Show simple item record

Robot Localization by 3D map
dc.contributor.advisorWinkler, Zbyněk
dc.creatorMateják, Marek
dc.date.accessioned2017-03-30T16:46:01Z
dc.date.available2017-03-30T16:46:01Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/20.500.11956/7621
dc.description.abstractThis thesis deals about possibilities of autonomous mobile robot localization by camera in the known environment. In detail the model is analyzed of scene representation by perspective projection including evaluation of the location according to paired points with the scene. This is done especially for the model of the robot with the fixed camera location that moves on the fiat floor. Localization is analyzed from two points of view. From the global view, where is the goal to evaluate position without previous knowledge of the position. And from the local view, where is the location of the robot tracked during its movement in the scene. In the first case is estimation of the position based mainly on the color separation of segments. The case of undistinguishable reference points is analyzed, where the position is estimated according to their field location. On the other hand, when the previous position is known, the two methods of reference points tracking are mentioned. First method is ICP algorithm, which makes the registration of points. The second is the Mean Shift algorithm for tracking image seg1nents. In the end is mentioned the application of Monte Carlo filtration, which assures robustness of segment tracking. Powered by TCPDF (www.tcpdf.org)en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleLokalizácia robota v 3D mapecs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2006
dcterms.dateAccepted2006-09-11
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId43101
dc.title.translatedRobot Localization by 3D mapen_US
dc.contributor.refereeObdržálek, David
dc.identifier.aleph000844786
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineSoftware systemsen_US
thesis.degree.disciplineSoftwarové systémycs_CZ
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwarového inženýrstvícs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software Engineeringen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csSoftwarové systémycs_CZ
uk.degree-discipline.enSoftware systemsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.enThis thesis deals about possibilities of autonomous mobile robot localization by camera in the known environment. In detail the model is analyzed of scene representation by perspective projection including evaluation of the location according to paired points with the scene. This is done especially for the model of the robot with the fixed camera location that moves on the fiat floor. Localization is analyzed from two points of view. From the global view, where is the goal to evaluate position without previous knowledge of the position. And from the local view, where is the location of the robot tracked during its movement in the scene. In the first case is estimation of the position based mainly on the color separation of segments. The case of undistinguishable reference points is analyzed, where the position is estimated according to their field location. On the other hand, when the previous position is known, the two methods of reference points tracking are mentioned. First method is ICP algorithm, which makes the registration of points. The second is the Mean Shift algorithm for tracking image seg1nents. In the end is mentioned the application of Monte Carlo filtration, which assures robustness of segment tracking. Powered by TCPDF (www.tcpdf.org)en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ
dc.identifier.lisID990008447860106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV