Zobrazit minimální záznam

Intuicionistické logika a axiomatické teorie
dc.contributor.advisorŠvejdar, Vítězslav
dc.creatorBrablec, Vladimír
dc.date.accessioned2017-04-27T04:34:21Z
dc.date.available2017-04-27T04:34:21Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/34313
dc.description.abstractPr ace zkoum a vlastnosti n ekter ych element arn ch intuicionistick ych teori . Vybr any jsou n asleduj c teorie: teorie rovnosti, line arn ho uspo r ad an , hust eho line arn ho uspo r ad an , teorie n asledn ka, Robinsonova aritmetika a teorie s c t an racion aln ch c sel; nav c t em e r ka zdou z t echto teori formulujeme dv ema r uzn ymi zp usoby. Z vlastnost teori n as zaj maj p redev s m n asleduj c cty ri: spl yv an s klasickou verz teorie, saturovanost, platnost De Jonghovy v ety a rozhodnutelnost. Diplomov a pr ace vych az zejm ena z v ysledk u C. Smorynsk eho a D. de Jongha a sna z se je rozvinout. N ekter e v ysledky zn am e pro Heytingovu aritmetiku dokazuje i pro jin e teorie. D ale se pokou s odpov ed et nap r klad na to, jak y vliv m a z am ena axiomu teorie za jin y (klasicky ekvivalentn ) axiom nebo jak e vlastnosti by m ela m t dobr a intuicionistick a teorie.cs_CZ
dc.description.abstractThis thesis explores some properties of elementary intuitionistic theories. We focus on the following theories: the theory of equality, linear order, dense linear order, the theory of a successor function, Robinson arithmetic and the theory of rational numbers with addition; moreover, we usually deal with two dierent formulations of the theories. As for the properties, our main interest is in the following four: coincidence with the classical version of a theory, saturation, De Jongh's theorem and decidability. The thesis draws especially from the results of C. Smorynski and D. de Jongh and tries to develop them. Some results known for Heyting arithmetic are proved for other theories. We also try to answer the question of what is the eect of replacing an axiom by a dierent (classically equivalent) axiom, or which properties a \good" intuitionistic theory should have.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Filozofická fakultacs_CZ
dc.titleIntuitionistic logic and axiomatic theoriesen_US
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-09-16
dc.description.departmentDepartment of Logicen_US
dc.description.departmentKatedra logikycs_CZ
dc.description.facultyFaculty of Artsen_US
dc.description.facultyFilozofická fakultacs_CZ
dc.identifier.repId90806
dc.title.translatedIntuicionistické logika a axiomatické teoriecs_CZ
dc.contributor.refereeJeřábek, Emil
dc.identifier.aleph001368431
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineLogicen_US
thesis.degree.disciplineLogikacs_CZ
thesis.degree.programLogicen_US
thesis.degree.programLogikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csFilozofická fakulta::Katedra logikycs_CZ
uk.taxonomy.organization-enFaculty of Arts::Department of Logicen_US
uk.faculty-name.csFilozofická fakultacs_CZ
uk.faculty-name.enFaculty of Artsen_US
uk.faculty-abbr.csFFcs_CZ
uk.degree-discipline.csLogikacs_CZ
uk.degree-discipline.enLogicen_US
uk.degree-program.csLogikacs_CZ
uk.degree-program.enLogicen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csPr ace zkoum a vlastnosti n ekter ych element arn ch intuicionistick ych teori . Vybr any jsou n asleduj c teorie: teorie rovnosti, line arn ho uspo r ad an , hust eho line arn ho uspo r ad an , teorie n asledn ka, Robinsonova aritmetika a teorie s c t an racion aln ch c sel; nav c t em e r ka zdou z t echto teori formulujeme dv ema r uzn ymi zp usoby. Z vlastnost teori n as zaj maj p redev s m n asleduj c cty ri: spl yv an s klasickou verz teorie, saturovanost, platnost De Jonghovy v ety a rozhodnutelnost. Diplomov a pr ace vych az zejm ena z v ysledk u C. Smorynsk eho a D. de Jongha a sna z se je rozvinout. N ekter e v ysledky zn am e pro Heytingovu aritmetiku dokazuje i pro jin e teorie. D ale se pokou s odpov ed et nap r klad na to, jak y vliv m a z am ena axiomu teorie za jin y (klasicky ekvivalentn ) axiom nebo jak e vlastnosti by m ela m t dobr a intuicionistick a teorie.cs_CZ
uk.abstract.enThis thesis explores some properties of elementary intuitionistic theories. We focus on the following theories: the theory of equality, linear order, dense linear order, the theory of a successor function, Robinson arithmetic and the theory of rational numbers with addition; moreover, we usually deal with two dierent formulations of the theories. As for the properties, our main interest is in the following four: coincidence with the classical version of a theory, saturation, De Jongh's theorem and decidability. The thesis draws especially from the results of C. Smorynski and D. de Jongh and tries to develop them. Some results known for Heyting arithmetic are proved for other theories. We also try to answer the question of what is the eect of replacing an axiom by a dierent (classically equivalent) axiom, or which properties a \good" intuitionistic theory should have.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Filozofická fakulta, Katedra logikycs_CZ
dc.identifier.lisID990013684310106986


Soubory tohoto záznamu

No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV