Show simple item record

Coupling, transportation metrics and applications to approximate counting
dc.contributor.advisorProkešová, Michaela
dc.creatorKluvancová, Rozálie
dc.date.accessioned2023-11-06T15:43:24Z
dc.date.available2023-11-06T15:43:24Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/184374
dc.description.abstractAn important property of discrete-time Markov chains with finite state space is the rate of convergence of the marginal distribution of the chain to the stationary distribution (i.e. mixing rate). If we construct a coupling of two Markov chains with the same transition matrix, where one starts from a stationary distribution and the other from a fixed state, we can use it to estimate the mixing rate. The main goal of this thesis is to describe how we can construct such a coupling using the transportation metric, and to apply this method to approximate counting of all proper colorings of the graph. 1en_US
dc.description.abstractDůležitou vlastností markovských řetězců s diskrétním časem a konečnou množinou stavů je rychlost konvergence marginálního rozdělení řetězce ke stacionárnímu rozdě- lení (neboli rychlost mixingu). Pokud zkonstruujeme coupling dvou markovských řetězců se stejnou maticí pravděpodobností přechodu, kdy jeden startuje ze stacionárního rozdě- lení a druhý z pevného stavu, můžeme ho použít k odhadu rychlosti mixingu. Cílem práce je popsat, jak můžeme takový coupling sestrojit pomocí transportní metriky, a aplikovat tuto metodu při přibližném počítání prvků množiny všech přípustných obarvení grafu. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectcoupling pravděpodobnostních rozdělení|transportní metrika|přibližné počítánícs_CZ
dc.subjectcoupling of probability distributions|transportation metric|approximate countingen_US
dc.titleCoupling, transportní metrika a aplikace pro přibližné počítánícs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-07
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId252034
dc.title.translatedCoupling, transportation metrics and applications to approximate countingen_US
dc.contributor.refereeSwart, Jan
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programObecná matematikacs_CZ
thesis.degree.programGeneral Mathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csObecná matematikacs_CZ
uk.degree-program.enGeneral Mathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csDůležitou vlastností markovských řetězců s diskrétním časem a konečnou množinou stavů je rychlost konvergence marginálního rozdělení řetězce ke stacionárnímu rozdě- lení (neboli rychlost mixingu). Pokud zkonstruujeme coupling dvou markovských řetězců se stejnou maticí pravděpodobností přechodu, kdy jeden startuje ze stacionárního rozdě- lení a druhý z pevného stavu, můžeme ho použít k odhadu rychlosti mixingu. Cílem práce je popsat, jak můžeme takový coupling sestrojit pomocí transportní metriky, a aplikovat tuto metodu při přibližném počítání prvků množiny všech přípustných obarvení grafu. 1cs_CZ
uk.abstract.enAn important property of discrete-time Markov chains with finite state space is the rate of convergence of the marginal distribution of the chain to the stationary distribution (i.e. mixing rate). If we construct a coupling of two Markov chains with the same transition matrix, where one starts from a stationary distribution and the other from a fixed state, we can use it to estimate the mixing rate. The main goal of this thesis is to describe how we can construct such a coupling using the transportation metric, and to apply this method to approximate counting of all proper colorings of the graph. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV