Show simple item record

Numerical range of an interval matrix
dc.contributor.advisorHladík, Milan
dc.creatorIvičič, Michal
dc.date.accessioned2020-07-28T10:04:57Z
dc.date.available2020-07-28T10:04:57Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/119451
dc.description.abstractThe numerical range of a matrix is a set of complex numbers that contains all the eigen- values of the matrix. It is used for instance to estimate a matrix norm. This thesis is about the numerical range of an interval matrix. In the theoretical part, we examine its properties. We prove for example that it is NP-hard to find out whether a given point lies in the numerical range. On an example, we show that field of values of an interval matrix is not necessarily convex. The thesis contains descriptions of two algorithms for visualization of the convex hull of the numerical range. Both of them are only suitable for matrices of small sizes due to high time complexity. Therefore we also present a polyno- mial algorithm for computing the upper bound of the numerical range. In the practical part, we implement the algorithms as functions in the Matlab language. 1en_US
dc.description.abstractPole hodnot matice je množina komplexních čísel, která zapouzdřuje vlastní čísla ma- tice. Používá se například k odhadu maticové normy. V práci se zabýváme polem hodnot intervalové matice. V teoretické části vyšetřujeme jeho vlastnosti. Dokazujeme například, že je NP-těžké zjistit, zda daný bod do pole hodnot patří. Na příkladu ukazujeme, že pole hodnot intervalové matice není nutně konvexní. Popisujeme také dva algoritmy na vy- kreslení konvexního obalu pole hodnot. Oba se kvůli velké časové složitosti hodí jen pro matice malých rozměrů. Uvádíme tak i polynomiální algoritmus na vykreslení horního od- hadu pole hodnot intervalové matice. V praktické části algoritmy implementujeme jako funkce v jazyce Matlab. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectnumerical rangeen_US
dc.subjectfield of valuesen_US
dc.subjectinterval linear algebraen_US
dc.subjectinterval matrixen_US
dc.subjectpole hodnotcs_CZ
dc.subjectintervalová lineární algebracs_CZ
dc.subjectintervalová maticecs_CZ
dc.titlePole hodnot intervalové maticecs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-07-07
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId224647
dc.title.translatedNumerical range of an interval matrixen_US
dc.contributor.refereeTichý, Petr
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPole hodnot matice je množina komplexních čísel, která zapouzdřuje vlastní čísla ma- tice. Používá se například k odhadu maticové normy. V práci se zabýváme polem hodnot intervalové matice. V teoretické části vyšetřujeme jeho vlastnosti. Dokazujeme například, že je NP-těžké zjistit, zda daný bod do pole hodnot patří. Na příkladu ukazujeme, že pole hodnot intervalové matice není nutně konvexní. Popisujeme také dva algoritmy na vy- kreslení konvexního obalu pole hodnot. Oba se kvůli velké časové složitosti hodí jen pro matice malých rozměrů. Uvádíme tak i polynomiální algoritmus na vykreslení horního od- hadu pole hodnot intervalové matice. V praktické části algoritmy implementujeme jako funkce v jazyce Matlab. 1cs_CZ
uk.abstract.enThe numerical range of a matrix is a set of complex numbers that contains all the eigen- values of the matrix. It is used for instance to estimate a matrix norm. This thesis is about the numerical range of an interval matrix. In the theoretical part, we examine its properties. We prove for example that it is NP-hard to find out whether a given point lies in the numerical range. On an example, we show that field of values of an interval matrix is not necessarily convex. The thesis contains descriptions of two algorithms for visualization of the convex hull of the numerical range. Both of them are only suitable for matrices of small sizes due to high time complexity. Therefore we also present a polyno- mial algorithm for computing the upper bound of the numerical range. In the practical part, we implement the algorithms as functions in the Matlab language. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV