Symmetries of transition times in complex biophysical systems
Symetrie dob přechodových dějů v komplexních biofyzikálních systémech
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/119794Identifikátory
SIS: 221722
Kolekce
- Kvalifikační práce [11349]
Autor
Vedoucí práce
Oponent práce
Chvosta, Petr
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná fyzika
Katedra / ústav / klinika
Katedra makromolekulární fyziky
Datum obhajoby
14. 7. 2020
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
Cyklické reakce, Markovovy řetězce, doba dokončení cyklu, mnohačásticový systémKlíčová slova (anglicky)
Cyclic reaction networks, Markov chains, cycle-completion time, many-particle systemZměny konformace biomolekuly můžeme popsat jako Markovovský proces s diskrétním prostorem stavů, které představují minima volné energie systému. Pro několik typů mem- bránových proteinů a molekulárních motorů jsou jejich stavy spojeny do cyklu, přičemž reakční koordináty (reprezentované "částicí") přeskakují mezi jednotlivými stavy. K pře- skokům dochází převážně v jednom směru s ojedinělým přeskokem nazpět, jež je způsoben termálními fluktuacemi. V práci jsou studovány doby nutné k dokončení jednoho cyklu za předpokladu, že interakce částice s jinými stupni volnosti (tj. jinými částicemi) nemohou být zanedbány. Srovnáme průměrné doby dokončení cyklu po a proti směru typického pohybu částice a ukážeme všeobecnou nerovnost, kterou musí splňovat - doby dokon- čení cyklu proti typickému směru pohybu jsou vždy kratší než po směru. Diskutujeme jak zmíněné doby závisí na síle interakce, topologii cyklu, energiích jednotlivých stavů a počtu interagujících částic. Taktéž ověříme platnost našich poznatků pro dvourozměrné modely s kanonickým a grandkanonickým rezervoárem.
Conformational changes of biomolecules can be described as Markov processes on net- works of discrete states representing minima of free energy landscapes. Network states for several types of membrane proteins and molecular motors are linked into cycles, and their reaction coordinates (represented by a "particle") jump between the cycle states predominantly in one direction with rare backward jumps occurring due to thermal fluc- tuations. Assuming that interactions of the particle with other degrees of freedom (other particles) cannot be neglected, we study times that it takes to complete one cycle. In par- ticular, we compare mean times of cycle completion in and against the bias direction and show that they satisfy the universal inequality: Cycle-completion times in bias direction are never shorter than the ones against the bias. We discuss how the times depend on the interaction strength, cycle topology, quenched disorder, number of interacting par- ticles, and check validity of our findings for two-dimensional models with canonical and grand-canonical particle reservoirs.