Pr ace zkoum a vlastnosti n ekter ych element arn ch intuicionistick ych teori . Vybr any jsou n asleduj c teorie: teorie rovnosti, line arn ho uspo r ad an , hust eho line arn ho uspo r ad an , teorie n asledn ka, Robinsonova aritmetika a teorie s c t an racion aln ch c sel; nav c t em e r ka zdou z t echto teori formulujeme dv ema r uzn ymi zp usoby. Z vlastnost teori n as zaj maj p redev s m n asleduj c cty ri: spl yv an s klasickou verz teorie, saturovanost, platnost De Jonghovy v ety a rozhodnutelnost. Diplomov a pr ace vych az zejm ena z v ysledk u C. Smorynsk eho a D. de Jongha a sna z se je rozvinout. N ekter e v ysledky zn am e pro Heytingovu aritmetiku dokazuje i pro jin e teorie. D ale se pokou s odpov ed et nap r klad na to, jak y vliv m a z am ena axiomu teorie za jin y (klasicky ekvivalentn ) axiom nebo jak e vlastnosti by m ela m t dobr a intuicionistick a teorie.
cs_CZ
dc.description.abstract
This thesis explores some properties of elementary intuitionistic theories. We focus on the following theories: the theory of equality, linear order, dense linear order, the theory of a successor function, Robinson arithmetic and the theory of rational numbers with addition; moreover, we usually deal with two dierent formulations of the theories. As for the properties, our main interest is in the following four: coincidence with the classical version of a theory, saturation, De Jongh's theorem and decidability. The thesis draws especially from the results of C. Smorynski and D. de Jongh and tries to develop them. Some results known for Heyting arithmetic are proved for other theories. We also try to answer the question of what is the eect of replacing an axiom by a dierent (classically equivalent) axiom, or which properties a \good" intuitionistic theory should have.
en_US
dc.language
English
cs_CZ
dc.language.iso
en_US
dc.publisher
Univerzita Karlova, Filozofická fakulta
cs_CZ
dc.title
Intuitionistic logic and axiomatic theories
en_US
dc.type
diplomová práce
cs_CZ
dcterms.created
2010
dcterms.dateAccepted
2010-09-16
dc.description.department
Department of Logic
en_US
dc.description.department
Katedra logiky
cs_CZ
dc.description.faculty
Faculty of Arts
en_US
dc.description.faculty
Filozofická fakulta
cs_CZ
dc.identifier.repId
90806
dc.title.translated
Intuicionistické logika a axiomatické teorie
cs_CZ
dc.contributor.referee
Jeřábek, Emil
dc.identifier.aleph
001368431
thesis.degree.name
Mgr.
thesis.degree.level
magisterské
cs_CZ
thesis.degree.discipline
Logic
en_US
thesis.degree.discipline
Logika
cs_CZ
thesis.degree.program
Logic
en_US
thesis.degree.program
Logika
cs_CZ
uk.thesis.type
diplomová práce
cs_CZ
uk.taxonomy.organization-cs
Filozofická fakulta::Katedra logiky
cs_CZ
uk.taxonomy.organization-en
Faculty of Arts::Department of Logic
en_US
uk.faculty-name.cs
Filozofická fakulta
cs_CZ
uk.faculty-name.en
Faculty of Arts
en_US
uk.faculty-abbr.cs
FF
cs_CZ
uk.degree-discipline.cs
Logika
cs_CZ
uk.degree-discipline.en
Logic
en_US
uk.degree-program.cs
Logika
cs_CZ
uk.degree-program.en
Logic
en_US
thesis.grade.cs
Velmi dobře
cs_CZ
thesis.grade.en
Very good
en_US
uk.abstract.cs
Pr ace zkoum a vlastnosti n ekter ych element arn ch intuicionistick ych teori . Vybr any jsou n asleduj c teorie: teorie rovnosti, line arn ho uspo r ad an , hust eho line arn ho uspo r ad an , teorie n asledn ka, Robinsonova aritmetika a teorie s c t an racion aln ch c sel; nav c t em e r ka zdou z t echto teori formulujeme dv ema r uzn ymi zp usoby. Z vlastnost teori n as zaj maj p redev s m n asleduj c cty ri: spl yv an s klasickou verz teorie, saturovanost, platnost De Jonghovy v ety a rozhodnutelnost. Diplomov a pr ace vych az zejm ena z v ysledk u C. Smorynsk eho a D. de Jongha a sna z se je rozvinout. N ekter e v ysledky zn am e pro Heytingovu aritmetiku dokazuje i pro jin e teorie. D ale se pokou s odpov ed et nap r klad na to, jak y vliv m a z am ena axiomu teorie za jin y (klasicky ekvivalentn ) axiom nebo jak e vlastnosti by m ela m t dobr a intuicionistick a teorie.
cs_CZ
uk.abstract.en
This thesis explores some properties of elementary intuitionistic theories. We focus on the following theories: the theory of equality, linear order, dense linear order, the theory of a successor function, Robinson arithmetic and the theory of rational numbers with addition; moreover, we usually deal with two dierent formulations of the theories. As for the properties, our main interest is in the following four: coincidence with the classical version of a theory, saturation, De Jongh's theorem and decidability. The thesis draws especially from the results of C. Smorynski and D. de Jongh and tries to develop them. Some results known for Heyting arithmetic are proved for other theories. We also try to answer the question of what is the eect of replacing an axiom by a dierent (classically equivalent) axiom, or which properties a \good" intuitionistic theory should have.
en_US
uk.file-availability
V
uk.publication.place
Praha
cs_CZ
uk.grantor
Univerzita Karlova, Filozofická fakulta, Katedra logiky