Zobrazit minimální záznam

Function Spaces and Algebras
dc.contributor.advisorPick, Luboš
dc.creatorMihula, Zdeněk
dc.date.accessioned2017-05-27T10:52:38Z
dc.date.available2017-05-27T10:52:38Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/20.500.11956/69743
dc.description.abstractHlavním cílem této práce je rozhodnout, kdy je prostor funkcí ekvivalentní algebře, tj. kdy je uzavřený na bodové násobení funkcí. Nejprve je uvedena teorie určitých prostorů funkcí, konkrétně Lebesgueovy Lp prostory, třída Banachových prostorů funkcí, Banachovy prostory funkcí invariantní vůči nerostoucímu přerovnání, Morreyovy prostory, Campanatovy prostory a prostor slabé-L∞ . Poté je dokázána nutná podmínka k tomu, aby byl prostor funkcí ekvivalentní algebře. Dále je dokázána také postačující podmínka. V každé z těchto dvou podmínek hraje klíčovou roli prostor L∞ . Jako důsledek dále získáme charakterizaci, kdy je Banachův prostor funkcí ekvivalentní algebře. Poté je uvedeno několik příkladů, které ilustrují možné využití získaných výsledků. Následně je uvážen speciální případ těch Banachových prostorů funkcí, které jsou invariantní vůči nerostoucímu přerovnání. Nakonec je otázka, kdy je prostor funkcí ekvivalentní algebře, zodpovězena pro prostory uvedené na začátku. 1cs_CZ
dc.description.abstractThe primary purpose of this thesis is to determine when a function space is equivalent to an algebra, that is, when it is closed with respect to pointwise multiplication. Firstly, the theory of some function spaces, namely Lebesgue Lp spaces, the class of Banach function spaces, rearrangement-invariant Banach function spaces, Morrey spaces, Campanato spaces, and weak−L∞ , is introduced. Secondly, a general necessary condition, as well as a general sufficient condition, for a function space to be equivalent to an algebra is given. In each of these two conditions, a crucial role is played by the space L∞ . Furthermore, as a corollary, a characterisation when a Banach function space is equivalent to an algebra is obtained. Thereafter, a few examples illustrating possible usage of these results are presented. After that, a special case when a Banach function space is rearrangement invariant is dealt with. Lastly, the matter of equivalence to an algebra is addressed for the function spaces introduced before. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectFunction spacescs_CZ
dc.subjectalgebrascs_CZ
dc.subjectLebesgue spacescs_CZ
dc.subjectMorrey spacescs_CZ
dc.subjectCampanato spacescs_CZ
dc.subjectBMOcs_CZ
dc.subjectweak L-infinitycs_CZ
dc.subjectBanach function spacescs_CZ
dc.subjectFunction spacesen_US
dc.subjectalgebrasen_US
dc.subjectLebesgue spacesen_US
dc.subjectMorrey spacesen_US
dc.subjectCampanato spacesen_US
dc.subjectBMOen_US
dc.subjectweak L-infinityen_US
dc.subjectBanach function spacesen_US
dc.titleFunction Spaces and Algebrasen_US
dc.typebakalářská prácecs_CZ
dcterms.created2015
dcterms.dateAccepted2015-06-15
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId164473
dc.title.translatedFunction Spaces and Algebrascs_CZ
dc.contributor.refereeHencl, Stanislav
dc.identifier.aleph002006493
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csHlavním cílem této práce je rozhodnout, kdy je prostor funkcí ekvivalentní algebře, tj. kdy je uzavřený na bodové násobení funkcí. Nejprve je uvedena teorie určitých prostorů funkcí, konkrétně Lebesgueovy Lp prostory, třída Banachových prostorů funkcí, Banachovy prostory funkcí invariantní vůči nerostoucímu přerovnání, Morreyovy prostory, Campanatovy prostory a prostor slabé-L∞ . Poté je dokázána nutná podmínka k tomu, aby byl prostor funkcí ekvivalentní algebře. Dále je dokázána také postačující podmínka. V každé z těchto dvou podmínek hraje klíčovou roli prostor L∞ . Jako důsledek dále získáme charakterizaci, kdy je Banachův prostor funkcí ekvivalentní algebře. Poté je uvedeno několik příkladů, které ilustrují možné využití získaných výsledků. Následně je uvážen speciální případ těch Banachových prostorů funkcí, které jsou invariantní vůči nerostoucímu přerovnání. Nakonec je otázka, kdy je prostor funkcí ekvivalentní algebře, zodpovězena pro prostory uvedené na začátku. 1cs_CZ
uk.abstract.enThe primary purpose of this thesis is to determine when a function space is equivalent to an algebra, that is, when it is closed with respect to pointwise multiplication. Firstly, the theory of some function spaces, namely Lebesgue Lp spaces, the class of Banach function spaces, rearrangement-invariant Banach function spaces, Morrey spaces, Campanato spaces, and weak−L∞ , is introduced. Secondly, a general necessary condition, as well as a general sufficient condition, for a function space to be equivalent to an algebra is given. In each of these two conditions, a crucial role is played by the space L∞ . Furthermore, as a corollary, a characterisation when a Banach function space is equivalent to an algebra is obtained. Thereafter, a few examples illustrating possible usage of these results are presented. After that, a special case when a Banach function space is rearrangement invariant is dealt with. Lastly, the matter of equivalence to an algebra is addressed for the function spaces introduced before. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990020064930106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV