Show simple item record

Segmentace obrazových dat
dc.contributor.advisorHaindl, Michal
dc.creatorMikeš, Stanislav
dc.date.accessioned2021-01-15T17:44:17Z
dc.date.available2021-01-15T17:44:17Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/26218
dc.description.abstractImage segmentation is a fundamental part in low level computer vision processing. It has an essential influence on the subsequent higher level visual scene interpretation for a wide range of applications. Unsupervised image segmentation is an ill-defined problem and thus cannot be optimally solved in general. Several novel unsupervised multispectral image segmentation methods based on the underlaying random field texture models (GMRF, 2D/3D CAR) were developed. These segmenters use efficient data representations that allow an analytical solutions and thus the segmentation algorithm is much faster in comparison to methods based on MCMC. All segmenters were extensively compared with the alternative state- of-the-art segmenters with very good results. The MW3AR segmenter scored as one of the best available. The cluster validation problem was solved by a modified EM algorithm. Two multiple resolution segmenters were designed as a combination of a set of single segmenters. To tackle a realistic variable lighting in images, the illumination invariant features were derived and the illumination invariant segmenter was developed. For the proper evaluation of segmentation results and ranking of algorithms, a unique web-based texture segmentation benchmark was proposed and implemented. It was used for comprehensive...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectimage segmentationcs_CZ
dc.subjecttexturecs_CZ
dc.subjectbenchmarkcs_CZ
dc.titleImage Segmentationen_US
dc.typedizertační prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-04-28
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId39803
dc.title.translatedSegmentace obrazových datcs_CZ
dc.contributor.refereeScarpa, Giuseppe
dc.contributor.refereeJan, Jiří
dc.identifier.aleph001228132
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineSoftware Systemsen_US
thesis.degree.disciplineSoftwarové systémycs_CZ
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csSoftwarové systémycs_CZ
uk.degree-discipline.enSoftware Systemsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.enImage segmentation is a fundamental part in low level computer vision processing. It has an essential influence on the subsequent higher level visual scene interpretation for a wide range of applications. Unsupervised image segmentation is an ill-defined problem and thus cannot be optimally solved in general. Several novel unsupervised multispectral image segmentation methods based on the underlaying random field texture models (GMRF, 2D/3D CAR) were developed. These segmenters use efficient data representations that allow an analytical solutions and thus the segmentation algorithm is much faster in comparison to methods based on MCMC. All segmenters were extensively compared with the alternative state- of-the-art segmenters with very good results. The MW3AR segmenter scored as one of the best available. The cluster validation problem was solved by a modified EM algorithm. Two multiple resolution segmenters were designed as a combination of a set of single segmenters. To tackle a realistic variable lighting in images, the illumination invariant features were derived and the illumination invariant segmenter was developed. For the proper evaluation of segmentation results and ranking of algorithms, a unique web-based texture segmentation benchmark was proposed and implemented. It was used for comprehensive...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameÚstav teorie informace a automatizace AV ČR, v.v.i.cs
dc.identifier.lisID990012281320106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV