
MASTER THESIS

Jakub Herko

Microscopic nuclear models for
open-shell nuclei

Institute of Particle and Nuclear Physics

Supervisor of the master thesis: Mgr. Frantǐsek Knapp, Ph.D.
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Introduction

Theoretical description of the atomic nucleus deals with two fundamental prob-
lems. The first one is that the nucleus is a quantum many-body system, for
which it is impossible to solve the Schrödinger equation exactly. The second one
is that the mutual interaction between the constituents (protons and neutrons)
is still not satisfactorily known. The fundamental theory of strong interactions is
the quantum chromodynamics, which exhibits a nonperturbative behavior in the
energy region relevant for the description of the nuclei. Therefore, a derivation
of the nucleon-nucleon interaction from the quantum chromodynamics is still not
available. The consequence of these facts is that we have to treat the nuclei using
various approximate approaches and introduce different seemingly inconsistent
nuclear models for the description of diffrent nuclear phenomena.

One of the first nuclear models was the liquid drop model [1] describing the nu-
cleus as a drop of a nucleon liquid, which may perform various collective motions.
This model is suitable for a description of phenomena which can be understood
without a detailed knowledge of the inner structure of the nucleus (nucleon de-
grees of freedom). A quite different approach is the microscopic theory describing
the nucleus as a composite object consisting of nucleons interacting via strong
interaction. A basis of the microscopic concept is the shell model or, in other
words, the model of independent particles. Within this model, the individual nu-
cleons occupy discrete energy levels similarly as the electrons in the atom and the
nucleon states can be obtained from quantum-mechanical calculations by solving
the Schrödinger equation.

An exact nucleon-nucleon potential is not known, but it is possible to gain an
information about it from nucleon-nucleon scattering experiments. The models of
the nucleon-nucleon interaction with parameters adjusted so that they reproduce
accurately the scattering experimental data and properties of the deuteron are
called the realistic potentials. In recent years a progress in the derivation of
the nuclear forces from the chiral perturbation theory [2], which represents an
effective theory of the strong interactions in the low energy region, was achieved.
Properties of a chiral realistic potential, namely the NNLOopt (Optimized Chiral
Interaction at Next-to-Next-to-Leading Order) [3], in many-body calculations are
object of research in this thesis.

One of our aims was to perform systematical calculations of spectra and elec-
tromagnetic transition probabilities of some doubly-magic nuclei in the framework
of the Tamm-Dancoff approximation (TDA) and the random phase approxima-
tion (RPA). The main aim was to develop microscopical models for nuclei with
two nucleons added to or removed from a doubly-magic core and carry out cal-
culations for such open-shell nuclei within this models.

The first chapter describes basic microscopical models for closed-shell nuclei,
namely the Hartree-Fock theory, TDA and RPA. The models treating open-shell
nuclei with two valence particles or holes based on an analogy to the TDA and
RPA are described in the second chapter, which contains detailed derivations of
relevant formulae. Results of numerical calculations are presented in the third
chapter.
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1. Microscopic models for
closed-shell nuclei

In this chapter we describe the ideas and techniques of the mean-field shell
model, an approach considering non-interacting nucleons moving in an external
field, with emphasis on the basic microscopic approach, namely the Hartree-Fock
method. In the following sections two standard methods, which include part of
the residual interaction neglected in the mean field approach and describe the
collective excitations in nuclei, namely Tamm-Dancoff and random phase ap-
proximations, are discussed. The methods presented in this chapter are valid
only for closed-shell nuclei, however, they can be extended to open-shell nuclei
by introducing the formalism of quasi-particles (see e.g. [4]).

1.1 Nuclear mean field

Microscopic nuclear models consider the nucleus as a composite object consisting
of A strongly interacting nucleons. Assuming that the nucleons interact via two-
body force only, their mutual interaction is described by the potential V (~ri, ~rj),
where ~ri and ~rj are the coordinates of the nucleons. This interaction can generally
be very complicated and also depend on spins, isospins and momenta of the
nucleons. The corresponding A-nucleon Schrödinger equation is

i~
∂

∂t
Ψ(~r1, ~r2, . . . , ~rA) = HΨ(~r1, ~r2, . . . , ~rA), (1.1)

with Hamiltonian

H =
A∑
i=1

~p 2
i

2mi

+
A∑

i,j=1
i<j

V (~ri, ~rj), (1.2)

where mi is the mass of the nucleon and ~pi is the nucleon momentum operator.
The first term in the Hamiltonian H represents the kinetic energy and the second
one represents the potential energy. The many-body Schrödinger equation (1.1)
cannot be solved exactly and, therefore, it is necessary to use approximate meth-
ods.

The mean field approximation converts the problem of mutually interacting
nucleons into a problem of non-interacting nucleons occupying discrete energy
levels (shells) in the mean field. In the nuclear many-body Hamiltonian (1.2) a
summed single-particle potential energy in an external field U(~ri) can formally
be added and subtracted:

H =
A∑
i=1

~p 2
i

2mi

+
A∑
i=1

U(~ri) +
A∑

i,j=1
i<j

V (~ri, ~rj)−
A∑
i=1

U(~ri) = Hmf + Vres, (1.3)

where

Hmf =
A∑
i=1

~p 2
i

2mi

+
A∑
i=1

U(~ri) =
A∑
i=1

h(~ri) (1.4)
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is the nuclear mean-field Hamiltonian and

Vres =
A∑

i,j=1
i<j

V (~ri, ~rj)−
A∑
i=1

U(~ri) (1.5)

is the residual interaction, which can be neglected in the first approximation.
The problem remains how to determine the mean field, in particular, an opti-
mal potential U that minimizes the residual interaction. Often one just selects
a phenomenological mean-field potential (e. g. the three-dimensional harmonic
oscillator, more realistic Woods-Saxon potential [5] or Nilsson potential for de-
formed nuclei [6])1, which is a practical shortcut taken at the expense of theoret-
ical preciseness. The other option is to attempt to calculate the mean field from
the nucleon-nucleon interaction.

Within the mean-field shell model2 we solve the problem of non-interacting
nucleons in an external potential U(~r). For this potential we can obtain the
single-particle stationary states φi by solving the Schrödinger equation

h(~r)φi(~r) = εiφi(~r), (1.6)

with single-particle Hamiltonian

h(~r) =
~p 2

2mi

+ U(~r). (1.7)

Since nucleons are fermions, we should construct the A-nucleon wave functions
in the form of antisymmetrized products of the single-particle wave functions

Ψ(~r1, ~r2, . . . , ~rA) = A

[
A∏
i=1

φi(~ri)

]
=

1√
A!

∣∣∣∣∣∣∣∣∣
φ1(~r1) φ1(~r2) . . . φ1(~rA)
φ2(~r1) φ2(~r2)

...
...

. . .

φA(~r1) φA(~r2) φA(~rA)

∣∣∣∣∣∣∣∣∣ (1.8)

which are called the Slater determinants3.

1.2 Hartree-Fock method and particle-hole for-

malism

The Hartree-Fock (HF) method4 allows us to obtain an optimal mean-field po-
tential together with the corresponding single-particle states and their energies.
The HF equations can be derived using the variational method in which we seek
an optimal set of single-particle states {φi(~r)} that minimize the ground-state
energy of the nucleus

Egs = 〈Ψ|H|Ψ〉, (1.9)

1It turns out that for correct description of the energy levels which agrees with the obser-
vation of magic numbers, the potential should contain a spin-orbital term, as was shown by
Mayer [7] and Haxel, Jensen and Suess [8]

2For more on the shell model see e. g. [9]
3For more on the quantum mechanics of many-body systems see e. g. [10]
4This method was originally developed for atomic physics (see [11] and [12]).
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with
H = Hmf + Vres. (1.10)

According to the variational method, the variation of the ground-state energy
should vanish for small variations of the single-particle states φi(~r) → φi(~r) +
δφi(~r). The energy (1.9) has to be varied under the constraint that the nor-
malization of Ψ is preserved, i. e. 〈Ψ|Ψ〉 = 1. This leads to the constrained
variational problem

δ

(
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

)
= 0, (1.11)

which can be solved by using the method of Lagrange multipliers. It turns out
that the Lagrange multipliers are the single-particle energies εi. The result is the
HF equation

−~2

2mi

∆φi(~r) + VHF({φj(~r)})φi(~r) = εiφi(~r), (1.12)

where
j = 1, 2, . . . , A,
i = 1, 2, . . . ,∞. (1.13)

This equation is a Schrödinger-like equation except that the potential is replaced
with a functional of the unknown wave functions VHF({φj(~r)}). The potential
VHF represents the HF mean field and acts on φi(~r) in the following way

VHF({φj(~r)})φi(~r) = VH(~r)φi(~r)−
∫

d3~r ′VF(~r ′, ~r)φi(~r
′). (1.14)

The first term with the local potential

VH(~r) =
A∑
j=1

∫
d3~r ′φ∗j(~r

′)V (~r ′, ~r)φj(~r
′), (1.15)

where V (~r ′, ~r) is the potential of the nucleon-nucleon interaction, is called the
Hartree term, and the second term with the non-local potential

VF(~r ′, ~r) =
A∑
j=1

φ∗j(~r
′)V (~r ′, ~r)φj(~r) (1.16)

is called the Fock, or exchange term.
The equation system (1.12) for unknown functions φi(~r) and corresponding

energies εi is self-consistent because VH(~r) and VF(~r ′, ~r) depend on the functions
φj(~r) which are the solutions of the equation system. Such equation system is
usually solved by iterative way.5 This means that we start with a set of guessed
single-particle wave functions {φ0

j(~r)}Aj=1 (e. g. the harmonic oscillator basis) and
use them to calculate the HF mean-field potential VHF({φ0

j}). Then we substitute
this potential into the equation (1.12). By solving this equation we obtain a new
set of wave functions {φ1

i (~r)}∞i=1 with eigenenergies ε1
i . With this new set of wave

functions we generate a new potential VHF({φ1
j}). Then we use this potential to

solve the equation (1.12) and obtain another wave functions and eigenenergies.

5See also [13]
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We repeat this procedure until we obtain wave functions (or eigenenergies) which
do not differ from those of the previous iteration more than a preset limit. In
such a way we obtain the self-consistent mean field VHF(~r) and the corresponding
single-particle states φi (so called Hartree-Fock basis) with energies εi.

For description of many-body systems it is useful to introduce the formalism
of creation and annihilation operators. So far, we have considered only one type
of nucleon. Now we distinguish between protons and neutrons. Let a†α(b†α) be
a proton (neutron) creation operator creating proton (neutron) in the state |α〉.
The corresponding annihilation operators are aα and bα. These operators satisfy
the following anticommutation and commutation relations

{a†α, a
†
β} = 0 , {aα, aβ} = 0 , {aα, a†β} = δαβ ∀α, β,

{b†α, b
†
β} = 0 , {bα, bβ} = 0 , {bα, b†β} = δαβ ∀α, β, (1.17)

[a†α, b
†
β] = [aα, bβ] = [a†α, bβ] = [aα, b

†
β] = 0 ∀α, β.

The nuclear Hamiltonian, which has the form (1.2) in the coordinate represen-
tation, can be written in the formalism of creation and annihilation operators
as

H =
∑
αβ

〈α|t|β〉πa†αaβ +
1

4

∑
αβγδ

〈αβ|V |γδ〉πa†αa
†
βaδaγ +

∑
αβ

〈α|t|β〉νb†αbβ

+
1

4

∑
αβγδ

〈αβ|V |γδ〉νb†αb
†
βbδbγ +

∑
αβγδ

〈αβ|V |γδ〉πνa†αb
†
βaγbδ, (1.18)

where

〈α|t|β〉π/ν =

∫
d3~rφ∗α(~r)

~p 2

2m
φβ(~r) (1.19)

is the one-body matrix element of the kinetic energy operator (indices π and ν
distinguish between protons and neutrons) and

〈αβ|V |γδ〉π/ν/πν =

∫
d3~r ′d3~rφ∗α(~r)φ∗β(~r ′)V (~r, ~r ′)φγ(~r)φδ(~r

′) (1.20)

is the two-body interaction matrix element. We have introduced the antisym-
metrized two-body matrix elements

〈αβ|V |γδ〉π/ν = 〈αβ|V |γδ〉π/ν − 〈αβ|V |δγ〉π/ν (1.21)

with useful symmetry properties

〈αβ|V |γδ〉π/ν = −〈βα|V |γδ〉π/ν = −〈αβ|V |δγ〉π/ν
= 〈βα|V |δγ〉π/ν = 〈γδ|V |αβ〉∗π/ν . (1.22)

Proton-neutron two-body interaction matrix elements 〈αβ|v|γδ〉πν cannot be an-
tisymmetrized because we consider protons and neutrons as distinguishable par-
ticles. Therefore, they have only symmetry property

〈αβ|V |γδ〉πν = 〈γδ|V |αβ〉∗πν . (1.23)

6



In the case of spherical nuclei we suppose the rotational symmetry of the
mean field. Then the eigenstates |α〉 = |nalajamα〉 ≡ |a,mα〉 of the mean field
are characterized by four quantum numbers satisfying

~l 2|nalajamα〉 = ~2la(la + 1)|nalajamα〉,
~j 2|nalajamα〉 = ~2ja(ja + 1)|nalajamα〉, (1.24)

jz|nalajamα〉 = ~mα|nalajamα〉,

where ~l is the orbital angular momentum operator, ~j = ~l+ ~s is the nucleon total
angular momentum operator and ~s is the spin 1/2 operator.

Now we introduce the particle-hole (ph) formalism and define the Hartree-
Fock (particle-hole) vacuum |HF〉. This vacuum is an approximation of the
ground state of a closed-shell nucleus. In this state, the energy levels for pro-
tons and neutrons are fully occupied up to the Fermi level and the levels above
the Fermi level are empty. If a nucleon is excited from a state below the Fermi
level to a state above the Fermi level, a hole occurs in the previous state and a
particle occurs in the new state. The single-particle states below the Fermi level
are called hole states and those above the Fermi level are called particle states.
The HF vacuum is annihilated by the operators aα, where |α〉 is a state whose
energy εα is greater than the energy εF of the Fermi level, and by the operators
a†β, where |β〉 is a state with energy εβ ≤ εF. Thus

aα|HF〉 = 0 , εα > εF,

a†β|HF〉 = 0 , εβ ≤ εF
(1.25)

(the same holds for the neutron operators), where

|HF〉 = a†1a
†
2 . . . a

†
Zb
†
1b
†
2 . . . b

†
N |0〉, (1.26)

which means that the HF vacuum consists of Z protons occupying the Z lowest
proton states and N neutrons occupying the N lowest neutron states. The highest
occupied levels define proton and neutron Fermi levels.

It is convenient to introduce the hole creation and annihilation operators
hπβ
†, hπβ, h

ν
β
†, hνβ. The notation is

hπβ
† = ãβ , hπβ = ã†β , hνβ

† = b̃β , hνβ = b̃†β , (1.27)

where
ãβ = (−1)jb+mβa−β , b̃β = (−1)jb+mβb−β , (1.28)

with
| − β〉 = |nblbjb,−mβ〉 ≡ |b,−mβ〉. (1.29)

The operators ãβ, b̃β, a
†
β and b†β are spherical tensors of rank jb

6, thus the hole

operators hπβ
†, hνβ

†, h̃πβ = −a†β and h̃νβ = −b†β are also spherical tensors of rank jb.

6They satisfy the commutations relations

[Jz, Tλµ] = ~µTλµ, (1.30)

[J±, Tλµ] = ~
√
λ(λ+ 1)− µ(µ± 1)Tλ,µ±1 (1.31)

defining a spherical tensor Tλµ of rank λ (see e.g. [14]). This can be verified using the expressions
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The simplest excitation of the HF vacuum is a one-particle-one-hole (1-p-1-h)
configuration

|pαhβ〉π = a†αh
π
β
†|HF〉 or |pαhβ〉ν = b†αh

ν
β
†|HF〉, (1.35)

where |α〉 is a particle state and |β〉 is a hole state. Analogously, we can excite n
nucleons and create n-p-n-h configuration. The description of the excited states
of a closed-shell nucleus relies on the treatment of this type of excitations within
different approximation schemes, including their mixing through the residual in-
teraction. Furthermore, we will be interested in nuclei with two nucleons added
to or removed from a closed-shell nucleus. States of such nuclei can be described
by means of particle-particle (pp) or hole-hole (hh) configurations

a†αa
†
α′ |HF〉 , b†αb

†
α′|HF〉 , hπβ

†hπβ′
†|HF〉 , hνβ

†hνβ′
†|HF〉. (1.36)

This will be discussed in the next chapter.
In the formalism of creation and annihilation operators, there is an alternative

way to derive the HF equations which uses Wick’s theorem (see e. g. [4]) in the ph
representation. This means that we use normal ordering and contractions with
respect to the HF vacuum. Starting from the Hamiltonian (1.18) and using Wick’s
theorem we obtain the Hamiltonian in a form consisting of one-body operators (for
protons and neutrons), two-body operators and a constant term. Then we change
the single-particle basis so that the set of creation operators {a†α} is transformed
to a new set {a†′α}. This is accomplished by a unitary transformation

a†α =
∑
α′

U∗αα′a
†′
α′ , aα =

∑
α′

Uαα′a
′
α′ . (1.37)

We introduce an analogous transformation for the neutron operators. Moreover,
we require the new basis to be such that one-body operators in the Hamiltonian
are diagonal. Then we end up with the HF equations

〈α|t|β〉π +
∑
h

〈hα|V |hβ〉π +
∑
h

〈αh|V |βh〉πν = επαδαβ, (1.38)

〈α|t|β〉ν +
∑
h

〈hα|V |hβ〉ν +
∑
h

〈hα|V |hβ〉πν = εναδαβ (1.39)

for the computation of the single-particle energies επα for protons and ενα for neu-
trons, where the index h denotes the hole states.

of the nuclear angular momentum projection operator Jz and the ladder operators J± in the
formalism of creation and annihilation operators

Jz = ~
∑
α

mαa
†
αaα + ~

∑
α

mαb
†
αbα, (1.32)

J± = ~
∑
α

m∓αa
†
αaα∓1 + ~

∑
α

m∓α b
†
αbα∓1, (1.33)

where
m±α =

√
ja(ja + 1)−mα(mα ± 1) , |α± 1〉 = |a,mα ± 1〉. (1.34)
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If we choose set of single-particle states which satisfy the HF equations, the
one-body parts of the Hamiltonian become diagonal and the Hamiltonian takes
the form

H = Hmf + Vres, (1.40)

where

Hmf =
∑
α

επαa
†
αaα +

∑
α

εναb
†
αbα −

1

2

∑
hh′

〈hh′|V |hh′〉π

− 1

2

∑
hh′

〈hh′|V |hh′〉ν −
∑
hh′

〈hh′|V |hh′〉πν (1.41)

is the HF mean-field Hamiltonian and

Vres =
1

4

∑
αβγδ

〈αβ|V |γδ〉π : a†αa
†
βaδaγ : +

1

4

∑
αβγδ

〈αβ|V |γδ〉ν : b†αb
†
βbδbγ :

+
∑
αβγδ

〈αβ|V |γδ〉πν : a†αb
†
βaγbδ : (1.42)

is the residual interaction, with normal ordering with respect to the HF vacuum.
Since the HF vacuum represents an approximation of the nuclear ground state,

the ground-state energy calculated as the expectation value of the Hamiltonian
is

EHF = 〈HF|H|HF〉 =
∑
h

επh +
∑
h

ενh −
1

2

∑
hh′

〈hh′|V |hh′〉π

− 1

2

∑
hh′

〈hh′|V |hh′〉ν −
∑
hh′

〈hh′|V |hh′〉πν . (1.43)

1.3 Tamm-Dancoff Approximation

In the previous sections the nucleus was described as a system of non-interacting
nucleons in the mean-field potential. The wave function of a nuclear state was
given by a Slater determinant corresponding to a particular occupation of the
mean-field single-particle states by nucleons. The ground state of a doubly-magic
nucleus was approximated by the HF vacuum and the excited states were de-
scribed as n-p-n-h configurations. In this section we take into account a part of
the residual interaction, neglected in the mean-field approximation, and introduce
the concept of configuration mixing. This means that due to the residual inter-
action nucleon configurations are mixed and the nuclear wave function becomes
a linear combination of many Slater determinants.

The simplest scheme of configuration mixing of ph excitations in doubly magic
nuclei is the Tamm-Dancoff approximation (TDA), which takes into account only
1-p-1-h configurations. Within the TDA the ground state is the HF vacuum and
the excited states are linear combinations of 1-p-1-h excitations of |HF〉. The
linear combinations are obtained by diagonalizing the nuclear Hamiltonian in a
basis of these excitations.

In the angular-momentum-coupled representation, the ph basis states are

|ab−1; JM〉 =
∑
mαmβ

(jamαjbmβ|JM)c†αh
†
β|HF〉, (1.44)
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where |α〉 is a particle state, |β〉 is a hole state, J and M are quantum numbers
related to the square and projection of the total angular momentum of the ph
state, (jamαjbmβ|JM) is the Clebsch-Gordan coefficient and c†α, h

†
β are a†α, h

π
β
†

in the case of a proton excitation or b†α, h
ν
β
† in the case of a neutron excitation

(this notation is used throughout the thesis). Now we derive the matrix elements
〈ab−1; JM |H|cd−1; JM〉 of the Hamiltonian

H = Hmf + Vres, (1.45)

which is given by (1.41) and (1.42).
If a, b, c, d denote proton states, the matrix element of Hmf is

〈ab−1;JM |Hmf|cd−1; JM〉

=
∑
α′

επα′
∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|JM)〈HF|hπβaαa
†
α′aα′a

†
γh

π
δ
†|HF〉

+
∑
α′

ενα′
∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|JM)〈HF|hπβaαb
†
α′bα′a

†
γh

π
δ
†|HF〉

+K
∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|JM)〈HF|hπβaαa†γhπδ
†|HF〉, (1.46)

where

K ≡ −1

2

∑
hh′

〈hh′|V |hh′〉π −
1

2

∑
hh′

〈hh′|V |hh′〉ν −
∑
hh′

〈hh′|V |hh′〉πν . (1.47)

Using the anticommutation and commutation relations (1.17) one gets

〈HF|hπβaαa
†
α′aα′a

†
γh

π
δ
†|HF〉 = δβδδαα′δα′γ − δ−βα′δαγδα′,−δ + δβδδαγθ(εF − εα′),

〈HF|hπβaαb
†
α′bα′a

†
γh

π
δ
†|HF〉 = δβδδαγθ(εF − εα′),

〈HF|hπβaαa†γhπδ
†|HF〉 = δβδδαγ,

where

θ(x) =

{
1 if x ≥ 0
0 if x < 0

(1.48)

is the Heaviside step function. Substituting into (1.46) and using the orthogonal-
ity relation for Clebsch-Gordan coefficients∑

mαmβ

(jamαjbmβ|JM)(jamαjbmβ|J ′M ′) = δJJ ′δMM ′ (1.49)

one gets

〈ab−1; JM |Hmf|cd−1; JM〉 = δacδbd(εa − εb +
∑
h

επh +
∑
h

ενh +K)

= δacδbd(εa − εb + EHF). (1.50)

Since this matrix element is diagonal and we are interested in the excitation
energies, the ground-state energy EHF can be omitted. If a, b, c, d are neutron
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states, we analogously get the same result. If a, b are proton states and c, d are
neutron states or vice versa, it can be easily shown that the matrix element of
Hmf vanishes.

If a, b, c, d are proton states, the matrix element of Vres is

〈ab−1; JM |Vres|cd−1; JM〉π

=
1

4

∑
α′β′γ′δ′

〈α′β′|V |γ′δ′〉π
∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|JM)

× 〈HF|hπβaα : a†α′a
†
β′aδ′aγ′ : a†γh

π
δ
†|HF〉

+
1

4

∑
α′β′γ′δ′

〈α′β′|V |γ′δ′〉ν
∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|JM)

× 〈HF|hπβaα : b†α′b
†
β′bδ′bγ′ : a†γh

π
δ
†|HF〉

+
∑

α′β′γ′δ′

〈α′β′|V |γ′δ′〉πν
∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|JM)

× 〈HF|hπβaα : a†α′b
†
β′aγ′bδ′ : a†γh

π
δ
†|HF〉. (1.51)

Since

〈HF|hπβaα : b†α′b
†
β′bδ′bγ′ : a†γh

π
δ
†|HF〉 = 0, (1.52)

〈HF|hπβaα : a†α′b
†
β′aγ′bδ′ : a†γh

π
δ
†|HF〉 = 0, (1.53)

the last two terms in (1.51) vanish. After some tedious manipulations, which are
described in [15], one ends up with

〈ab−1; JM |Vres|cd−1; JM〉π

=
∑
J ′

(2J ′ + 1)(−1)jb+jc+J
′〈ad; J ′|V |bc; J ′〉π

{
ja jb J
jc jd J ′

}
, (1.54)

where

〈ad; J ′|V |bc; J ′〉π =
∑
mαmβ
mγmδ

(jamαjdmδ|J ′M ′)(jbmβjcmγ|J ′M ′)〈αδ|V |βγ〉π (1.55)

is the angular-momentum-coupled two-body interaction matrix element and{
ja jb J
jc jd J ′

}
is the 6j symbol7. Using the symmetry property

〈ad; J ′|V |bc; J ′〉π = (−1)jb+jc+J
′+1〈ad; J ′|V |cb; J ′〉π, (1.56)

one gets

〈ab−1; JM |Vres|cd−1; JM〉π = −
∑
J ′

(2J ′ + 1)

{
ja jb J
jc jd J ′

}
〈ad; J ′|V |cb; J ′〉π.

(1.57)

7See [16]
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This result is called the Pandya transformation and it is valid also in the case,
when a, b, c, d are neutron states, except that the matrix element 〈ad; J ′|V |cb; J ′〉π
is replaced with the analogous matrix element 〈ad; J ′|V |cb; J ′〉ν .

If a, b are proton states and c, d are neutron states, it can be easily shown that
only the third term in Vres given by (1.42) contributes and, therefore, the matrix
element of Vres is

〈ab−1; JM |Vres|cd−1; JM〉πν =
∑

α′β′γ′δ′

〈α′β′|V |γ′δ′〉πν
∑
mαmβ
mγmδ

(jamαjbmβ|JM)

×(jcmγjdmδ|JM)〈HF|hπβaα : a†α′b
†
β′aγ′bδ′ : b†γh

ν
δ
†|HF〉. (1.58)

For a non-zero contribution the states α′, δ′ have to be particle states and the
states β′, γ′ have to be hole states. With this observation one gets

〈HF|hπβaα : a†α′b
†
β′aγ′bδ′ : b†γh

ν
δ
†|HF〉 = (−1)jb+mβ+jd+mδδ−δβ′δγδ′δ−βγ′δαα′ . (1.59)

Substitution into (1.58) yields

〈ab−1; JM |Vres|cd−1; JM〉πν
=
∑
mαmβ
mγmδ

(−1)jb+mβ+jd+mδ(jamαjbmβ|JM)(jcmγjdmδ|JM)〈α − δ|V | − β γ〉πν .

Performing the same manipulations that led to the formula (1.54), we obtain
analogous result

〈ab−1; JM |Vres|cd−1; JM〉πν

=
∑
J ′

(2J ′ + 1)(−1)jb+jc+J
′〈ad; J ′|V |bc; J ′〉πν

{
ja jb J
jc jd J ′

}
, (1.60)

where the matrix elements 〈ad; J ′|V |bc; J ′〉πν don’t have any symmetry properties
analogous to (1.56).

If a, b are neutron states and c, d are proton states, the matrix element of Vres

is

〈ab−1; JM |Vres|cd−1; JM〉νπ

=
∑
J ′

(2J ′ + 1)(−1)ja+jd+J ′〈cb; J ′|V |da; J ′〉πν
{
jc jd J
ja jb J ′

}
, (1.61)

which was obtained from (1.60) using the symmetry of the TDA Hamiltonian ma-
trix (any Hamiltonian matrix is Hermitian and our particle-hole matrix elements
are real).

To solve the TDA eigenvalue problem for a given angular momentum and par-
ity Jπ, we form all possible ph states |ab−1; JπM〉 with a common value of M (the
matrix elements of the Hamiltonian are independent of M) in the given single-
particle valence space, using the HF self-consistent basis8. Then we construct
the Hamiltonian matrix in the basis of these states using the formulae above.

8Since HF calculations require computers, the first TDA calculations were performed with
phenomenological shell model wave functions [17].
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Diagonalization of this matrix yields the eigenenergies Eν and the corresponding
eigenstates

|ν; JπM〉 =
∑
ab

Xν
ab|ab−1; JπM〉, (1.62)

which fulfill the orthonormality condition

〈ν; JπM |ν ′; JπM〉 =
∑
ab

Xν∗
abX

ν′

ab = δνν′ . (1.63)

This task can be formulated in the form of the TDA equations∑
cd

〈ab−1; JπM |H|cd−1; JπM〉Xν
cd = EνX

ν
ab. (1.64)

The TDA represents the most simple microscopical description of collectivity in
nuclei, which is nicely explained by a schematic model with a separable interaction
(see [18] or [19]).

Let us consider the electromagnetic transitions from the ground state |HF〉
to an excited state |ν〉 with the angular momentum J , which is given by (1.62).
Since the angular momentum of the ground states of even-even nuclei is zero, the
reduced transition probability of the type X (electric or magnetic) and multipo-
larity λ is

B(Xλ; 0+
gs → ν) = δλJ |〈ν||M (X)

J ||HF〉|2, (1.65)

where (for derivation see [15])

〈ν||M (X)
J ||HF〉 =

∑
ab

Xν
ab〈a||M

(X)
J ||b〉 (1.66)

is the reduced matrix element of the multipole operator of the type X and mul-
tipolarity J .

1.4 Random Phase Approximation

In the TDA framework we admit configuration mixing for the excited states,
while the ground state |HF〉 remains unchanged. This complete omission of the
residual interaction in the ground state is a severe drawback of the TDA method.
The random phase approximation9 (RPA) is a sophisticated ph theory which
extends the TDA by including correlations in the nuclear ground state. This
means that the ground state is no more given by the HF vacuum. In this theory
the ground state is a correlated state containing the ph vacuum and a part of
n-p-n-h configurations. These correlations are responsible for enhancement of
some electromagnetic transition probabilities. Typically, the correlations in the
RPA ground state lead to strong collectivity of the electric octupole excitation to
the first 3− state.

9This method was originally developed by Bohm and Pines [20] in the theory of the plasma
oscillations of the electron gas. The first applications of the RPA to nuclear physics were made
by Baranger [21] and Sawicki [22].
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The RPA equations are usually derived by using the equation-of-motion
method [23], which can also be used to derive the HF equations or the TDA. The
aim is to find the eigenenergies and eigenvectors of the Hamiltonian H:

H|ν〉 = Eν |ν〉. (1.67)

The eigenvectors |ν〉 can be expressed by means of the so called phonon creation
operators Q†ν :

|ν〉 = Q†ν |0〉, (1.68)

where |0〉 is the ground state, which is defined as the vacuum for phonons. This
means that the annihilation operator Qν , which is the Hermitian conjugate of the
creation operator Q†ν , annihilates the vacuum, i.e.

Qν |0〉 = 0 ∀ν. (1.69)

Using the above relations we convert the Schrödinger equation (1.67) to the equa-
tion of motion

[H,Q†ν ]|0〉 = (Eν − E0)Q†ν |0〉, (1.70)

where E0 is the ground state energy, i.e.

H|0〉 = E0|0〉. (1.71)

Multiplying the equation of motion (1.70) from the left by the state 〈0|δQ, where
δQ† is the variation of the phonon operator Q†ν , we get

〈0|δQ[H,Q†ν ]|0〉 = (Eν − E0)〈0|δQQ†ν |0〉. (1.72)

Since 〈0|Q†ν = 〈0|HQ†ν = 0, we can write this equation in the commutator form

〈0|
[
δQ, [H,Q†ν ]

]
|0〉 = (Eν − E0)〈0|[δQ,Q†ν ]|0〉. (1.73)

Until now the derivation was exact. To proceed we have to choose a concrete
form of the phonon creation operator and, in the RPA case, replace the unknown
vacuum |0〉 with some approximate vacuum state.

Since it is admitted, in the RPA, that the true ground state is not simply the
HF vacuum, we can not only create a ph pair but also annihilate one. There-
fore, in the angular-momentum coupled representation, the RPA phonon creation
operator is (see [4] or [15])

Q†ν =
∑
ab

[
Xν
abA

†
ab(JM)− Y ν

abÃab(JM)
]
, (1.74)

where
A†ab(JM) ≡ [c†ah

†
b]JM =

∑
mαmβ

(jamαjbmβ|JM)c†αh
†
β (1.75)

is the ph creation operator (|α〉 is a particle state and |β〉 is a hole state),

Ãab(JM) = (−1)J+M
(
A†ab(J −M)

)†
(1.76)
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is the adjoint tensor operator and Xν
ab, Y

ν
ab are the amplitudes. The minus sign

in (1.74) has been chosen for convenience. The corresonding phonon annihilation
operator obtained by Hermitian conjugation is

Qν =
∑
ab

[
Xν∗
abAab(JM)− Y ν∗

ab Ã
†
ab(JM)

]
. (1.77)

We have two kinds of variations δQ, namely

δQ = Aab(JM) , δQ = Ã†ab(JM). (1.78)

Substituting these variations and (1.74) into the equation (1.73) and using the
quasi-boson approximation, i. e. the replacement of the unknown vacuum state
|0〉 with the HF vacuum in the vacuum expectation values of the commutators,
we can obtain (for derivation see [15])∑

cd

Aab,cdX
ν
cd +

∑
cd

Bab,cdY
ν
cd = ~ΩνX

ν
ab, (1.79)

−
∑
cd

B∗ab,cdX
ν
cd −

∑
cd

A∗ab,cdY
ν
cd = ~ΩνY

ν
ab, (1.80)

or in matrix form
AXν +BY ν = ~ΩνX

ν , (1.81)

−B∗Xν − A∗Y ν = ~ΩνY
ν , (1.82)

where

Aab,cd = 〈HF|Aab(JM)HA†cd(JM)|HF〉 = 〈ab−1; JM |H|cd−1; JM〉 (1.83)

is the TDA matrix,

Bab,cd = 〈HF|Aab(JM)Ãcd(JM)H|HF〉 (1.84)

is the so called correlation matrix and ~Ων = Eν −E0 is the excitation energy of
the state |ν〉. The equations (1.81) and (1.82) can be combined into one matrix
equation (

A B
−B∗ −A∗

)(
Xν

Y ν

)
= ~Ων

(
Xν

Y ν

)
(1.85)

whose elements themselves are matrices. The TDA matrix A is Hermitian and
the correlation matrix B is symmetric, but the ”supermatrix” in the RPA matrix
equation (1.85) is non-Hermitian. Thus the corresponding eigenvalues are not
necessarily real.

We know how to construct the TDA matrix A from the previous section. Now
we derive the matrix elements of the correlation matrix B. The formula (1.84)
gives

Bab,cd = (−1)J+M
∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|J −M)〈HF|hβcαhδcγH|HF〉,

(1.86)
where the Hamiltonian H is given by (1.40). It is easy to deduce that contribu-
tion of the mean-field Hamiltonian Hmf given by (1.41) vanishes. If a, b, c, d are
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proton states, only the first term in the residual interaction Vres given by (1.42)
contributes and, therefore, we have

Bπ
ab,cd =(−1)J+M

∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|J −M)

× 1

4

∑
α′β′γ′δ′

〈α′β′|V |γ′δ′〉π〈HF|hπβaαhπδ aγ : a†α′a
†
β′aδ′aγ′ : |HF〉. (1.87)

After some tedious manipulations, which are described in [15], one ends up with

Bπ
ab,cd =(−1)jb+jc+J

√
(1 + δac)(1 + δbd)

×
∑
J ′

(−1)J
′
(2J ′ + 1)

{
ja jb J
jd jc J ′

}
〈ac; J ′|V |bd; J ′〉π. (1.88)

This result is valid also in the case, when a, b, c, d are neutron states, except
that the matrix element 〈ac; J ′|V |bd; J ′〉π is replaced with the analogous matrix
element 〈ac; J ′|V |bd; J ′〉ν .

If a, b are proton states and c, d are neutron states, only the third term in the
residual interaction Vres given by (1.42) contributes to Bab,cd given by (1.86) and,
therefore, we have

Bπν
ab,cd =(−1)J+M

∑
mαmβ
mγmδ

(jamαjbmβ|JM)(jcmγjdmδ|J −M)

×
∑

α′β′γ′δ′

〈α′β′|V |γ′δ′〉πν〈HF|hπβaαhνδbγ : a†α′b
†
β′aγ′bδ′ : |HF〉. (1.89)

For a non-zero contribution the states α′, β′ have to be particle states and the
states γ′, δ′ have to be hole states. With this observation one gets

〈HF|hπβaαhνδbγ : a†α′b
†
β′aγ′bδ′ : |HF〉 = (−1)jb+mβ+jd+mδδ−δδ′δγβ′δ−βγ′δαα′ . (1.90)

Substitution into (1.89) yields

Bπν
ab,cd =(−1)J+M

∑
mαmβ
mγmδ

(−1)jb+mβ+jd+mδ(jamαjbmβ|JM)

× (jcmγjdmδ|J −M)〈αγ|V | − β − δ〉πν . (1.91)

Performing the same manipulations that led to the formula (1.88), we obtain
analogous result

Bπν
ab,cd = (−1)jb+jc+J

∑
J ′

(−1)J
′
(2J ′ + 1)

{
ja jb J
jd jc J ′

}
〈ac; J ′|V |bd; J ′〉πν . (1.92)

If a, b are neutron states and c, d are proton states, the matrix element of the
correlation matrix B is

Bνπ
ab,cd = (−1)ja+jd+J

∑
J ′

(−1)J
′
(2J ′ + 1)

{
jc jd J
jb ja J ′

}
〈ca; J ′|V |db; J ′〉πν , (1.93)
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which was obtained from (1.92) using the symmetry of the correlation matrix.
Let us now discuss some properties of the RPA solutions.The RPA ground

state |RPA〉 is defined by analogy to (1.69) by

Qν |RPA〉 = 0 ∀ν. (1.94)

The excited state is
|ν; JM〉 = Q†ν |RPA〉 (1.95)

and it is interpreted as a quantum of vibration of the nuclear surface. The RPA
phonons Q†ν contain amplitudes Xν

ab analogous to the amplitudes of the TDA
eigenstates (1.62), and amplitudes Y ν

ab generated by the correlation matrix B.
We obtain these amplitudes together with the excitation energies ~Ων by solving
the RPA equations (1.85). The orthonormality relation derived using the quasi-
boson approximation is (see [15] or [24])

〈ν; JM |ν ′; JM〉 =
∑
ab

(
Xν∗
abX

ν′

ab − Y ν∗
ab Y

ν′

ab

)
= δνν′ (1.96)

and contains the normalization condition

〈ν; JM |ν; JM〉 =
∑
ab

(
|Xν

ab|2 − |Y ν
ab|2
)

= 1, (1.97)

which concerns only the physical solutions of the RPA equations with positive
energy (see below). The RPA equations can be reduced to the TDA equations by
putting all amplitudes Y ν

ab equal to zero. Thus these amplitudes are a measure
of the ground-state correlations. The TDA results can be reproduced by putting
the correlation matrix B equal to zero matrix.

The set of the solutions of the RPA equations is overcomplete. It turns out
that for every solution |ν; JM〉 with positive energy Eν and amplitudes Xν , Y ν

there exists another solution |ν−; JM〉 with negative energy Eν− = −Eν and am-
plitudes Xν− = Y ν∗, Y ν− = Xν∗. Furthermore, it can be shown that the solutions
with negative energy have negative squared norm, i.e. 〈ν−; JM |ν−; JM〉 = −1.
Thus we consider these solutions as unphysical and accept only the physical so-
lutions with positive energy, which constitute a complete set of eigenstates.

The RPA is relevant when the ground-state correlations quantified by the
amplitudes Y ν

ab are significant and lead to collective enhancement of the transition
probabilities, which the TDA cannot describe. On the other hand, we expect the
amplitudes Y ν

ab to be small, otherwise the quasi-boson approximation, which is
based on the assumption that the correlated ground state does not differ much
from the HF vacuum, would not be justified. This condition is violated by the
negative energy solutions mentioned above, which is another demonstration of
their unphysical nature.

According to the Thouless theorem [25] the RPA ground state can be ex-
pressed as (see [15] or [4])

|RPA〉 = NeS|HF〉, (1.98)

where N is a normalization factor and

S =
1

2

∑
JM

∑
abcd

Cabcd(J)A†ab(JM)Ã†cd(JM) (1.99)
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with amplitudes Cabcd(J) fulfilling the set of linear equations10∑
ab

Xν∗
abCabcd(J) = Y ν∗

cd . (1.100)

Method of solving these equations can be found in [27]. It is obvious that the
RPA ground state contains not only |HF〉 but also n-p-n-h configurations with
n = 2, 4, 6, .... Thus the RPA excited states consist of 1-p-1-h, 3-p-3-h etc. config-
urations. Knowing the explicit form of the ground state, one can use it to derive
the RPA equations and the matrices A,B from (1.73) again avoiding the quasi-
boson approximation, then solve the equations and obtain another ground state
using the Thouless theorem (1.98). This procedure can be repeated iteratively
until self-consistency is achieved. A detailed description of such self-consistent
method extending the RPA and avoiding the drawbacks of the quasi-boson ap-
proximation can be found in [28].

Another methods going beyond the RPA are so called higher RPA’s, which
don’t limit the phonon operator to 1-p-1-h configurations and include also 2-p-2-
h11 and higher configurations (see [30] and [31]).

Now we briefly describe a method of numerical solution of the RPA equations
which is derived in [24]. We assume that the matrices A and B are real, which is
usually the case of practical computations. It is possible to derive

(A+B)(A−B)P ν = ~2Ω2
νP

ν , (1.101)

where P ν is a vector whose explicit form is not important (and can be found
in [24]). If the matrix (A−B) is positive definite, we can decompose it like this

(A−B) = T TT, (1.102)

where T is a triangular matrix, i.e. Tik = 0 for i > k. The non-Hermitian RPA
eigenvalue problem ca be reduced to the symmetric eigenvalue problem of half
the dimension

T (A+B)T TRν = ~2Ω2
νT

ν , (1.103)

which provides only the positive (physical) energies ~Ων and the normalized eigen-
vectors Rν . Then we can obtain the correctly normalized phonon amplitudes from(

Xν

Y ν

)
=

1

2

(
(~Ων)

−1/2T TRν ± (~Ων)
1/2T−1Rν

)
. (1.104)

If the matrix (A − B) is not positive definite, it is impossible to perform the
decomposition (1.102) and obtain the phonon amplitudes from (1.104). However,
the eigenenergies can still be obtained from the eigenvalue problem (1.101), which
may provide negative squared energy ~2Ω2

ν and thus imaginary energy ~Ων . This
is consequence of the non-Hermiticity of the RPA ”supermatrix”. It was shown by
Thouless [32] that the appearance of an imaginary energy implies the instability of
the HF vacuum, which means that |HF〉 doesn’t minimize the energy expectation.

10For further details see [26]
11A detailed description of the second RPA including 2-p-2-h configurations can be found

in [29].
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Let us now consider the electromagnetic transitions from the ground state
|RPA〉 to an excited RPA state |ν〉 with the angular momentum J . The reduced
transition probability is

B(Xλ; 0+
gs → ν) = δλJ |〈ν||M (X)

J ||RPA〉|2, (1.105)

where (for derivation see [15])

〈ν||M (X)
J ||RPA〉 =

∑
ab

〈a||M (X)
J ||b〉

[
(−1)JXν

ab + Y ν
ab

]
. (1.106)

We see that if the amplitudes Y ν
ab are zero, the TDA result (1.66) is reproduced.

For a collective state |ν〉 the RPA result (1.106) can lead to significant enhance-
ment of the reduced transition probability. This occurs when the products of
phonon amplitudes and reduced single-particle matrix elements of M

(X)
J sum co-

herently.
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2. Microscopic models for
open-shell nuclei

One can move from doubly-magic nuclei by filling nucleons into the next open
shell. Since a doubly-magic core is supposed to be quite stable, the correlations
among the valence nucleons should be important in explanation of phenomena
observed in experimental study of open-shell nuclei. Several calculations for such
nuclei based on the shell-model have been performed (see [33], [34] and [35]). In
this chapter we focus on methods treating spherical nuclei created from a doubly-
magic core by adding or removing two nucleons of the same type. These methods
are based on the analogy to the ph TDA and ph RPA.

2.1 Particle-particle and hole-hole TDA

Within the particle-particle or hole-hole TDA (ppTDA or hhTDA) the nuclear
states are linear combinations of pp or hh configurations obtained by diagonalizing
the nuclear Hamiltonian in such a basis.

Let us start with the ppTDA. In analogy to the TDA, we seek the expression
for the matrix elements 〈p1p2; JM |H|p3p4; JM〉 of the Hamiltonian in the basis
of angular-momentum-coupled pp configurations

|p1p2; JM〉 = Np1p2(J)
∑
m1m2

(j1m1j2m2|JM)c†π1c
†
π3
|HF〉, (2.1)

where |pi〉 = |niliji〉 and |πi〉 = |nilijimi〉 are particle states1 and

Nab(J) =

√
1 + δab(−1)J

1 + δab
(2.2)

is the normalization factor. We have

〈p1p2; JM |H|p3p4; JM〉 = Np1p2(J)Np3p4(J)

×
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈HF|cπ2cπ1Hc†π3c
†
π4
|HF〉, (2.3)

where the Hamiltonian H is given by (1.40).
Let us consider proton pp configurations (for neutrons the derivation is anal-

ogous). The contribution of the mean-field Hamiltonian Hmf, which is given

1This notation is used throughout this thesis.
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by (1.41), is

〈p1p2; JM |Hmf|p3p4; JM〉 = Np1p2(J)Np3p4(J)

×
[∑

α

επα
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈HF|aπ2aπ1a†αaαa†π3a
†
π4
|HF〉

+
∑
α

ενα
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈HF|aπ2aπ1b†αbαa†π3a
†
π4
|HF〉

+K
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈HF|aπ2aπ1a†π3a
†
π4
|HF〉

]
, (2.4)

where K is given by (1.47). Using the anticommutation and commutation rela-
tions (1.17) one gets

〈HF|aπ2aπ1a†αaαa†π3a
†
π4
|HF〉 = δαπ3δαπ1δπ2π4 − δαπ3δαπ2δπ1π4 − δαπ1δαπ4δπ2π3

+δαπ4δαπ2δπ1π3 + δπ1π3δπ2π4θ(εF − εα)− δπ1π4δπ2π3θ(εF − εα),

〈HF|aπ2aπ1b†αbαa†π3a
†
π4
|HF〉 = δπ1π3δπ2π4θ(εF − εα)− δπ1π4δπ2π3θ(εF − εα),

〈HF|aπ2aπ1a†π3a
†
π4
|HF〉 = δπ1π3δπ2π4 − δπ1π4δπ2π3 .

Substitution into (2.4), the relation

(j2m2j1m1|JM) = (−1)j1+j2−J(j1m1j2m2|JM) (2.5)

and the orthogonality of Clebsch-Gordan coefficients (1.49) yield

〈p1p2; JM |Hmf|p3p4; JM〉

=Np1p2(J)Np3p4(J)
[
δp1p3δp2p4

(
επp1 + επp2 +

∑
h

επh +
∑
h

ενh +K
)

− δp2p3δp1p4(−1)j1+j2−J
(
επp1 + επp2 +

∑
h

επh +
∑
h

ενh +K
)]
. (2.6)

Thus the result is

〈p1p2; JM |Hmf|p3p4; JM〉 = Np1p2(J)Np3p4(J)

×
[
δp1p3δp2p4(ε

π
p1

+ επp2+EHF)− δp2p3δp1p4(−1)j1+j2−J(επp1 + επp2 + EHF)
]
. (2.7)

Since this matrix element is diagonal and we are interested in the excitation en-
ergies, the constant term EHF, which affects the energy eigenvalues by a common
energy shift, can be omitted. If p1, p2, p3, p4 are neutron states, the result is the
same except that the single-particle energies correspond to neutron states.
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The contribution of the residual interaction Vres given by (1.42) is

〈p1p2; JM |Vres|p3p4; JM〉 = Np1p2(J)Np3p4(J)

×
[

1

4

∑
αβγδ

〈αβ|V |γδ〉π
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|aπ2aπ1 : a†αa
†
βaδaγ : a†π3a

†
π4
|HF〉

+
1

4

∑
αβγδ

〈αβ|V |γδ〉ν
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|aπ2aπ1 : b†αb
†
βbδbγ : a†π3a

†
π4
|HF〉

+
∑
αβγδ

〈αβ|V |γδ〉πν
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|aπ2aπ1 : a†αb
†
βaγbδ : a†π3a

†
π4
|HF〉

]
. (2.8)

Since

〈HF|aπ2aπ1 : b†αb
†
βbδbγ : a†π3a

†
π4
|HF〉 = 0, (2.9)

〈HF|aπ2aπ1 : a†αb
†
βaγbδ : a†π3a

†
π4
|HF〉 = 0, (2.10)

the last two terms in (2.8) vanish. In the first term the states α, β, γ, δ have to
be particle states to get a non-zero contribution. Thus we get

〈p1p2; JM |Vres|p3p4; JM〉

=Np1p2(J)Np3p4(J)
1

4

∑
π5π6
π7π8

〈π5π6|V |π7π8〉π
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|aπ2aπ1a†π5a
†
π6
aπ8aπ7a

†
π3
a†π4 |HF〉. (2.11)

Using the anticommutation relations (1.17) one gets

〈HF|aπ2aπ1a†π5a
†
π6
aπ8aπ7a

†
π3
a†π4|HF〉 = δπ1π5δπ2π6δπ3π7δπ4π8 − δπ1π5δπ2π6δπ3π8δπ4π7

−δπ1π6δπ2π5δπ3π7δπ4π8 + δπ1π6δπ2π5δπ3π8δπ4π7 .

Substitution into (2.11) yields

〈p1p2;JM |Vres|p3p4; JM〉

=Np1p2(J)Np3p4(J)
1

4

∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

×
(
〈π1π2|V |π3π4〉π − 〈π1π2|V |π4π3〉π − 〈π2π1|V |π3π4〉π + 〈π2π1|V |π4π3〉π

)
.

Using the symmetry properties (1.22) one gets

〈p1p2;JM |Vres|p3p4; JM〉

= Np1p2(J)Np3p4(J)
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈π1π2|V |π3π4〉π,
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which is the angular-momentum-coupled two-body interaction matrix element.
Thus the result is

〈p1p2; JM |Vres|p3p4; JM〉 = 〈p1p2, J |V |p3p4, J〉π. (2.12)

If p1, p2, p3, p4 are neutron states, the result is the same except that the coupled
two-body interaction matrix element is of the neutron type.

Now we proceed to an analogous derivation for the hhTDA. We seek the
formula for the matrix elements 〈h1h2; JM |H|h3h4; JM〉 of the Hamiltonian in
the basis of hh configurations

|h1h2; JM〉 = Nh1h2(J)
∑
m1m2

(j1m1j2m2|JM)h†η1h
†
η2
|HF〉, (2.13)

where |hi〉 = |niliji〉 and |ηi〉 = |nilijimi〉 are hole states (this notation is used
throughout this thesis).

Let us consider proton hh configurations (for neutron states the derivation is
analogous). The contribution of the mean-field Hamiltonian is

〈h1h2;JM |Hmf|h3h4; JM〉 = Nh1h2(J)Nh3h4(J)

×
[∑

α

επα
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈HF|hπη2h
π
η1
a†αaαh

π
η3
†hπη4

†|HF〉

+
∑
α

ενα
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈HF|hπη2h
π
η1
b†αbαh

π
η3
†hπη4

†|HF〉

+K
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)〈HF|hπη2h
π
η1
hπη3
†hπη4

†|HF〉
]
. (2.14)

Using the anticommutation and commutation relations (1.17) one gets

〈HF|hπη2h
π
η1
a†αaαh

π
η3
†hπη4

†|HF〉
=(−1)j1+m1+j2+m2+j3+m3+j4+m4〈HF|a†−η2a

†
−η1a

†
αaαa−η3a−η4 |HF〉

=− δ−η1αδ−η3αδη2η4 + δ−η1αδ−η4αδη2η3 − δη1η3δ−η2αδ−η4α
+ δ−η2αδη1η4δ−η3α + δη1η3δη2η4θ(εF − εα)− δη1η4δη2η3θ(εF − εα),

〈HF|hπη2h
π
η1
b†αbαh

π
η3
†hπη4

†|HF〉
=(−1)j1+m1+j2+m2+j3+m3+j4+m4〈HF|a†−η2a

†
−η1b

†
αbαa−η3a−η4 |HF〉

=δη1η3δη2η4θ(εF − εα)− δη1η4δη2η3θ(εF − εα),

〈HF|hπη2h
π
η1
hπη3
†hπη4

†|HF〉
=(−1)j1+m1+j2+m2+j3+m3+j4+m4〈HF|a†−η2a

†
−η1a−η3a−η4|HF〉

=δη1η3δη2η4 − δη1η4δη2η3 ,

where it was easy to deduce that the phase factors could be omitted. Substitution
into (2.14) and the relations (2.5) and (1.49) yield similarly as in the previous
case the result

〈h1h2; JM |Hmf|h3h4; JM〉 = Nh1h2(J)Nh3h4(J)

×
[
δh1h3δh2h4(−επh1 − ε

π
h2

+ EHF)− δh2h3δh1h4(−1)j1+j2−J(−επh1 − ε
π
h2

+ EHF)
]
,

(2.15)
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where EHF can be omitted as in the previous case. We see that the result is
analogous to the ppTDA result except that the single-particle energies change
sign. If h1, h2, h3, h4 are neutron states, the result is the same except that the
single-particle energies correspond to neutron states.

