Show simple item record

Uceni s regularizacnimi sitemi
dc.contributor.advisorNeruda, Roman
dc.creatorKudová, Petra
dc.date.accessioned2021-01-15T17:08:57Z
dc.date.available2021-01-15T17:08:57Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/8384
dc.description.abstractIn this work we study and develop learning algorithms for networks based on regularization theory. In particular, we focus on learning possibilities for a family of regularization networks and radial basis function networks (RBF networks). The framework above the basic algorithm derived from theory is designed. It includes an estimation of a regularization parameter and a kernel function by minimization of cross-validation error. Two composite types of kernel functions are proposed - a sum kernel and a product kernel - in order to deal with heterogenous or large data. Three learning approaches for the RBF networks - the gradient learning, three-step learning, and genetic learning - are discussed. Based on the se, two hybrid approaches are proposed - the four-step learning and the hybrid genetic learning. All learning algorithms for the regularization networks and the RBF networks are studied experimentally and thoroughly compared. We claim that the regularization networks and the RBF networks are comparable in terms of generalization error, but they differ with respect to their model complexity. The regularization network approach usually leads to solutions with higher number of base units, thus, the RBF networks can be used as a 'cheaper' alternative in terms of model size and learning time.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleLearning with Regularization Networksen_US
dc.typedizertační prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-04-17
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId39964
dc.title.translatedUceni s regularizacnimi sitemics_CZ
dc.contributor.refereeAndrejková, Gabriela
dc.contributor.refereeHlaváčková-Schindler, Kateřina
dc.identifier.aleph000843765
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.enIn this work we study and develop learning algorithms for networks based on regularization theory. In particular, we focus on learning possibilities for a family of regularization networks and radial basis function networks (RBF networks). The framework above the basic algorithm derived from theory is designed. It includes an estimation of a regularization parameter and a kernel function by minimization of cross-validation error. Two composite types of kernel functions are proposed - a sum kernel and a product kernel - in order to deal with heterogenous or large data. Three learning approaches for the RBF networks - the gradient learning, three-step learning, and genetic learning - are discussed. Based on the se, two hybrid approaches are proposed - the four-step learning and the hybrid genetic learning. All learning algorithms for the regularization networks and the RBF networks are studied experimentally and thoroughly compared. We claim that the regularization networks and the RBF networks are comparable in terms of generalization error, but they differ with respect to their model complexity. The regularization network approach usually leads to solutions with higher number of base units, thus, the RBF networks can be used as a 'cheaper' alternative in terms of model size and learning time.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameÚstav informatiky AV ČR, v.v.i.cs
dc.identifier.lisID990008437650106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV