dc.contributor.advisor | Kratochvíl, Jan | |
dc.creator | Štola, Jan | |
dc.date.accessioned | 2017-03-27T08:26:18Z | |
dc.date.available | 2017-03-27T08:26:18Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/3703 | |
dc.description.abstract | This paper studies the question: What is the maximum integer kb,n such that every kb,n-colorable graph has a b-bend n-din1ensional orthogonal box drawing? We give an exact answer for the orthogonal line drawing in all dimensions and for the 3-dimensional rectangle visibility representation. We present an upper and lower bound for the 3-dimensional orthogonal drawing by rectangles and general boxes. Particularly, we improve the best known upper bound for the 3-dimensional orthogonal box drawing from 183 to 42 and the lower bound from 3 to 22. Powered by TCPDF (www.tcpdf.org) | en_US |
dc.description.abstract | V této práci se zabýváme vlivem barevnosti grafu na existenci různých druhů ortogonálních nakreslení tohoto grafu. Studujeme otázku, jak velké můžeme volit kb,n tak, aby každý graf barevnosti nejvýše kb,n měl n-rozměrné ortogonální nakreslení s hranami s nejvýše b ohyby. kb,n nazývá1ne multipartitním číslem reprezentace/ nakreslení. Pro ortogonální nakreslení, v nichž jsou vrcholy reprezentovány úsečkami v IRn, je v práci multipartitní číslo odvozeno přesně pro všechna n. Přesná hodnota je určena taktéž pro viditelnostní reprezentace pomocí obdélníků a čtverců. Navíc jsou vylepšeny nejlepší známé horní a dolní odhady pro trojrozměrné ortogonální nakreslení pomocí obdélníků a hranolů. Dolní odhad je zvýšen ze 3 na 22 a horní snížen ze 183 na 42. Powered by TCPDF (www.tcpdf.org) | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Chromatic invariants in graph drawing | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2006 | |
dcterms.dateAccepted | 2006-05-22 | |
dc.description.department | Katedra aplikované matematiky | cs_CZ |
dc.description.department | Department of Applied Mathematics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 44054 | |
dc.title.translated | Chromatic invariants in graph drawing | cs_CZ |
dc.contributor.referee | Valtr, Pavel | |
dc.identifier.aleph | 000832265 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | magisterské | cs_CZ |
thesis.degree.discipline | Theoretical computer science | en_US |
thesis.degree.discipline | Teoretická informatika | cs_CZ |
thesis.degree.program | Informatics | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra aplikované matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Applied Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Teoretická informatika | cs_CZ |
uk.degree-discipline.en | Theoretical computer science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Informatics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V této práci se zabýváme vlivem barevnosti grafu na existenci různých druhů ortogonálních nakreslení tohoto grafu. Studujeme otázku, jak velké můžeme volit kb,n tak, aby každý graf barevnosti nejvýše kb,n měl n-rozměrné ortogonální nakreslení s hranami s nejvýše b ohyby. kb,n nazývá1ne multipartitním číslem reprezentace/ nakreslení. Pro ortogonální nakreslení, v nichž jsou vrcholy reprezentovány úsečkami v IRn, je v práci multipartitní číslo odvozeno přesně pro všechna n. Přesná hodnota je určena taktéž pro viditelnostní reprezentace pomocí obdélníků a čtverců. Navíc jsou vylepšeny nejlepší známé horní a dolní odhady pro trojrozměrné ortogonální nakreslení pomocí obdélníků a hranolů. Dolní odhad je zvýšen ze 3 na 22 a horní snížen ze 183 na 42. Powered by TCPDF (www.tcpdf.org) | cs_CZ |
uk.abstract.en | This paper studies the question: What is the maximum integer kb,n such that every kb,n-colorable graph has a b-bend n-din1ensional orthogonal box drawing? We give an exact answer for the orthogonal line drawing in all dimensions and for the 3-dimensional rectangle visibility representation. We present an upper and lower bound for the 3-dimensional orthogonal drawing by rectangles and general boxes. Particularly, we improve the best known upper bound for the 3-dimensional orthogonal box drawing from 183 to 42 and the lower bound from 3 to 22. Powered by TCPDF (www.tcpdf.org) | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematiky | cs_CZ |
dc.identifier.lisID | 990008322650106986 | |