Zobrazit minimální záznam

Neural Concept-to-text Generation with Knowledge Graphs
dc.contributor.advisorDušek, Ondřej
dc.creatorSzabová, Kristína
dc.date.accessioned2023-11-06T22:36:55Z
dc.date.available2023-11-06T22:36:55Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/184142
dc.description.abstractModern language models are strong at generating grammatically correct, natural lan- guage. However, they still struggle with commonsense reasoning - a task involving making inferences about common everyday situations without explicitly stated informa- tion. Prior research into the topic has shown that providing additional information from external sources helps language models generate better outputs. In this thesis, we explore methods of extracting information from knowledge graphs and using it as additional input for a pre-trained generative language model. We do this by either extracting a subgraph relevant to the context or by using graph neural networks to predict which information is relevant. Moreover, we experiment with a post-editing approach and with a model trained in a multi-task setup (generation and consistency classification). Our methods are evaluated on the CommonGen benchmark for generative commonsense reasoning using both automatic metrics and a detailed error analysis on a small sample of outputs. We show that the methods improve over a simple language model fine-tuning baseline, although they do not set a new state of the art. 1en_US
dc.description.abstractModerní jazykové modely jsou schopné generovat gramaticky správný, přirozený ja- zyk. Stále však mají potíže s commonsense reasoningem, což je úkol zahrnující vyvozování závěrů o běžných každodenních situacích bez explicitně uvedených informací. Předchozí výzkum tohoto tématu ukázal, že poskytnutí dodatečných informací z externích zdrojů pomáhá jazykovým modelům generovat lepší výstupy. V této práci zkoumáme metody získávání informací ze znalostních grafů a jejich využití jako dodatečného vstupu pro předem natrénovaný generativní jazykový model. Děláme to buď extrakcí podgrafu rele- vantního pro kontext, nebo pomocí grafových neuronových sítí, které předpovídají, které informace jsou relevantní. Kromě toho experimentujeme s post-editačním přístupem a s modelem natrénovaným ve víceúlohovém setupu (generování a klasifikace konzistence). Naše metody jsou hodnoceny na benchmarku CommonGen pro generativní common- sense reasoning s využitím automatických metrik i podrobné analýzy chyb na malém vzorku výstupů. Ukazujeme, že metody se zlepšují ve srovnání s jednoduchým přístu- pem spočívajícím ve vyladění jazykového modelu, ačkoli nepřekonávají nejlepší současné modely. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectgenerování přirozeného jazyka|generování textu z pojmů|znalostní graf|zpracování přirozeného jazykacs_CZ
dc.subjectnatural language generation|concept to text generation|knowledge graph|natural language processingen_US
dc.titleNeuronové generování textu z pojmů se znalostními grafycs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-06
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId257507
dc.title.translatedNeural Concept-to-text Generation with Knowledge Graphsen_US
dc.contributor.refereeLibovický, Jindřich
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineInformatika - Jazykové technologie a počítačová lingvistikacs_CZ
thesis.degree.disciplineComputer Science - Language Technologies and Computational Linguisticsen_US
thesis.degree.programInformatika - Jazykové technologie a počítačová lingvistikacs_CZ
thesis.degree.programComputer Science - Language Technologies and Computational Linguisticsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csInformatika - Jazykové technologie a počítačová lingvistikacs_CZ
uk.degree-discipline.enComputer Science - Language Technologies and Computational Linguisticsen_US
uk.degree-program.csInformatika - Jazykové technologie a počítačová lingvistikacs_CZ
uk.degree-program.enComputer Science - Language Technologies and Computational Linguisticsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csModerní jazykové modely jsou schopné generovat gramaticky správný, přirozený ja- zyk. Stále však mají potíže s commonsense reasoningem, což je úkol zahrnující vyvozování závěrů o běžných každodenních situacích bez explicitně uvedených informací. Předchozí výzkum tohoto tématu ukázal, že poskytnutí dodatečných informací z externích zdrojů pomáhá jazykovým modelům generovat lepší výstupy. V této práci zkoumáme metody získávání informací ze znalostních grafů a jejich využití jako dodatečného vstupu pro předem natrénovaný generativní jazykový model. Děláme to buď extrakcí podgrafu rele- vantního pro kontext, nebo pomocí grafových neuronových sítí, které předpovídají, které informace jsou relevantní. Kromě toho experimentujeme s post-editačním přístupem a s modelem natrénovaným ve víceúlohovém setupu (generování a klasifikace konzistence). Naše metody jsou hodnoceny na benchmarku CommonGen pro generativní common- sense reasoning s využitím automatických metrik i podrobné analýzy chyb na malém vzorku výstupů. Ukazujeme, že metody se zlepšují ve srovnání s jednoduchým přístu- pem spočívajícím ve vyladění jazykového modelu, ačkoli nepřekonávají nejlepší současné modely. 1cs_CZ
uk.abstract.enModern language models are strong at generating grammatically correct, natural lan- guage. However, they still struggle with commonsense reasoning - a task involving making inferences about common everyday situations without explicitly stated informa- tion. Prior research into the topic has shown that providing additional information from external sources helps language models generate better outputs. In this thesis, we explore methods of extracting information from knowledge graphs and using it as additional input for a pre-trained generative language model. We do this by either extracting a subgraph relevant to the context or by using graph neural networks to predict which information is relevant. Moreover, we experiment with a post-editing approach and with a model trained in a multi-task setup (generation and consistency classification). Our methods are evaluated on the CommonGen benchmark for generative commonsense reasoning using both automatic metrics and a detailed error analysis on a small sample of outputs. We show that the methods improve over a simple language model fine-tuning baseline, although they do not set a new state of the art. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV