Zobrazit minimální záznam

Detekce střihů a vyhledávání známých scén ve videu s pomocí metod hlubokého učení
dc.contributor.advisorLokoč, Jakub
dc.creatorSouček, Tomáš
dc.date.accessioned2020-10-05T10:13:54Z
dc.date.available2020-10-05T10:13:54Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/121024
dc.description.abstractVyhledávání ve videu představuje náročný problém s mnoha záludnostmi a dílčími problémy. Tato práce se zaměřuje na dva z těchto podproblémů, konkrétně na detekci střihů a textové vyhledávání. V případě detekce střihů bylo v posledních desetiletích navrženo mnoho řešení. Nedávné přístupy založené na hlubokém učení zlepšily přes- nost detekce pomocí 3D konvolučních architektur a uměle vytvořených trénovacích dat, ale stoprocentní přesnost je stále nedosažitelným ideálem. V této práci představujeme TransNet V2, hlubokou síť pro detekci střihů, která dosahuje nejlepších výsledků v porovnání s konkurenčními metodami na respekovaných datasetech. V případě druhého námi řešeného problému textového vyhledávání se ukázaly jako efektivní řešení hluboké neuronové sítě promítající textové dotazy a snímky videa do společného prostoru. V této práci zkoumáme použítí těchto sítí pro případ hledání známého objektu ve videu a navrhujeme vylepšení způsobu, jakým lze zakódovat textový dotaz. 1cs_CZ
dc.description.abstractVideo retrieval represents a challenging problem with many caveats and sub-problems. This thesis focuses on two of these sub-problems, namely shot transition detection and text-based search. In the case of shot detection, many solutions have been proposed over the last decades. Recently, deep learning-based approaches improved the accuracy of shot transition detection using 3D convolutional architectures and artificially created training data, but one hundred percent accuracy is still an unreachable ideal. In this thesis we present a deep network for shot transition detection TransNet V2 that reaches state-of- the-art performance on respected benchmarks. In the second case of text-based search, deep learning models projecting textual query and video frames into a joint space proved to be effective for text-based video retrieval. We investigate these query representation learning models in a setting of known-item search and propose improvements for the text encoding part of the model. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecthluboké učenícs_CZ
dc.subjectdetekce střihůcs_CZ
dc.subjecthledání známé scénycs_CZ
dc.subjectučení reprezentacícs_CZ
dc.subjectdeep learningen_US
dc.subjectshot transition detectionen_US
dc.subjectknown-item searchen_US
dc.subjectrepresentation learningen_US
dc.titleDetekce střihů a vyhledávání známých scén ve videu s pomocí metod hlubokého učeníen_US
dc.typediplomová prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-09-14
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId224473
dc.title.translatedDetekce střihů a vyhledávání známých scén ve videu s pomocí metod hlubokého učenícs_CZ
dc.contributor.refereePeška, Ladislav
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineArtificial Intelligenceen_US
thesis.degree.disciplineUmělá inteligencecs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwarového inženýrstvícs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software Engineeringen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUmělá inteligencecs_CZ
uk.degree-discipline.enArtificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csVyhledávání ve videu představuje náročný problém s mnoha záludnostmi a dílčími problémy. Tato práce se zaměřuje na dva z těchto podproblémů, konkrétně na detekci střihů a textové vyhledávání. V případě detekce střihů bylo v posledních desetiletích navrženo mnoho řešení. Nedávné přístupy založené na hlubokém učení zlepšily přes- nost detekce pomocí 3D konvolučních architektur a uměle vytvořených trénovacích dat, ale stoprocentní přesnost je stále nedosažitelným ideálem. V této práci představujeme TransNet V2, hlubokou síť pro detekci střihů, která dosahuje nejlepších výsledků v porovnání s konkurenčními metodami na respekovaných datasetech. V případě druhého námi řešeného problému textového vyhledávání se ukázaly jako efektivní řešení hluboké neuronové sítě promítající textové dotazy a snímky videa do společného prostoru. V této práci zkoumáme použítí těchto sítí pro případ hledání známého objektu ve videu a navrhujeme vylepšení způsobu, jakým lze zakódovat textový dotaz. 1cs_CZ
uk.abstract.enVideo retrieval represents a challenging problem with many caveats and sub-problems. This thesis focuses on two of these sub-problems, namely shot transition detection and text-based search. In the case of shot detection, many solutions have been proposed over the last decades. Recently, deep learning-based approaches improved the accuracy of shot transition detection using 3D convolutional architectures and artificially created training data, but one hundred percent accuracy is still an unreachable ideal. In this thesis we present a deep network for shot transition detection TransNet V2 that reaches state-of- the-art performance on respected benchmarks. In the second case of text-based search, deep learning models projecting textual query and video frames into a joint space proved to be effective for text-based video retrieval. We investigate these query representation learning models in a setting of known-item search and propose improvements for the text encoding part of the model. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV