Show simple item record

Zonoids of measures and their applications
dc.contributor.advisorNagy, Stanislav
dc.creatorHendrych, František
dc.date.accessioned2020-08-04T09:55:10Z
dc.date.available2020-08-04T09:55:10Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/119788
dc.description.abstractIn the present thesis we are concerned with special convex sets called zonoids. Zonoids are sets that are possible to be expressed as a limit case of a finite sum of line segments. They have found applications in geometry or functional analysis. The subject of our study are mainly the properties of a mapping that to a properly integrable Borel measure assigns a zonoid constructed from that measure. That mapping has an array of interesting properties. It turns out, however, that it is not injective. A solution to this problem is first to apply a suitable transform to the measure, and then to construct a zonoid of the transformed measure. The resulting set is called the lift zonoid of a measure. The mapping that to measure assigns its lift zonoid can be shown to be injective. As we outline in the final part of the thesis, lift zonoids of measures find important applications in multivariate statistics. 1en_US
dc.description.abstractV této práci se budeme zabývat speciálními konvexními množinami, kte- rým se říká zonoidy. Jde o množiny, které je možné vyjádřit jako limitní případ konečného součtu úseček. Zonoidy mají široké uplatnění v geometrii nebo funkcionální analýze. My budeme zejména studovat vlastnosti zobra- zení, které přiřazuje integrovatelné borelovské míře zonoid, který z ní jistým způsobem zkonstruujeme. Toto zobrazení má řadu zajímavých vlastností. Ukazuje se však, že není prosté. Řešením tohoto problému je danou míru vhodně upravit a zkonstruovat zonoid k takto upravené míře. Tuto kon- strukci nazýváme lift zonoidem míry. Zobrazení přiřazující míře její lift zo- noid již prosté je. Jak naznačíme v závěru práce, lift zonoidy měr nachází uplatnění například ve vícerozměrné statistice. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectzonoiden_US
dc.subjectzonoid of measureen_US
dc.subjectlift zonoid of measureen_US
dc.subjectmultivariate measuresen_US
dc.subjectcharacterization of measuresen_US
dc.subjectzonoidcs_CZ
dc.subjectzonoid mírycs_CZ
dc.subjectlift zonoid mírycs_CZ
dc.subjectvícerozměrné mírycs_CZ
dc.subjectcharakterizace měrcs_CZ
dc.titleZonoidy měr a jejich aplikacecs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-07-14
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId216635
dc.title.translatedZonoids of measures and their applicationsen_US
dc.contributor.refereeHlubinka, Daniel
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se budeme zabývat speciálními konvexními množinami, kte- rým se říká zonoidy. Jde o množiny, které je možné vyjádřit jako limitní případ konečného součtu úseček. Zonoidy mají široké uplatnění v geometrii nebo funkcionální analýze. My budeme zejména studovat vlastnosti zobra- zení, které přiřazuje integrovatelné borelovské míře zonoid, který z ní jistým způsobem zkonstruujeme. Toto zobrazení má řadu zajímavých vlastností. Ukazuje se však, že není prosté. Řešením tohoto problému je danou míru vhodně upravit a zkonstruovat zonoid k takto upravené míře. Tuto kon- strukci nazýváme lift zonoidem míry. Zobrazení přiřazující míře její lift zo- noid již prosté je. Jak naznačíme v závěru práce, lift zonoidy měr nachází uplatnění například ve vícerozměrné statistice. 1cs_CZ
uk.abstract.enIn the present thesis we are concerned with special convex sets called zonoids. Zonoids are sets that are possible to be expressed as a limit case of a finite sum of line segments. They have found applications in geometry or functional analysis. The subject of our study are mainly the properties of a mapping that to a properly integrable Borel measure assigns a zonoid constructed from that measure. That mapping has an array of interesting properties. It turns out, however, that it is not injective. A solution to this problem is first to apply a suitable transform to the measure, and then to construct a zonoid of the transformed measure. The resulting set is called the lift zonoid of a measure. The mapping that to measure assigns its lift zonoid can be shown to be injective. As we outline in the final part of the thesis, lift zonoids of measures find important applications in multivariate statistics. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV