dc.contributor.advisor | Trlifaj, Jan | |
dc.creator | Pospíšil, David | |
dc.date.accessioned | 2017-04-04T10:45:35Z | |
dc.date.available | 2017-04-04T10:45:35Z | |
dc.date.issued | 2007 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/10582 | |
dc.description.abstract | Nechť je R komutativní 1-Gorensteinův okruh. Hlavním výsledkem této práce je charakterizace všech vychylujících a kovychylujících modulů nad R, až na ekvivalenci, jsou charakterizovány podmnožinami množiny všech prvoideálů výšky jedna. Přesněji, každý vychylující (kovychylující) R-modul je ekvivalentní nějakému Bassovu vychylujícímu (kovychylujícímu) modulu. Tato charakterizace byla známa ve speciálním případě Dedekindových oborů integrity, v kapitole 4 je uveden nový a jednodušší důkaz tohoto faktu. Důakz hlavního výsledku je proveden v kapitole 5 a kapitola 6 zahrnuje kovychylující případ. V kapitole 4 je ještě uveden důkaz nepříliš známého faktu, že konečně gnerované vychylující moduly nad komutativními okruhy jsou projektivní. | cs_CZ |
dc.description.abstract | Let R be a commutative 1-Gorenstein ring. Our main result characterizes all tilting and cotilting R-modules: up to equivalence: they are parametrized by subsets of the set of all prime ideals of height one. More precisely, every tilting (cotilting) R-module is equivalent to some Bass tilting (cotilting) module. This characterization was known in the particular case of Dedekind domains: Chapter 4 contains a new and simpler proof of this fact. Our main result is proved in Chapter 5, while Chapter 6 deals with the cotilting case. In Chapter 4, there is also a proof of the less well-known fact that all finitely generated tilting modules over commutative rings are projective. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Vychylující moduly nad Gorensteinovými okruhy | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2007 | |
dcterms.dateAccepted | 2007-06-01 | |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.department | Department of Algebra | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 44466 | |
dc.title.translated | Vychylující moduly nad Gorensteinovými okruhy | cs_CZ |
dc.contributor.referee | Žemlička, Jan | |
dc.identifier.aleph | 001444651 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | magisterské | cs_CZ |
thesis.degree.discipline | Matematické struktury | cs_CZ |
thesis.degree.discipline | Mathematical structures | en_US |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické struktury | cs_CZ |
uk.degree-discipline.en | Mathematical structures | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Nechť je R komutativní 1-Gorensteinův okruh. Hlavním výsledkem této práce je charakterizace všech vychylujících a kovychylujících modulů nad R, až na ekvivalenci, jsou charakterizovány podmnožinami množiny všech prvoideálů výšky jedna. Přesněji, každý vychylující (kovychylující) R-modul je ekvivalentní nějakému Bassovu vychylujícímu (kovychylujícímu) modulu. Tato charakterizace byla známa ve speciálním případě Dedekindových oborů integrity, v kapitole 4 je uveden nový a jednodušší důkaz tohoto faktu. Důakz hlavního výsledku je proveden v kapitole 5 a kapitola 6 zahrnuje kovychylující případ. V kapitole 4 je ještě uveden důkaz nepříliš známého faktu, že konečně gnerované vychylující moduly nad komutativními okruhy jsou projektivní. | cs_CZ |
uk.abstract.en | Let R be a commutative 1-Gorenstein ring. Our main result characterizes all tilting and cotilting R-modules: up to equivalence: they are parametrized by subsets of the set of all prime ideals of height one. More precisely, every tilting (cotilting) R-module is equivalent to some Bass tilting (cotilting) module. This characterization was known in the particular case of Dedekind domains: Chapter 4 contains a new and simpler proof of this fact. Our main result is proved in Chapter 5, while Chapter 6 deals with the cotilting case. In Chapter 4, there is also a proof of the less well-known fact that all finitely generated tilting modules over commutative rings are projective. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |
dc.identifier.lisID | 990014446510106986 | |