov a dokážeme, že je konečne generovaný elementárnymi symetrickými funkciami. Potom sa zaoberáme niektorými kritériami toho, kedy je polynóm symetrický. V druhej časti zovšeobecňujeme tieto idey pre ľubovoľnú konečnú podgrupu GL(n,k). Definujeme akciu konečnej lineárnej grupy na k[x_1,...,x_n] a uvažujeme polynómy, ktoré sú invariantné voči tejto akcii. Ukážeme, že tvoria okruh, ktorý je vždy konečne generovaný, čo plynie z Noetherovej vety o medzi. Na záver dôkladnejšie popíšeme okruh invariantov a vzťahy medzi jeho generátormi. | cs_CZ |
dc.description.abstract | The prime goal of this thesis is to give a decent introduction to the theory of invariants for finite groups. We begin our characterisation with symmetric polynomials and their fundamental properties. In particular, we study the ring of symmetric polynomials and we prove that it is finitely generated by elementary symmetric functions. Then we deal with some of the criteria for a polynomial to be symmetric. In the second part, we generalise these ideas for any finite subgroup of GL(n,k). We define an action of a finite linear group on k[x_1,...,x_n] and consider polynomials that are invariant under such action. We show that they form a ring which is always finitely generated, as follows from the Noether's bound theorem. At the end, we describe the ring of invariants and relations among its generators more profoundly. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Symmetric polynomials | en_US |
dc.subject | Group action | en_US |
dc.subject | Invariant polynomials | en_US |
dc.subject | Ring of invariants | en_US |
dc.subject | Symetrické polynómy | cs_CZ |
dc.subject | Akcia grupy | cs_CZ |
dc.subject | Invariantné polynómy | cs_CZ |
dc.subject | Okruh invariantov | cs_CZ |
dc.title | Invariant theory for finite groups | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2018 | |
dcterms.dateAccepted | 2018-06-22 | |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.department | Department of Algebra | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 140835 | |
dc.title.translated | Teorie invariantů pro konečné grupy | cs_CZ |
dc.contributor.referee | Šaroch, Jan | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Hlavným cieľom tejto práce je podať patričný úvod do teórie invariantov pre konečné grupy. Našu charakterizáciu začneme pri symetrických polynómoch a ich základných vlastnostiach. Študujeme najmä okruh symetrických polynómov a dokážeme, že je konečne generovaný elementárnymi symetrickými funkciami. Potom sa zaoberáme niektorými kritériami toho, kedy je polynóm symetrický. V druhej časti zovšeobecňujeme tieto idey pre ľubovoľnú konečnú podgrupu GL(n,k). Definujeme akciu konečnej lineárnej grupy na k[x_1,...,x_n] a uvažujeme polynómy, ktoré sú invariantné voči tejto akcii. Ukážeme, že tvoria okruh, ktorý je vždy konečne generovaný, čo plynie z Noetherovej vety o medzi. Na záver dôkladnejšie popíšeme okruh invariantov a vzťahy medzi jeho generátormi. | cs_CZ |
uk.abstract.en | The prime goal of this thesis is to give a decent introduction to the theory of invariants for finite groups. We begin our characterisation with symmetric polynomials and their fundamental properties. In particular, we study the ring of symmetric polynomials and we prove that it is finitely generated by elementary symmetric functions. Then we deal with some of the criteria for a polynomial to be symmetric. In the second part, we generalise these ideas for any finite subgroup of GL(n,k). We define an action of a finite linear group on k[x_1,...,x_n] and consider polynomials that are invariant under such action. We show that they form a ring which is always finitely generated, as follows from the Noether's bound theorem. At the end, we describe the ring of invariants and relations among its generators more profoundly. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |