Zobrazit minimální záznam

Metody evoluční optimalizace založené na modelech
dc.contributor.advisorHoleňa, Martin
dc.creatorBajer, Lukáš
dc.date.accessioned2021-01-15T15:59:51Z
dc.date.available2021-01-15T15:59:51Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/101290
dc.description.abstractStatistické modely se používají pro urychlení optimalizace jak v akademické sféře, tak v průmyslu. Právě v reálných aplikacích, kde je optimalizovaná funkce často finančně nebo časově náročná, mohou statistické modely ušetřit zdroje nebo urychlit optimalizaci. Každá ze tří částí dizertační práce se zabývá jedním takovým modelem: v první části práce nahrazují kopule grafické modely v algoritmech odhadující distribuci, RBF sítě slouží jako náhradní model v genetických algoritmech pro kombinaci spojitých a diskrétních proměnných ve druhé části a třetí část práce používá gaussovské procesy jednak jako model pro vzorkování v bayesovských optimalizačních algoritmech, jednak jako náhradní model v evoluční strategii adaptující kovarianční matici (CMA-ES). Poslední kombinaci, která je popsána klíčové části práce, využívá navržený algoritmus DTS-CMA-ES---dvojitě trénovaný CMA-ES s náhradním modelem. Tento algoritmus využívá nejistotu predikovanou gaussovským procesem, aby vybral část populace CMA-ES k ohodnocení drahou originální funkcí, zatímco zbytek populace je ohodnocen modelem---predikovanou nejpravděpodobnější hodnotou. Výsledky ukázaly, že DTS-CMA-ES konverguje na několika syntetických funkcích rychleji než současné spojité optimalizační algoritmy s náhradním modelem.cs_CZ
dc.description.abstractModel-based black-box optimization is a topic that has been intensively studied both in academia and industry. Especially real-world optimization tasks are often characterized by expensive or time-demanding objective functions for which statistical models can save resources or speed-up the optimization. Each of three parts of the thesis concerns one such model: first, copulas are used instead of a graphical model in estimation of distribution algorithms, second, RBF networks serve as surrogate models in mixed-variable genetic algorithms, and third, Gaussian processes are employed in Bayesian optimization algorithms as a sampling model and in the Covariance matrix adaptation Evolutionary strategy (CMA-ES) as a surrogate model. The last combination, described in the core part of the thesis, resulted in the Doubly trained surrogate CMA-ES (DTS-CMA-ES). This algorithm uses the uncertainty prediction of a Gaussian process for selecting only a part of the CMA-ES population for evaluation with the expensive objective function while the mean prediction is used for the rest. The DTS-CMA-ES improves upon the state-of-the-art surrogate continuous optimizers in several benchmark tests.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectevolutionary optimizationen_US
dc.subjectsurrogate modelen_US
dc.subjectcopulaen_US
dc.subjectradial basis functionsen_US
dc.subjectGaussian processesen_US
dc.subjectevoluční optimalizacecs_CZ
dc.subjectnáhradní modelovánícs_CZ
dc.subjectkopulecs_CZ
dc.subjectradiální bázové funkcecs_CZ
dc.subjectgaussovské procesycs_CZ
dc.titleModel-based evolutionary optimization methodsen_US
dc.typedizertační prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-06-04
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId76351
dc.title.translatedMetody evoluční optimalizace založené na modelechcs_CZ
dc.contributor.refereeBrockhoff, Dimo
dc.contributor.refereePošík, Petr
dc.identifier.aleph002200893
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csStatistické modely se používají pro urychlení optimalizace jak v akademické sféře, tak v průmyslu. Právě v reálných aplikacích, kde je optimalizovaná funkce často finančně nebo časově náročná, mohou statistické modely ušetřit zdroje nebo urychlit optimalizaci. Každá ze tří částí dizertační práce se zabývá jedním takovým modelem: v první části práce nahrazují kopule grafické modely v algoritmech odhadující distribuci, RBF sítě slouží jako náhradní model v genetických algoritmech pro kombinaci spojitých a diskrétních proměnných ve druhé části a třetí část práce používá gaussovské procesy jednak jako model pro vzorkování v bayesovských optimalizačních algoritmech, jednak jako náhradní model v evoluční strategii adaptující kovarianční matici (CMA-ES). Poslední kombinaci, která je popsána klíčové části práce, využívá navržený algoritmus DTS-CMA-ES---dvojitě trénovaný CMA-ES s náhradním modelem. Tento algoritmus využívá nejistotu predikovanou gaussovským procesem, aby vybral část populace CMA-ES k ohodnocení drahou originální funkcí, zatímco zbytek populace je ohodnocen modelem---predikovanou nejpravděpodobnější hodnotou. Výsledky ukázaly, že DTS-CMA-ES konverguje na několika syntetických funkcích rychleji než současné spojité optimalizační algoritmy s náhradním modelem.cs_CZ
uk.abstract.enModel-based black-box optimization is a topic that has been intensively studied both in academia and industry. Especially real-world optimization tasks are often characterized by expensive or time-demanding objective functions for which statistical models can save resources or speed-up the optimization. Each of three parts of the thesis concerns one such model: first, copulas are used instead of a graphical model in estimation of distribution algorithms, second, RBF networks serve as surrogate models in mixed-variable genetic algorithms, and third, Gaussian processes are employed in Bayesian optimization algorithms as a sampling model and in the Covariance matrix adaptation Evolutionary strategy (CMA-ES) as a surrogate model. The last combination, described in the core part of the thesis, resulted in the Doubly trained surrogate CMA-ES (DTS-CMA-ES). This algorithm uses the uncertainty prediction of a Gaussian process for selecting only a part of the CMA-ES population for evaluation with the expensive objective function while the mean prediction is used for the rest. The DTS-CMA-ES improves upon the state-of-the-art surrogate continuous optimizers in several benchmark tests.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameÚstav informatiky AV ČR, v.v.i.cs
dc.identifier.lisID990022008930106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV