Show simple item record

Metody strojového učení pro klasifikaci arytmie EEG signálu
dc.contributor.advisorVomlelová, Marta
dc.creatorShkëmbi, Glejdis
dc.date.accessioned2020-07-28T10:06:17Z
dc.date.available2020-07-28T10:06:17Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/119455
dc.description.abstractTitle: Machine Learning Tools for Diagnosis of Heart Arrhythmia Author: Glejdis Shkëmbi Department / Institute: Department of Theoretical Computer Science and Mathematical Logic Supervisor of the bachelor thesis: Mgr. Marta Vomlelová, Ph.D., Department of Theoretical Computer Science and Mathematical Logic Abstract: Electrocardiogram (ECG) is considered to be the most reliable, efficient and low-cost tool used in the healthcare industry to diagnose cardiac arrhythmia. However, visual representation of ECG signals manually by medical workers is intricate and time-consuming, and may lead to human mistakes and inaccuracy in heartbeat recognition. In this paper, different machine learning techniques for the classification of five classes of ECG heartbeats using Discrete Wavelet Transform (DWT) features are compared. In particular, the significant role of statistical features of DWT coefficients in distinguishing between different heartbeat classes is highlighted. Performances of the models have been evaluated using the online MIT-BIH arrhythmia database. The obtained results indicate the reliability of the machine learning-based approaches for diagnoses of cardiac arrhythmia from ECG signals. Keywords: Electrocardiogram (ECG); Discrete Wavelet Transform (DWT); Support Vector Machine (SVM); Random Forest; Heart...en_US
dc.description.abstractNázev: Nástroje strojového učení pro diagnostiku srdeční arytmie Autor: Glejdis Shkëmbi Katedra / ústav: Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: Mgr. Marta Vomlelová, Ph.D., Katedra teoretické informatiky a matematické logiky Abstrakt: Elektrokardiogram (EKG) je považován za nejspolehlivější, nejúčinnější a nejnákladnější nástroj používaný ve zdravotnictví k diagnostice srdeční arytmie. Vizuální znázornění EKG signálů manuálně zdravotnickými pracovníky je však složité a časově náročné a může vést k lidským chybám a nepřesnostem při rozpoznávání tepu. V tomto dokumentu jsou porovnávány různé techniky strojového učení pro klasifikaci pěti tříd EKG srdečních tepů pomocí funkcí Discrete Wavelet Transform (DWT). Zejména je zdůrazněna významná úloha statistických prvků koeficientů DWT při rozlišování různými tříd srdečního tepu. Výkonnost modelů byla vyhodnoceny pomocí online databáze arytmií MIT-BIH. Získané výsledky ukazují spolehlivost přístupů založených na strojovém učení pro diagnozy srdeční arytmie z EKG signálů. Klíčová slova: Elektrokardiogram (EKG); Discrete Wavelet Transform (DWT); Support Vector Machine (SVM); Random Forest; Srdeční arytmie.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectMachine Learningen_US
dc.subjectHeart Arrhythmiaen_US
dc.subjectElectrocardiogramen_US
dc.subjectDiscrete Wavelet Transformen_US
dc.subjectSupport Vector Machineen_US
dc.subjectMIT-BIH Arrhythmia Databaseen_US
dc.subjectstrojové učenícs_CZ
dc.titleMachine learning tools for Diagnosis of Heart Arrhythmiaen_US
dc.typebakalářská prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-07-07
dc.description.departmentDepartment of Theoretical Computer Science and Mathematical Logicen_US
dc.description.departmentKatedra teoretické informatiky a matematické logikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId220882
dc.title.translatedMetody strojového učení pro klasifikaci arytmie EEG signálucs_CZ
dc.contributor.refereePilát, Martin
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logicen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev: Nástroje strojového učení pro diagnostiku srdeční arytmie Autor: Glejdis Shkëmbi Katedra / ústav: Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: Mgr. Marta Vomlelová, Ph.D., Katedra teoretické informatiky a matematické logiky Abstrakt: Elektrokardiogram (EKG) je považován za nejspolehlivější, nejúčinnější a nejnákladnější nástroj používaný ve zdravotnictví k diagnostice srdeční arytmie. Vizuální znázornění EKG signálů manuálně zdravotnickými pracovníky je však složité a časově náročné a může vést k lidským chybám a nepřesnostem při rozpoznávání tepu. V tomto dokumentu jsou porovnávány různé techniky strojového učení pro klasifikaci pěti tříd EKG srdečních tepů pomocí funkcí Discrete Wavelet Transform (DWT). Zejména je zdůrazněna významná úloha statistických prvků koeficientů DWT při rozlišování různými tříd srdečního tepu. Výkonnost modelů byla vyhodnoceny pomocí online databáze arytmií MIT-BIH. Získané výsledky ukazují spolehlivost přístupů založených na strojovém učení pro diagnozy srdeční arytmie z EKG signálů. Klíčová slova: Elektrokardiogram (EKG); Discrete Wavelet Transform (DWT); Support Vector Machine (SVM); Random Forest; Srdeční arytmie.cs_CZ
uk.abstract.enTitle: Machine Learning Tools for Diagnosis of Heart Arrhythmia Author: Glejdis Shkëmbi Department / Institute: Department of Theoretical Computer Science and Mathematical Logic Supervisor of the bachelor thesis: Mgr. Marta Vomlelová, Ph.D., Department of Theoretical Computer Science and Mathematical Logic Abstract: Electrocardiogram (ECG) is considered to be the most reliable, efficient and low-cost tool used in the healthcare industry to diagnose cardiac arrhythmia. However, visual representation of ECG signals manually by medical workers is intricate and time-consuming, and may lead to human mistakes and inaccuracy in heartbeat recognition. In this paper, different machine learning techniques for the classification of five classes of ECG heartbeats using Discrete Wavelet Transform (DWT) features are compared. In particular, the significant role of statistical features of DWT coefficients in distinguishing between different heartbeat classes is highlighted. Performances of the models have been evaluated using the online MIT-BIH arrhythmia database. The obtained results indicate the reliability of the machine learning-based approaches for diagnoses of cardiac arrhythmia from ECG signals. Keywords: Electrocardiogram (ECG); Discrete Wavelet Transform (DWT); Support Vector Machine (SVM); Random Forest; Heart...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV