Bingham-Kortewegovy tekutiny - modelování, analýza a počítačové simulace
Bingham-Korteweg fluids - modeling, analysis and computer simulations
diplomová práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/90998Identifikátory
SIS: 189199
Kolekce
- Kvalifikační práce [11330]
Autor
Vedoucí práce
Oponent práce
Bulíček, Miroslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické modelování ve fyzice a technice
Katedra / ústav / klinika
Matematický ústav UK
Datum obhajoby
12. 9. 2017
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Navier-Stokes-Kortewegova (NSK) tekutina, Binghamova tekutina, stlačitelná tekutina, nestlačitelná tekutina, termodynamicky konsistentní model, existenční teorie, numerická diskretizace, počítačové simulaceKlíčová slova (anglicky)
Navier-Stokes-Korteweg (NSK) fluids, Bigham fluids, compressible fluid, incompressible fluid, thermodynamically consistent model, existence theory, discretization, computer simulationsK inicializaci tečení granulovaných materiálů je potřeba dostatečně velké smykové napětí a látka pak může obsahovat klidové zóny, ve kterých pohyb materiálu neprobíhá. Pohyb takové tekutiny lze popsat Binghamovým modelem. Proudění granulovaných materiálů je rovněž často spojeno s volnou hranicí. V práci je zabudován Binghamův model do obecnějšího rámce Bigham-Kortewegových tekutin, což umožňuje převést úlohy s volnou hranicí na úlohy řešené na pevné oblasti. Součástí práce je i matematická analýza zajímavých relevantních úloh pro nestlačitelný materiál. 1
Flow of granular materials is usually initiated when the shear stress is large enough and exceeds certain critical value. This can result in the presence of the dead-zones in which the flow itself does not take place. Motions of such materials are frequently described by Bingham model. Flows of granular fluids are frequently connected with the presence of free surface. In the thesis Bingham model is incorporated into a more general framework of Bingham-Korteweg fluids, which is a suitable way how to transfer free- boundary problems into the problems on fixed domains. A part of the thesis concerns mathematical analysis of interesting relevant problems for incompressible fluids. 1