Zobrazit minimální záznam

Metoda sdružených gradientů pro úlohy se singulární maticí
dc.contributor.advisorPapež, Jan
dc.creatorPokorná, Janika
dc.date.accessioned2025-07-15T09:06:21Z
dc.date.available2025-07-15T09:06:21Z
dc.date.issued2025
dc.identifier.urihttp://hdl.handle.net/20.500.11956/201025
dc.description.abstractThe conjugate gradient method (CG) is an iterative algorithm for solving systems of linear equations with large, sparse, symmetric, positive-definite matrices. It seeks an approximate solution by minimizing the associated quadratic functional. The assumption of positive-definiteness is fundamental; when applied to singular systems, the performance of CG may deteriorate significantly. The thesis presents a detailed motivation and derivation of the CG method, and ex- plores some of its key properties through its connection to Krylov subspaces. An example involving a singular matrix, where divergence of the method is observed, serves as the starting point for an analysis of solving systems with positive semi-definite matrices. The vectors generated by CG are decomposed into components within the kernel and the range of the system matrix, and the behavior in each subspace is examined in detail. A modification of CG for singular systems is recalled from the literature. Finally, nu- merical experiments are presented, investigating the divergence of CG when applied to inconsistent systems with positive semi-definite matrices. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectSystems of linear equations|Conjugate Gradient method|Positive semi-definite matrices|Orthodir methoden_US
dc.subjectmetoda sdružených gradientů|Soustavy lineárních rovnic|Pozitivně semidefinitní matice|Orthodir metodacs_CZ
dc.titleConjugate Gradient Method for Solving Singular Systemsen_US
dc.typebakalářská prácecs_CZ
dcterms.created2025
dcterms.dateAccepted2025-06-24
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId260816
dc.title.translatedMetoda sdružených gradientů pro úlohy se singulární maticícs_CZ
dc.contributor.refereePozza, Stefano
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineMathematical Modellingen_US
thesis.degree.disciplineMatematické modelovánícs_CZ
thesis.degree.programMatematické modelovánícs_CZ
thesis.degree.programMathematical Modellingen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické modelovánícs_CZ
uk.degree-discipline.enMathematical Modellingen_US
uk.degree-program.csMatematické modelovánícs_CZ
uk.degree-program.enMathematical Modellingen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThe conjugate gradient method (CG) is an iterative algorithm for solving systems of linear equations with large, sparse, symmetric, positive-definite matrices. It seeks an approximate solution by minimizing the associated quadratic functional. The assumption of positive-definiteness is fundamental; when applied to singular systems, the performance of CG may deteriorate significantly. The thesis presents a detailed motivation and derivation of the CG method, and ex- plores some of its key properties through its connection to Krylov subspaces. An example involving a singular matrix, where divergence of the method is observed, serves as the starting point for an analysis of solving systems with positive semi-definite matrices. The vectors generated by CG are decomposed into components within the kernel and the range of the system matrix, and the behavior in each subspace is examined in detail. A modification of CG for singular systems is recalled from the literature. Finally, nu- merical experiments are presented, investigating the divergence of CG when applied to inconsistent systems with positive semi-definite matrices. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV