dc.contributor.advisor | Dupačová, Jitka | |
dc.creator | Čížková, Jitka | |
dc.date.accessioned | 2017-03-27T12:06:09Z | |
dc.date.available | 2017-03-27T12:06:09Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/4486 | |
dc.description.abstract | Stochastic problems (both two-stage and multistage) can be formulated in several di erent ways which utilize to various extent available information on a future realization of incorporated random parameters. When comparing optimal objective function values resulting from di erent formulations of the given problem with the same available information, we obtain a value of using one of these formulations rather than the other one (e.g., VSS). Level of the available information can be changed by a partial or full relaxation of nonanticipativity constraints, which assure that a present decision is independent of future (unknown) realizations of random parameters. By comparing optimal objective function values gained when solving the given problem with distinct levels of available information we obtain (expected) value of partial or perfect information. In this work we present de nitions of various information value types and related values connected with the problem formulation and we derive their properties (nonnegativity, bounds). In the last part we introduce their summary classi cation. | en_US |
dc.description.abstract | Úlohy stochastického programování (dvoustupňové i vícestupňové) lze formulovat několika různými způsoby, které lépe či hůře využívají dostupnou informaci o budoucí realizaci náhodných parametrů. porovnáním optimálních hodnot účelové funkce, které dostaneme při řešení rozdílně formulované úlohy při téže dostupné informaci, zjistíme, jaká je hodnota jedné z těchto formulací opriti druhé (např. VSS). Úroveň zmíněné dostupné informace lze měnit částečným, resp. úplným uvolněním předpokladu neanticipativnosti, podle kterého nesmí současná rozhodnutí záviset na budoucích (neznámých) realizacích náhodných parametrů. Porovnání optimálních hodnot účelových funkcí, získaných řešením dané úlohy při nižší a vyšší úrovni dostupné informace, vede na (očekávanou) hodnotu částečné, resp. úplné informace. V této práci uvádíme definice různých typů hodnoty informace a příbuzných hodnot souvisejících s formulací úlohy a odvození jejich vlastností (nezápornost, meze). V závěru provádíme jejich souhrnnou klasifikaci. | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Expected value of information in stochastic programming | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2006 | |
dcterms.dateAccepted | 2006-05-16 | |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 42151 | |
dc.title.translated | Očekávaná hodnota informace ve stochastickém programování | cs_CZ |
dc.contributor.referee | Lachout, Petr | |
dc.identifier.aleph | 001460021 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | magisterské | cs_CZ |
thesis.degree.discipline | Probability, mathematical statistics and econometrics | en_US |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, mathematical statistics and econometrics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Úlohy stochastického programování (dvoustupňové i vícestupňové) lze formulovat několika různými způsoby, které lépe či hůře využívají dostupnou informaci o budoucí realizaci náhodných parametrů. porovnáním optimálních hodnot účelové funkce, které dostaneme při řešení rozdílně formulované úlohy při téže dostupné informaci, zjistíme, jaká je hodnota jedné z těchto formulací opriti druhé (např. VSS). Úroveň zmíněné dostupné informace lze měnit částečným, resp. úplným uvolněním předpokladu neanticipativnosti, podle kterého nesmí současná rozhodnutí záviset na budoucích (neznámých) realizacích náhodných parametrů. Porovnání optimálních hodnot účelových funkcí, získaných řešením dané úlohy při nižší a vyšší úrovni dostupné informace, vede na (očekávanou) hodnotu částečné, resp. úplné informace. V této práci uvádíme definice různých typů hodnoty informace a příbuzných hodnot souvisejících s formulací úlohy a odvození jejich vlastností (nezápornost, meze). V závěru provádíme jejich souhrnnou klasifikaci. | cs_CZ |
uk.abstract.en | Stochastic problems (both two-stage and multistage) can be formulated in several di erent ways which utilize to various extent available information on a future realization of incorporated random parameters. When comparing optimal objective function values resulting from di erent formulations of the given problem with the same available information, we obtain a value of using one of these formulations rather than the other one (e.g., VSS). Level of the available information can be changed by a partial or full relaxation of nonanticipativity constraints, which assure that a present decision is independent of future (unknown) realizations of random parameters. By comparing optimal objective function values gained when solving the given problem with distinct levels of available information we obtain (expected) value of partial or perfect information. In this work we present de nitions of various information value types and related values connected with the problem formulation and we derive their properties (nonnegativity, bounds). In the last part we introduce their summary classi cation. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990014600210106986 | |