dc.contributor.advisor | Prokešová, Michaela | |
dc.creator | Gemrotová, Kateřina | |
dc.date.accessioned | 2020-10-07T09:56:26Z | |
dc.date.available | 2020-10-07T09:56:26Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/121269 | |
dc.description.abstract | Práce se zabývá odhadováním rychlosti konvergence marginálních rozdělení reverzi- bilních Markovových řetězců s diskrétním časem a konečnou diskrétní množinou stavů ke svým stacionárním rozdělením. Odhad vyjádříme pomocí několika veličin a využi- jeme teorii elektrických sítí, které nám pomohou při reprezentaci náhodných procházek na grafu. Výsledkem práce bude jednoduše zjistitelný horní odhad času mixingu pro ná- hodné procházky na souvislých grafech s libovolným počtem vrcholů a hran. Jednotlivé dílčí výsledky demonstrujeme na jednoduchých příkladech či protipříkladech. 1 | cs_CZ |
dc.description.abstract | The thesis presents the study of deriving upper bounds of the speed of convergence of reversible Markov chains with discrete time and discrete finite space state to their stationary distributions. We express the derived upper bound in terms of several variables and we make use of the theory of electrical networks, which will help us to represent random walks on a graph. The result of this thesis will be simply obtainable upper bound of mixing time of random walks on connected graphs with an arbitrary number of vertices and edges. Partial results will be demonstrated on simple examples and counterexamples. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | reverzibilní Markovův řetězec | cs_CZ |
dc.subject | náhodná procházka na grafu | cs_CZ |
dc.subject | rychlost konvergence | cs_CZ |
dc.subject | čas mixingu | cs_CZ |
dc.subject | reversible Markov chain | en_US |
dc.subject | random walk on a graph | en_US |
dc.subject | speed of convergence | en_US |
dc.subject | mixing time | en_US |
dc.title | Náhodné procházky na sítích a rychlost konvergence Markovových řetězců | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2020 | |
dcterms.dateAccepted | 2020-09-16 | |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 216378 | |
dc.title.translated | Random walks on networks and mixing of Markov chains | en_US |
dc.contributor.referee | Pawlas, Zbyněk | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Práce se zabývá odhadováním rychlosti konvergence marginálních rozdělení reverzi- bilních Markovových řetězců s diskrétním časem a konečnou diskrétní množinou stavů ke svým stacionárním rozdělením. Odhad vyjádříme pomocí několika veličin a využi- jeme teorii elektrických sítí, které nám pomohou při reprezentaci náhodných procházek na grafu. Výsledkem práce bude jednoduše zjistitelný horní odhad času mixingu pro ná- hodné procházky na souvislých grafech s libovolným počtem vrcholů a hran. Jednotlivé dílčí výsledky demonstrujeme na jednoduchých příkladech či protipříkladech. 1 | cs_CZ |
uk.abstract.en | The thesis presents the study of deriving upper bounds of the speed of convergence of reversible Markov chains with discrete time and discrete finite space state to their stationary distributions. We express the derived upper bound in terms of several variables and we make use of the theory of electrical networks, which will help us to represent random walks on a graph. The result of this thesis will be simply obtainable upper bound of mixing time of random walks on connected graphs with an arbitrary number of vertices and edges. Partial results will be demonstrated on simple examples and counterexamples. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |