Zobrazit minimální záznam

Vytvoření 3D dioramatu z jednoho obrázku pomocí hlubokého učení
dc.contributor.advisorŠikudová, Elena
dc.creatorVejbora, Martin
dc.date.accessioned2023-07-24T12:38:34Z
dc.date.available2023-07-24T12:38:34Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/181877
dc.description.abstractThe goal of this thesis is to automate the process of generating 3D dio- rama scenes from a single image. After an extensive analysis of existing approaches, we propose to combine the output of deep learning models for panoptic segmentation and monocular depth estimation. We encountered some limitations of the available depth model for our use case, which we addressed through fine-tuning. To construct the diorama, we separate the objects identified by segmentation into distinct images with transparent back- grounds. These images are placed in a 3D scene, arranged in a way that reflects the estimated depth of each object. We implemented our method as an add-on for Blender. The thesis was developed in collaboration with a company called polygoniq.en_US
dc.description.abstractCílem této práce je automatizovat proces generování 3D dioramatických scén z jedné fotky. Po rozsáhlé analýze stávajících přístupů jsme se rozhodli zkombinovat výstup modelů hlubokého učení pro panoptickou segmentaci a odhad hloubky. V průběhu práce jsme narazili na určitá omezení v modelu odhadujícím hloubku, která jsme vyřešili finetunováním na novém datasetu. Výsledné diorama konstruujeme tak, že rozdělíme objekty identifikované seg- mentací do samostatných obrázků s průhledným pozadím. Tyto obrázky pak umístíme do 3D scény tak, aby jejich vzájemná vzdálenost odpovídala odhad- nuté hloubce jednotlivých objektů. Naše řešení jsme implementovali formou add-onu pro Blender. Diplomová práce byla vypracována ve spolupráci s fir- mou polygoniq.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectdepth|diorama|Blender|deep learning|panoptic segmentation|monocular depth estimationen_US
dc.subjecthloubka|diorama|Blender|hluboké učení|panoptická segmentace|odhad hloubkycs_CZ
dc.titleCreating 3D Diorama from Single Image with Deep Learningen_US
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-06-12
dc.description.departmentKatedra softwaru a výuky informatikycs_CZ
dc.description.departmentDepartment of Software and Computer Science Educationen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId254039
dc.title.translatedVytvoření 3D dioramatu z jednoho obrázku pomocí hlubokého učenícs_CZ
dc.contributor.refereeHoleňa, Martin
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineInformatika - Umělá inteligencecs_CZ
thesis.degree.disciplineComputer Science - Artificial Intelligenceen_US
thesis.degree.programInformatika - Umělá inteligencecs_CZ
thesis.degree.programComputer Science - Artificial Intelligenceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwaru a výuky informatikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software and Computer Science Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csInformatika - Umělá inteligencecs_CZ
uk.degree-discipline.enComputer Science - Artificial Intelligenceen_US
uk.degree-program.csInformatika - Umělá inteligencecs_CZ
uk.degree-program.enComputer Science - Artificial Intelligenceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csCílem této práce je automatizovat proces generování 3D dioramatických scén z jedné fotky. Po rozsáhlé analýze stávajících přístupů jsme se rozhodli zkombinovat výstup modelů hlubokého učení pro panoptickou segmentaci a odhad hloubky. V průběhu práce jsme narazili na určitá omezení v modelu odhadujícím hloubku, která jsme vyřešili finetunováním na novém datasetu. Výsledné diorama konstruujeme tak, že rozdělíme objekty identifikované seg- mentací do samostatných obrázků s průhledným pozadím. Tyto obrázky pak umístíme do 3D scény tak, aby jejich vzájemná vzdálenost odpovídala odhad- nuté hloubce jednotlivých objektů. Naše řešení jsme implementovali formou add-onu pro Blender. Diplomová práce byla vypracována ve spolupráci s fir- mou polygoniq.cs_CZ
uk.abstract.enThe goal of this thesis is to automate the process of generating 3D dio- rama scenes from a single image. After an extensive analysis of existing approaches, we propose to combine the output of deep learning models for panoptic segmentation and monocular depth estimation. We encountered some limitations of the available depth model for our use case, which we addressed through fine-tuning. To construct the diorama, we separate the objects identified by segmentation into distinct images with transparent back- grounds. These images are placed in a 3D scene, arranged in a way that reflects the estimated depth of each object. We implemented our method as an add-on for Blender. The thesis was developed in collaboration with a company called polygoniq.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatikycs_CZ
thesis.grade.code1
dc.contributor.consultantPreisler, Martin
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV