Show simple item record

Evoluční algoritmy pro vícekriteriální optimalizaci
dc.contributor.advisorNeruda, Roman
dc.creatorPilát, Martin
dc.date.accessioned2021-01-15T16:00:35Z
dc.date.available2021-01-15T16:00:35Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/52904
dc.description.abstractVícekriteriální evoluční algoritmy se v posledních letech těší velké pozornosti. Dokázaly, že patří mezi nejlepší vícekriterální optimali- zátory a byly použity v mnoha průmyslových aplikacích. Jejich po- užitelnost je ale omezována tím, že vyžadují velké množství vyhod- nocení jednolivých účelových funkcí. Tyto mohou být v případě re- álných problémů složité a jejich vyhodnocení může být drahé. Pro snížení počtu vyhodnocení jednotlivých účelových funkcí se použí- vají tzv. náhradní modely. Ty jsou jednoduchou a rychlou aproximací skutečných účelových funkcí. V této práci představujeme výsledky výzkumu prováděného mezi lety 2009 a 2013. Představujeme vícekriteriální evoluční algoritmus s agregovaným náhradním modelem a jeho verze, které použivají další náhradní model pro předvýběr jedinců. V další části se zabýváme pro- blémem výběru vhodného typu náhradního modelu. Diskutujeme o tom, které charakteristiky modelu jsou důležité a žádané, a navrhu- jeme propojení náhradního modelování s meta-učením. V poslední části se potom zabýváme využitím vícekriteriální optimalizace pro ladění parametrů klasifikátorů a ukazujeme, že přidání dalších účelo- vých funkcí může urychlit nalezení vhodného nastavení. 1cs_CZ
dc.description.abstractMulti-objective evolutionary algorithms have gained a lot of atten- tion in the recent years. They have proven to be among the best multi-objective optimizers and have been used in many industrial ap- plications. However, their usability is hindered by the large number of evaluations of the objective functions they require. These can be expensive when solving practical tasks. In order to reduce the num- ber of objective function evaluations, surrogate models can be used. These are a simple and fast approximations of the real objectives. In this work we present the results of research made between the years 2009 and 2013. We present a multi-objective evolutionary algo- rithm with aggregate surrogate model, its newer version, which also uses a surrogate model for the pre-selection of individuals. In the next part we discuss the problem of selection of a particular type of model. We show which characteristics of the various models are im- portant and desirable and provide a framework which combines sur- rogate modeling with meta-learning. Finally, in the last part, we ap- ply multi-objective optimization to the problem of hyper-parameters tuning. We show that additional objectives can make finding of good parameters for classifiers faster. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectMulti-objective optimizationen_US
dc.subjectsurrogate modelsen_US
dc.subjectevolutionary algorithmsen_US
dc.subjectmodel selectionen_US
dc.subjecthyper-parameter tuningen_US
dc.subjectVícekriteriální optimalizacecs_CZ
dc.subjectnáhradní modelycs_CZ
dc.subjectevoluční algoritmycs_CZ
dc.subjectvýběr modelůcs_CZ
dc.subjectladění hyper-parametrůcs_CZ
dc.titleEvolutionary Algorithms for Multiobjective Optimizationen_US
dc.typedizertační prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-09-18
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId71485
dc.title.translatedEvoluční algoritmy pro vícekriteriální optimalizacics_CZ
dc.contributor.refereeSchoenauer, Marc
dc.contributor.refereePošík, Petr
dc.identifier.aleph001636867
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csVícekriteriální evoluční algoritmy se v posledních letech těší velké pozornosti. Dokázaly, že patří mezi nejlepší vícekriterální optimali- zátory a byly použity v mnoha průmyslových aplikacích. Jejich po- užitelnost je ale omezována tím, že vyžadují velké množství vyhod- nocení jednolivých účelových funkcí. Tyto mohou být v případě re- álných problémů složité a jejich vyhodnocení může být drahé. Pro snížení počtu vyhodnocení jednotlivých účelových funkcí se použí- vají tzv. náhradní modely. Ty jsou jednoduchou a rychlou aproximací skutečných účelových funkcí. V této práci představujeme výsledky výzkumu prováděného mezi lety 2009 a 2013. Představujeme vícekriteriální evoluční algoritmus s agregovaným náhradním modelem a jeho verze, které použivají další náhradní model pro předvýběr jedinců. V další části se zabýváme pro- blémem výběru vhodného typu náhradního modelu. Diskutujeme o tom, které charakteristiky modelu jsou důležité a žádané, a navrhu- jeme propojení náhradního modelování s meta-učením. V poslední části se potom zabýváme využitím vícekriteriální optimalizace pro ladění parametrů klasifikátorů a ukazujeme, že přidání dalších účelo- vých funkcí může urychlit nalezení vhodného nastavení. 1cs_CZ
uk.abstract.enMulti-objective evolutionary algorithms have gained a lot of atten- tion in the recent years. They have proven to be among the best multi-objective optimizers and have been used in many industrial ap- plications. However, their usability is hindered by the large number of evaluations of the objective functions they require. These can be expensive when solving practical tasks. In order to reduce the num- ber of objective function evaluations, surrogate models can be used. These are a simple and fast approximations of the real objectives. In this work we present the results of research made between the years 2009 and 2013. We present a multi-objective evolutionary algo- rithm with aggregate surrogate model, its newer version, which also uses a surrogate model for the pre-selection of individuals. In the next part we discuss the problem of selection of a particular type of model. We show which characteristics of the various models are im- portant and desirable and provide a framework which combines sur- rogate modeling with meta-learning. Finally, in the last part, we ap- ply multi-objective optimization to the problem of hyper-parameters tuning. We show that additional objectives can make finding of good parameters for classifiers faster. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameÚstav informatiky AV ČR, v.v.i.cs
dc.identifier.lisID990016368670106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV