dc.contributor.advisor | Tyomkyn, Mykhaylo | |
dc.creator | Rajský, Adam | |
dc.date.accessioned | 2024-07-19T06:30:53Z | |
dc.date.available | 2024-07-19T06:30:53Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/192078 | |
dc.description.abstract | Given hypergraphs H and P, wsat(H, P) denotes the smallest number of edges in a subgraph of H with the property that the missing edges can be sequentially added such that the addition of every edge creates a new copy of P. In 1985 Alon proved that wsat(Kn, P)/n tends to a finite limit for any graph P. A generalisation of this Theorem to r-uniform hypergraphs was conjectured by Tuza in 1992 and proved by Shapira and Tyomkyn in 2021. In this thesis, we use the methodology introduced by Shapira and Tyomkyn to prove a similar theorem when H is a complete r-partite r- uniform hypergraph. | en_US |
dc.description.abstract | Dané hypergrafy H a P, wsat(H, P) označuje najmenší počet hrán v podgrafe H s vlastnosťou, že chýbajúce hrany možno postupne pridať tak, že pridanie každej hrany vytvorí novú kópiu P. V roku 1985 Alon dokázal, že wsat(Kn, P)/n konverguje k vlastnej limite pre akýkoľvek graf P. Tuza sa v roku 1992 domnieval, že platí zobecnenie tejto vety pre r-uniformné hypergrafy a dokázali ho Shapira a Tyomkyn v roku 2021. V tejto práci používame metodológiu, ktorú zaviedli Shapira a Tyomkyn, aby sme dokázali podobnuú vetu, v ktorej H je úplný r-partitný r-uniformný hypergraf. | cs_CZ |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | wsat|weak saturation|hypergraph|extremal combinatorics | en_US |
dc.subject | wsat|slabá saturácia|hypergraf|extremálna kombinatorika | cs_CZ |
dc.title | Procesy slabé saturace v multipartitních hypergrafech | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-28 | |
dc.description.department | Department of Applied Mathematics | en_US |
dc.description.department | Katedra aplikované matematiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 268508 | |
dc.title.translated | Weak saturation processes in multipartite hypergraphs | en_US |
dc.contributor.referee | Tancer, Martin | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Informatika se specializací Obecná informatika | cs_CZ |
thesis.degree.discipline | Computer Science with specialisation in Foundations of Computer Science | en_US |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra aplikované matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Applied Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Informatika se specializací Obecná informatika | cs_CZ |
uk.degree-discipline.en | Computer Science with specialisation in Foundations of Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Dané hypergrafy H a P, wsat(H, P) označuje najmenší počet hrán v podgrafe H s vlastnosťou, že chýbajúce hrany možno postupne pridať tak, že pridanie každej hrany vytvorí novú kópiu P. V roku 1985 Alon dokázal, že wsat(Kn, P)/n konverguje k vlastnej limite pre akýkoľvek graf P. Tuza sa v roku 1992 domnieval, že platí zobecnenie tejto vety pre r-uniformné hypergrafy a dokázali ho Shapira a Tyomkyn v roku 2021. V tejto práci používame metodológiu, ktorú zaviedli Shapira a Tyomkyn, aby sme dokázali podobnuú vetu, v ktorej H je úplný r-partitný r-uniformný hypergraf. | cs_CZ |
uk.abstract.en | Given hypergraphs H and P, wsat(H, P) denotes the smallest number of edges in a subgraph of H with the property that the missing edges can be sequentially added such that the addition of every edge creates a new copy of P. In 1985 Alon proved that wsat(Kn, P)/n tends to a finite limit for any graph P. A generalisation of this Theorem to r-uniform hypergraphs was conjectured by Tuza in 1992 and proved by Shapira and Tyomkyn in 2021. In this thesis, we use the methodology introduced by Shapira and Tyomkyn to prove a similar theorem when H is a complete r-partite r- uniform hypergraph. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |