Geometrická formulace Lagrangeovy mechaniky
Geometric formulation of Lagrangian mechanics
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/6279Identifikátory
SIS: 43344
Kolekce
- Kvalifikační práce [11218]
Autor
Vedoucí práce
Oponent práce
Krtouš, Pavel
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná fyzika
Katedra / ústav / klinika
Ústav teoretické fyziky
Datum obhajoby
27. 6. 2006
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Předložená práce ukazuje možnosti aplikace diferenciální geometrie na Lagrangeův formalismus. V první kapitole jsou položeny základy geometrické formulace Lagrangeovy mechaniky, je ukázán význam tečného bandlu konfigurační variety a dynamického vektorového pole, které řeší Lagrangeovy rovnice v jejich geometrickém tvaru. Je zformulován a dokázán také významný teorém Emmy Noetherové. Druhá kapitola pak zavádí další geometrické pojmy související s Lagrangeovým formalismem v jeho geometrické podobě, a to zejména fíbrovaný prostor, lifty, vektorové po le druhého řádu aLagrangeovo vektorové pole. Ukázána je také existence symplektické struktury a hamiltonovské dynamiky na tečném bandlu konfigurační variety. Powered by TCPDF (www.tcpdf.org)
In the present work we study application of differential geometry to the Lagrangian formalism. In the first chapter we summariz e the foundations of geometric formulation of Lagrangian mechanics,in particular eshow the principal meaning of the tagent bundle of the configuration mani-fold and dynamical vector field which solves the Lagrange equations in theirgeometrical form. The Noether's theorem is also formulatedand proved. The second chapter introduces other geometrical definitions related to theLagrangian formalism, such as fiber space, lifts, second-order vector fieldsand Lagrangian vector fields. The existence of symplectic structure and Hamiltonian dynamics on the tangent bundle of the configuration manifold is also demonstrated. Powered by TCPDF (www.tcpdf.org)