Show simple item record

Numerical simulations of flows of visco-elastic fluid-like materials, as asphalt in particular
dc.contributor.advisorMálek, Josef
dc.creatorKratochvíl, Jan
dc.date.accessioned2017-04-04T10:46:35Z
dc.date.available2017-04-04T10:46:35Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/10587
dc.description.abstractIn this thesis we deal with numerical simulations for flows of viscoelastic fluids. First, we introduce two models for viscoelastic fluids: (i) the Oldroyd-B, which is a classical model for viscoelastic fluids and (ii) a new nonlinear model which might be thought of as a generalization of Oldroyd-B to the case of large elastic deformations. Then, the flow at three different situations is discussed. The first of them is stress relaxation in parallel plate flow, which is an example of a 1D problem. The second one is a 4:1 planar contraction flow, which is a standard benchmark for viscoelastic flows. The third problem is stress relaxation in axially symmetric cylinder flow, which is solved as a 1D as well as a 2D problem. If it is possible, the problems are solved analytically, otherwise they are solved numerically with the aid of the finite element method using the software Comsol Multiphysics 3.3. Experimental data that document the stress relaxation of asphalt are available in the cylindrical geometry. Thus, finally, these data are fitted using both considered models.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleNumerické simulace deformací visko-elastických materiálů, zejména asfaltucs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-06-06
dc.description.departmentMatematický ústav UKcs_CZ
dc.description.departmentMathematical Institute of Charles Universityen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId42263
dc.title.translatedNumerical simulations of flows of visco-elastic fluid-like materials, as asphalt in particularen_US
dc.contributor.refereeRajagopal, K.R.
dc.identifier.aleph000849856
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineMatematické a počítačové modelování ve fyzice a v technicecs_CZ
thesis.degree.disciplineMathematical and computer modelling in physics and technologyen_US
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Matematický ústav UKcs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Mathematical Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické a počítačové modelování ve fyzice a v technicecs_CZ
uk.degree-discipline.enMathematical and computer modelling in physics and technologyen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enIn this thesis we deal with numerical simulations for flows of viscoelastic fluids. First, we introduce two models for viscoelastic fluids: (i) the Oldroyd-B, which is a classical model for viscoelastic fluids and (ii) a new nonlinear model which might be thought of as a generalization of Oldroyd-B to the case of large elastic deformations. Then, the flow at three different situations is discussed. The first of them is stress relaxation in parallel plate flow, which is an example of a 1D problem. The second one is a 4:1 planar contraction flow, which is a standard benchmark for viscoelastic flows. The third problem is stress relaxation in axially symmetric cylinder flow, which is solved as a 1D as well as a 2D problem. If it is possible, the problems are solved analytically, otherwise they are solved numerically with the aid of the finite element method using the software Comsol Multiphysics 3.3. Experimental data that document the stress relaxation of asphalt are available in the cylindrical geometry. Thus, finally, these data are fitted using both considered models.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UKcs_CZ
dc.identifier.lisID990008498560106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV