Zobrazit minimální záznam

Očekávaná hodnota informace ve stochastickém programování
dc.contributor.advisorDupačová, Jitka
dc.creatorČížková, Jitka
dc.date.accessioned2017-03-27T12:06:09Z
dc.date.available2017-03-27T12:06:09Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/20.500.11956/4486
dc.description.abstractStochastic problems (both two-stage and multistage) can be formulated in several di erent ways which utilize to various extent available information on a future realization of incorporated random parameters. When comparing optimal objective function values resulting from di erent formulations of the given problem with the same available information, we obtain a value of using one of these formulations rather than the other one (e.g., VSS). Level of the available information can be changed by a partial or full relaxation of nonanticipativity constraints, which assure that a present decision is independent of future (unknown) realizations of random parameters. By comparing optimal objective function values gained when solving the given problem with distinct levels of available information we obtain (expected) value of partial or perfect information. In this work we present de nitions of various information value types and related values connected with the problem formulation and we derive their properties (nonnegativity, bounds). In the last part we introduce their summary classi cation.en_US
dc.description.abstractÚlohy stochastického programování (dvoustupňové i vícestupňové) lze formulovat několika různými způsoby, které lépe či hůře využívají dostupnou informaci o budoucí realizaci náhodných parametrů. porovnáním optimálních hodnot účelové funkce, které dostaneme při řešení rozdílně formulované úlohy při téže dostupné informaci, zjistíme, jaká je hodnota jedné z těchto formulací opriti druhé (např. VSS). Úroveň zmíněné dostupné informace lze měnit částečným, resp. úplným uvolněním předpokladu neanticipativnosti, podle kterého nesmí současná rozhodnutí záviset na budoucích (neznámých) realizacích náhodných parametrů. Porovnání optimálních hodnot účelových funkcí, získaných řešením dané úlohy při nižší a vyšší úrovni dostupné informace, vede na (očekávanou) hodnotu částečné, resp. úplné informace. V této práci uvádíme definice různých typů hodnoty informace a příbuzných hodnot souvisejících s formulací úlohy a odvození jejich vlastností (nezápornost, meze). V závěru provádíme jejich souhrnnou klasifikaci.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleExpected value of information in stochastic programmingen_US
dc.typediplomová prácecs_CZ
dcterms.created2006
dcterms.dateAccepted2006-05-16
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId42151
dc.title.translatedOčekávaná hodnota informace ve stochastickém programovánícs_CZ
dc.contributor.refereeLachout, Petr
dc.identifier.aleph001460021
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csÚlohy stochastického programování (dvoustupňové i vícestupňové) lze formulovat několika různými způsoby, které lépe či hůře využívají dostupnou informaci o budoucí realizaci náhodných parametrů. porovnáním optimálních hodnot účelové funkce, které dostaneme při řešení rozdílně formulované úlohy při téže dostupné informaci, zjistíme, jaká je hodnota jedné z těchto formulací opriti druhé (např. VSS). Úroveň zmíněné dostupné informace lze měnit částečným, resp. úplným uvolněním předpokladu neanticipativnosti, podle kterého nesmí současná rozhodnutí záviset na budoucích (neznámých) realizacích náhodných parametrů. Porovnání optimálních hodnot účelových funkcí, získaných řešením dané úlohy při nižší a vyšší úrovni dostupné informace, vede na (očekávanou) hodnotu částečné, resp. úplné informace. V této práci uvádíme definice různých typů hodnoty informace a příbuzných hodnot souvisejících s formulací úlohy a odvození jejich vlastností (nezápornost, meze). V závěru provádíme jejich souhrnnou klasifikaci.cs_CZ
uk.abstract.enStochastic problems (both two-stage and multistage) can be formulated in several di erent ways which utilize to various extent available information on a future realization of incorporated random parameters. When comparing optimal objective function values resulting from di erent formulations of the given problem with the same available information, we obtain a value of using one of these formulations rather than the other one (e.g., VSS). Level of the available information can be changed by a partial or full relaxation of nonanticipativity constraints, which assure that a present decision is independent of future (unknown) realizations of random parameters. By comparing optimal objective function values gained when solving the given problem with distinct levels of available information we obtain (expected) value of partial or perfect information. In this work we present de nitions of various information value types and related values connected with the problem formulation and we derive their properties (nonnegativity, bounds). In the last part we introduce their summary classi cation.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990014600210106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV