dc.contributor.advisor | Barto, Libor | |
dc.creator | Petr, Jan | |
dc.date.accessioned | 2020-08-05T09:51:44Z | |
dc.date.available | 2020-08-05T09:51:44Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/119837 | |
dc.description.abstract | In the past five years, the Promise Constraint Satisfaction Problem (PCSP) has been a popular topic in computational complexity, covering a wide range of computational problems. In this work, we begin by introducing the PCSP and then turn our atten- tion to the still open problem of the PCSP over 'monotone folded Boolean structures'. Brakensiek and Guruswami showed in 2016 that the PCSP is in P if all odd majorities are polymorphisms between structures under consideration. We focus on the situation in which some of the odd majorities are not among the polymorphisms. We present a technique for proving NP-completeness of PCSPs that uses the notion of heavy sets. Our approach succeeds in proving that the absence of the 3-majority makes the PCSP NP-complete. We then give a few partial results for the case of the absence of the 5-majority. We finish by determining the size of the smallest heavy set for a particular family of functions. 1 | en_US |
dc.description.abstract | V posledních pěti letech byl jedním ze zkoumaných témat výpočetní složitosti takzvaný Promise Constraint Satisfaction Problem (PCSP), který pokrývá různorodé výpočetní problémy. V této práci nejprve zavedeme PCSP a následně se zaměříme na stále otevřenou otázku výpočetní složitosti PCSP nad "monotónními folded Boolovskými strukturami". Brakensiek a Guruswami v roce 2016 dokázali, že PCSP patří do třídy P, pokud se všechny liché majority řadí mezi polymorfismy mezi námi uvažovanými strukturami. My se zaměříme se na situaci, kdy některé z majorit polymorfismy ne- jsou. Představíme si postup pro dokazování NP-úplnosti daného PCSP, který zavádí pojem "těžkých množin". Pomocí tohoto přístupu se nám podaří ukázat, že nepří- tomnost 3-majority mezi polymorfismy již implikuje NP-úplnost. Pro případ nepří- tomnosti 5-majority uvedeme několik částečných výsledků. Nakonec určíme velikost nej- menší těžké množiny pro speciální množinu funkcí. 1 | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Promise Constraint Satisfaction Problem | en_US |
dc.subject | majority function | en_US |
dc.subject | polymorphism | en_US |
dc.subject | minor of a function | en_US |
dc.subject | minion | en_US |
dc.subject | Promise Constraint Satisfaction Problem | cs_CZ |
dc.subject | majoritní funkce | cs_CZ |
dc.subject | polymorfismus | cs_CZ |
dc.subject | minor funkce | cs_CZ |
dc.subject | minion | cs_CZ |
dc.title | Monotone functions avoiding majorities | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2020 | |
dcterms.dateAccepted | 2020-07-15 | |
dc.description.department | Department of Algebra | en_US |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 223216 | |
dc.title.translated | Monotónní funkce vyhýbající se majoritám | cs_CZ |
dc.contributor.referee | Mottet, Antoine | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V posledních pěti letech byl jedním ze zkoumaných témat výpočetní složitosti takzvaný Promise Constraint Satisfaction Problem (PCSP), který pokrývá různorodé výpočetní problémy. V této práci nejprve zavedeme PCSP a následně se zaměříme na stále otevřenou otázku výpočetní složitosti PCSP nad "monotónními folded Boolovskými strukturami". Brakensiek a Guruswami v roce 2016 dokázali, že PCSP patří do třídy P, pokud se všechny liché majority řadí mezi polymorfismy mezi námi uvažovanými strukturami. My se zaměříme se na situaci, kdy některé z majorit polymorfismy ne- jsou. Představíme si postup pro dokazování NP-úplnosti daného PCSP, který zavádí pojem "těžkých množin". Pomocí tohoto přístupu se nám podaří ukázat, že nepří- tomnost 3-majority mezi polymorfismy již implikuje NP-úplnost. Pro případ nepří- tomnosti 5-majority uvedeme několik částečných výsledků. Nakonec určíme velikost nej- menší těžké množiny pro speciální množinu funkcí. 1 | cs_CZ |
uk.abstract.en | In the past five years, the Promise Constraint Satisfaction Problem (PCSP) has been a popular topic in computational complexity, covering a wide range of computational problems. In this work, we begin by introducing the PCSP and then turn our atten- tion to the still open problem of the PCSP over 'monotone folded Boolean structures'. Brakensiek and Guruswami showed in 2016 that the PCSP is in P if all odd majorities are polymorphisms between structures under consideration. We focus on the situation in which some of the odd majorities are not among the polymorphisms. We present a technique for proving NP-completeness of PCSPs that uses the notion of heavy sets. Our approach succeeds in proving that the absence of the 3-majority makes the PCSP NP-complete. We then give a few partial results for the case of the absence of the 5-majority. We finish by determining the size of the smallest heavy set for a particular family of functions. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |