Fourierova metoda pro řešení parciálních diferenciálních rovnic
Fourier method for solving partial differential equations
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/5829Identifikátory
SIS: 42816
Kolekce
- Kvalifikační práce [11218]
Autor
Vedoucí práce
Oponent práce
Knobloch, Petr
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Matematický ústav UK
Datum obhajoby
28. 6. 2006
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Na./cv prace: Fouricrova metoda pro feseni parc.ialnich dirornncialnich rovnic Autor: Karri Tuma Katedra (ust.av): Matematicky ust.av UK Vedouci bakalafske praoo: Mgr. Milan Pokorny, Ph.D. e-mail vodouciho: pokorny@karlin.mff.cuni.cz Abstra.kt: V pfedlo/ene praci odvodime rovnici vedeni tepla a.rovnici slruny. Ty pak nasledno. fesime v jodno prost.orove dimenxi ponioci Fonricrovy me- tody apocivajfci v separaci promennych a nale/eni feseni vc l.varn ncko- nccnc' fady. Zaljyvainc so t.fonii ru/nymi okrajovynii podininkanii. Dah^ vy- sotrujomo vlastnosii foscni tcchlo dvou problcmu. Provadinio analyzu kon- vorgtuicc fx'soni vu tvaru fad v -/avislosti na pocat.ocnich podminkach uloh. Uka/c-me. /o pornoci Fouriorovy inolody l/.c fosil lako stucionarni ulohy, konkrctno so zabyvanio Laplaccoviju rovnici s okrajovynii podminkami na ruznych oblasloch (kruh. vyscc. vyscc mc/ikru/f, mraikru/i). Klicova slova: Parcialni diforoncialni rovnico, Fouricrova tnot.oda, rovnico vodoni lopla, rovnico sLruny. Title: Fourier method for solving partial differential equations Author: Karel Tuma, Department: Matematicky ustav UK Supervisor: Mgr. Milan Pokorny. Ph.D. Supervisor's e-mail address: pokorny@karlin.raff.cuni.cz Abstract: In the present work we derive the heat equation and the wave equation. They arc- solved in one space...
Na./cv prace: Fouricrova metoda pro feseni parc.ialnich dirornncialnich rovnic Autor: Karri Tuma Katedra (ust.av): Matematicky ust.av UK Vedouci bakalafske praoo: Mgr. Milan Pokorny, Ph.D. e-mail vodouciho: pokorny@karlin.mff.cuni.cz Abstra.kt: V pfedlo/ene praci odvodime rovnici vedeni tepla a.rovnici slruny. Ty pak nasledno. fesime v jodno prost.orove dimenxi ponioci Fonricrovy me- tody apocivajfci v separaci promennych a nale/eni feseni vc l.varn ncko- nccnc' fady. Zaljyvainc so t.fonii ru/nymi okrajovynii podininkanii. Dah^ vy- sotrujomo vlastnosii foscni tcchlo dvou problcmu. Provadinio analyzu kon- vorgtuicc fx'soni vu tvaru fad v -/avislosti na pocat.ocnich podminkach uloh. Uka/c-me. /o pornoci Fouriorovy inolody l/.c fosil lako stucionarni ulohy, konkrctno so zabyvanio Laplaccoviju rovnici s okrajovynii podminkami na ruznych oblasloch (kruh. vyscc. vyscc mc/ikru/f, mraikru/i). Klicova slova: Parcialni diforoncialni rovnico, Fouricrova tnot.oda, rovnico vodoni lopla, rovnico sLruny. Title: Fourier method for solving partial differential equations Author: Karel Tuma, Department: Matematicky ustav UK Supervisor: Mgr. Milan Pokorny. Ph.D. Supervisor's e-mail address: pokorny@karlin.raff.cuni.cz Abstract: In the present work we derive the heat equation and the wave equation. They arc- solved in one space...