The contribution of residual interaction is

〈h1h2; JM |Vres|h3h4; JM〉 = Nh1h2(J)Nh3h4(J)

×
[

1

4

∑
αβγδ

〈αβ|V |γδ〉π
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|hπη2h
π
η1

: a†αa
†
βaδaγ : hπη3

†hπη4
†|HF〉

+
1

4

∑
αβγδ

〈αβ|V |γδ〉ν
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|hπη2h
π
η1

: b†αb
†
βbδbγ : hπη3

†hπη4
†|HF〉

+
∑
αβγδ

〈αβ|V |γδ〉πν
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|hπη2h
π
η1

: a†αb
†
βaγbδ : hπη3

†hπη4
†|HF〉

]
. (2.16)

Since

〈HF|hπη2h
π
η1

: b†αb
†
βbδbγ : hπη3

†hπη4
†|HF〉 = 0, (2.17)

〈HF|hπη2h
π
η1

: a†αb
†
βaγbδ : hπη3

†hπη4
†|HF〉 = 0, (2.18)

the last two terms in (2.16) vanish. In the first term the states α, β, γ, δ have to
be hole states for a non-zero contribution. Thus we get

〈h1h2; JM |Vres|h3h4; JM〉 = Nh1h2(J)Nh3h4(J)

× 1

4

∑
η5η6
η7η8

〈η5η6|V |η7η8〉π
∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|JM)

× 〈HF|a†−η2a
†
−η1 : a†η5a

†
η6
aη8aη7 : a−η3a−η4|HF〉(−1)j1+m1+j2+m2+j3+m3+j4+m4 .

(2.19)

Since

〈HF|a†−η2a
†
−η1 : a†η5a

†
η6
aη8aη7 : a−η3a−η4|HF〉

=〈HF|a†−η2a
†
−η1aη8aη7a

†
η5
a†η6a−η3a−η4|HF〉 = δ−η3η6δ−η1η8δ−η4η5δ−η2η7

− δ−η3η6δ−η4η5δ−η1η7δ−η2η8 − δ−η1η8δ−η4η6δ−η3η5δ−η2η7 + δ−η4η6δ−η3η5δ−η1η7δ−η2η8 ,

where we have used the anticommutation relations (1.17), we obtain∑
η5η6
η7η8

〈η5η6|V |η7η8〉π〈HF|a†−η2a
†
−η1 : a†η5a

†
η6
aη8aη7 : a−η3a−η4|HF〉

=〈−η4 − η3|V |−η2 − η1〉π − 〈−η4 − η3|V |−η1 − η2〉π
−〈−η3 − η4|V |−η2 − η1〉π + 〈−η3 − η4|V |−η1 − η2〉π
=4〈−η1 − η2|V |−η3 − η4〉π, (2.20)
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where we have used the symmetry properties (1.22). Substituting this into (2.19)
we get

〈h1h2;JM |Vres|h3h4; JM〉 = Nh1h2(J)Nh3h4(J)
∑
m1m2
m3m4

(j1m1j2m2|JM)

× (j3m3j4m4|JM)〈−η1 − η2|V |−η3 − η4〉π(−1)j1+m1+j2+m2+j3+m3+j4+m4 .

Since the Clebsch-Gordan coefficient are non-zero only for m2 = M − m1 and
m4 = M −m3, we effectively have

(−1)j1+m1+j2+m2+j3+m3+j4+m4 = (−1)j1+m1+j2+M−m1+j3+m3+j4+M−m3

= (−1)j1+j2+j3+j4+2M = (−1)j1+j2+j3+j4 .

Thus the result is

〈h1h2; JM |Vres|h3h4; JM〉 = (−1)j1+j2+j3+j4〈h1h2, J |V |h3h4, J〉π. (2.21)

If h1, h2, h3, h4 are neutron states, the result is the same except that the coupled
two-body interaction matrix element is of the neutron type.

The procedure of solving the ppTDA eigenvalue problem for a given angular
momentum and parity Jπ is following. We form the basis consisting of all possible
pp configurations |p1p2; JπM〉 with a common value of M in the given valence
space. For these basis states we adopt the convention p1 ≤ p2 to avoid counting
the same physical states twice. Then we construct the Hamiltonian matrix in
this basis using the formulae derived above. Finally, we diagonalize this matrix
and obtain the eigenenergies Eν and the corresponding eigenstates

|ν; JπM〉 =
∑
p1≤p2

Cν
p1p2
|p1p2; JπM〉 (2.22)

obeying the orthonormality condition

〈ν; JπM |ν ′; JπM〉 =
∑
p1≤p2

Cν∗
p1p2

Cν′

p1p2
= δνν′ . (2.23)

The problem can be formulated in the form of the ppTDA equations∑
p3≤p4

〈p1p2; JπM |H|p3p4; JπM〉Cν
p3p4

= EνC
ν
p1p2

. (2.24)

In the case of the hhTDA the procedure is analogous.

2.2 Electromagnetic transitions within ppTDA

and hhTDA

Let us now consider electric transitions from the ground state to some excited
state within ppTDA and hhTDA. The general formula for the reduced probability
of a transition of the electric type and multipolarity J from an initial state i to
a final state f with angular momenta ji and jf is

B(elJ ; i→ f) =
|〈αfjf ||M (el)

J ||αiji〉|2

2ji + 1
, (2.25)
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where αi and αf are additional quantum numbers. In our case the initial state is

the lowest 0+ ppTDA or hhTDA eigenstate2. Thus we seek 〈νf ; jf ||M (el)
J ||νgs; 0〉,

where νf and νgs denote the final and the initial ppTDA or hhTDA eigenstate,
respectively. Using the Wigner-Eckart theorem we get

〈νf ; jfmf |M (el)
JM |νgs; 00〉 =

1√
2.0 + 1

(00JM |jfmf )〈νf ; jf ||M (el)
J ||νgs; 0〉, (2.26)

where (00JM |jfmf ) = δJjf δMmf . Therefore, jf must be equal to J and mf must
be equal to M . Thus we seek

〈νf ; J ||M (el)
J ||νgs; 0〉 = 〈νf ; JM |M (el)

JM |νgs; 00〉, (2.27)

where the value of M is arbitrary (we can choose e.g. M = 0). Knowing the
expression for (2.27) we can calculate the reduced transition probability

B(elJ ; νgs0→ νfJ) = |〈νf ; JM |M (el)
JM |νgs; 00〉|2. (2.28)

The electric multipole operator in the long-wave approximation is

M
(el)
JM =

A∑
i=1

e
(eff)
i rJi YJM(θi, ϕi), (2.29)

where YJM is the spherical harmonic. In the formalism of the creation and anni-
hilation operators we have

M
(el)
JM = e(eff)

p

∑
αβ

〈α|rJYJM |β〉a†αaβ + e(eff)
n

∑
αβ

〈α|rJYJM |β〉b†αbβ

= e(eff)
p

∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉a†αaβ

+e(eff)
n

∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉b†αbβ, (2.30)

where the Wigner-Eckart theorem was used. We have introduced the effective
charge

e
(eff)
i =

{
e

(eff)
p for protons,

e
(eff)
n for neutrons.

(2.31)

In the case of ppTDA, the ground state is the lowest 0+ ppTDA eigenstate

|νgs; 00〉 =
∑
p3≤p4

Cνgs
p3p4
|p3p4; 00〉 (2.32)

and the final excited state is

|νf ; JM〉 =
∑
p1≤p2

C
νf
p1p2|p1p2; JM〉, (2.33)

2The angular momentum and parity of the ground states of eve-even nuclei are 0+.
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with |p1p2; JM〉 given by (2.1). Substituting (2.32), (2.33) and (2.30) into (2.27)
we get

〈νf ; JM |M (el)
JM |νgs; 00〉 =

∑
p1≤p2

∑
p3≤p4

C
νf∗
p1p2C

νgs
p3p4
〈p1p2; JM |M (el)

JM |p3p4; 00〉. (2.34)

Let us consider proton pp configurations (for neutrons the derivation is analo-
gous). Then

〈p1p2; JM |M (el)
JM |p3p4; 00〉

= e(eff)
p Np1p2(J)Np3p4(0)

∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|00)

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|aπ2aπ1a†αaβa†π3a
†
π4
|HF〉

+ e(eff)
n Np1p2(J)Np3p4(0)

∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|00)

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|aπ2aπ1b†αbβa†π3a
†
π4
|HF〉.

(2.35)

Using the anticommutation and commutation relations (1.17) we obtain

〈HF|aπ2aπ1a†αaβa†π3a
†
π4
|HF〉 = δαπ2δβπ4δπ1π3 + δαπ1δβπ3δπ2π4 − δαπ2δβπ3δπ1π4

−δαπ1δβπ4δπ2π3 + δαβδπ2π4δπ1π3θ(εF − εα)− δαβδπ2π3δπ1π4θ(εF − εα),

〈HF|aπ2aπ1b†αbβa†π3a
†
π4
|HF〉 = δαβδπ2π4δπ1π3θ(εF − εα)− δαβδπ2π3δπ1π4θ(εF − εα).

Substitution into (2.35), the relation (2.5) and the orthogonality of Clebsch-
Gordan coefficients (1.49) yield

〈p1p2; JM |M (el)
JM |p3p4; 00〉 =e(eff)

p Np1p2(J)Np3p4(0)×[
δp1p3

1√
2j4 + 1

〈p2||rJYJ ||p4〉
∑
m1m2
m4

(j1m1j2m2|JM)(j1m1j4m4|00)(j4m4JM |j2m2)

+δp2p4
1√

2j3 + 1
〈p1||rJYJ ||p3〉

∑
m1m2
m3

(j1m1j2m2|JM)(j3m3j2m2|00)(j3m3JM |j1m1)

−δp1p4
1√

2j3 + 1
〈p2||rJYJ ||p3〉

∑
m1m2
m3

(j1m1j2m2|JM)(j3m3j1m1|00)(j3m3JM |j2m2)

−δp2p3
1√

2j4 + 1
〈p1||rJYJ ||p4〉

∑
m1m2
m4

(j1m1j2m2|JM)(j2m2j4m4|00)(j4m4JM |j1m1)

]
(2.36)

The second term in (2.35) has vanished because of the relation (1.49). Thus the

contribution of the neutron part ofM
(el)
JM is zero. The sums of the products of three

Clebsch-Gordan coefficients can be reduced to sums with only one summation
index (angular momentum projection) using the fact that (j1m1j2m2|JM) = 0,
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if m1 +m2 6= M . In the case of neutron ppTDA eigenstates the result is the same
except that the effective charge is replaced with e

(eff)
n .

In the case of hhTDA, the ground state is the lowest 0+ hhTDA eigenstate

|νgs; 00〉 =
∑
h3≤h4

C
νgs
h3h4
|h3h4; 00〉 (2.37)

and the final excited state is

|νf ; JM〉 =
∑
h1≤h2

C
νf
h1h2
|h1h2; JM〉, (2.38)

with |h1h2; JM〉 given by (2.13). Substituting (2.37), (2.38) and (2.30) into (2.27)
we get

〈νf ; JM |M (el)
JM |νgs; 00〉 =

∑
h1≤h2

∑
h3≤h4

C
νf∗
h1h2

C
νgs
h3h4
〈h1h2; JM |M (el)

JM |h3h4; 00〉. (2.39)

Let us consider proton hh configurations (for neutron states the derivation is
analogous). Then

〈h1h2; JM |M (el)
JM |h3h4; 00〉

= e(eff)
p Nh1h2(J)Nh3h4(0)

∑
m1m2
m3m4

(j1m1j2m2|JM)(j3m3j4m4|00)

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|hπη2h
π
η1
a†αaβh

π
η3
†hπη4

†|HF〉, (2.40)

where we have omitted the neutron part of M
(el)
JM because it gives zero contribution

similarly as in the case of ppTDA. Using the anticommutation relations (1.17)
we obtain

〈HF|hπη2h
π
η1
a†αaβh

π
η3
†hπη4

†|HF〉
=(−1)j1+m1+j2+m2+j3+m3+j4+m4〈HF|a†−η2a

†
−η1a

†
αaβa−η3a−η4|HF〉

=(−1)j1+m1+j2+m2+j3+m3+j4+m4
[
δ−η4αδ−η1βδη2η3 + δ−η3αδ−η2βδη1η4−δ−η3αδ−η1βδη2η4

− δ−η4αδ−η2βδη1η3 + δαβδη1η3δη2η4θ(εF − εα)− δαβδη1η4δη2η3θ(εF − εα)
]
.
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Substitution into (2.40) and the relations (2.5) and (1.49) yield

〈h1h2; JM |M (el)
JM |h3h4; 00〉 = e(eff)

p Nh1h2(J)Nh3h4(0)

×
[
δh2h3

1√
2j1 + 1

〈h4||rJYJ ||h1〉

×
∑
m1m2
m4

(j1m1j2m2|JM)(j2m2j4m4|00)(j1 −m1JM |j4 −m4)(−1)j1+m1+j4+m4

+ δh1h4
1√

2j2 + 1
〈h3||rJYJ ||h2〉

×
∑
m1m2
m3

(j1m1j2m2|JM)(j3m3j1m1|00)(j2 −m2JM |j3 −m3)(−1)j2+m2+j3+m3

− δh2h4
1√

2j1 + 1
〈h3||rJYJ ||h1〉

×
∑
m1m2
m3

(j1m1j2m2|JM)(j3m3j2m2|00)(j1 −m1JM |j3 −m3)(−1)j1+m1+j3+m3

− δh1h3
1√

2j2 + 1
〈h4||rJYJ ||h2〉

×
∑
m1m2
m4

(j1m1j2m2|JM)(j1m1j4m4|00)(j2 −m2JM |j4 −m4)(−1)j2+m2+j4+m4

]
.

(2.41)

Similarly as in the previous case, the sums of the products of three Clebsch-
Gordan coefficients can be again reduced to sums with only one summation index.
In the case of neutron hhTDA eigenstates the result is the same except that the
effective charge is replaced with e

(eff)
n .

Let us now discuss the effective charges. They represent an effective way of
taking into account effects not explicitly included in the model, e.g. ph excitations
of the core. The effective charges can be introduced in this way (see [36]):

e(eff)
p = (1 + χ)e , e(eff)

n = χe , (2.42)

where e is the ”bare” charge of a single proton and χ is the electric polarization
constant. More on the microscopic origin of the effective charges can be found
in [37].

2.3 Particle-particle and hole-hole RPA

Similarly as in the case of ppTDA and hhTDA, we modify the RPA in order to
describe open-shell nuclei with two valence particles or holes added to a doubly-
magic core. We derive the corresponding ppRPA and hhRPA equations using the
equation-of-motion method described at the beginning of Section 1.4.

Let us start with the ppRPA. In analogy to RPA phonon (1.74), in the ppRPA
case the eigenstate ν of a system with A+ 2 nucleons in the angular-momentum-
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coupled representation is

|A+ 2, ν; JM〉 = Q†ν |A, 0〉

=

(∑
p1≤p2

Xν
p1p2

[c†p1c
†
p2

]JM −
∑
h3≤h4

Y ν
h3h4

[c†h4c
†
h3

]JM

)
|A, 0〉, (2.43)

where p1 and p1 denote single-particle states above the Fermi level, h3 and h4 are
states below the Fermi level and

[c†p1c
†
p2

]JM = Np1p2(J)
∑
m1m2

(j1m1j2m2|JM)c†π1c
†
π2

(2.44)

is the angular momentum coupling. The ground state (representing the system
with A nucleons) is defined so that

Qν |A, 0〉 = 0. (2.45)

The variation of the phonon operator δQ, appearing in equation (1.73), is

δQ =
∑
p1≤p2

δXp1p2

(
[c†p1c

†
p2

]JM
)† − ∑

h3≤h4

δYh3h4
(
[c†h4c

†
h3

]JM
)†
, (2.46)

with(
[c†p1c

†
p2

]JM
)†

= Np1p2(J)
∑
m1m2

(j1m1j2m2|JM)cπ2cπ1 = (−1)j1+j2−J [cp2cp1 ]JM ,

(2.47)
where the relation (2.5) was used. Substitution of (2.46) into equation (1.73) and
comparison of the terms with δXp1p2 and δYh3h4 on both sides of the equation
yield two sets of equations:

(−1)j1+j2−J〈A, 0|
[
[cp2cp1 ]JM , [H,Q

†
ν ]
]
|A, 0〉

= ~Ων(−1)j1+j2−J〈A, 0|
[
[cp2cp1 ]JM , Q

†
ν

]
|A, 0〉,

(−1)j3+j4−J〈A, 0|
[
[ch3ch4 ]JM , [H,Q

†
ν ]
]
|A, 0〉

= ~Ων(−1)j3+j4−J〈A, 0|
[
[ch3ch4 ]JM , Q

†
ν

]
|A, 0〉, (2.48)

where ~Ων is the excitation energy of the A + 2 nucleus related to the ground
state of the nucleus with A nucleons.

Since |Xν
p1p2
|2 is the probability of finding the state [c†p1c

†
p2

]JM |A, 0〉 in the state

|A+ 2, ν; JM〉 and |Y ν
h3h4
|2 is the probability of finding the state [c†h4c

†
h3

]JM |A, 0〉
in the state |A+ 2, ν; JM〉, we have

Xν
p1p2

= (−1)j1+j2−J〈A, 0|[cp2cp1 ]JM |A+ 2, ν; JM〉
= (−1)j1+j2−J〈A, 0|[cp2cp1 ]JMQ†ν |A, 0〉
= (−1)j1+j2−J〈A, 0|

[
[cp2cp1 ]JM , Q

†
ν

]
|A, 0〉

≈ (−1)j1+j2−J〈HF|
[
[cp2cp1 ]JM , Q

†
ν

]
|HF〉, (2.49)

where we used the commutator, because 〈A, 0|Q†ν = 0, and the quasi-boson ap-
proximation (in the last step), and similarly

Y ν
h3h4

= (−1)j3+j4−J〈A, 0|[ch3ch4 ]JM |A+ 2, ν; JM〉
≈ (−1)j3+j4−J〈HF|

[
[ch3ch4 ]JM , Q

†
ν

]
|HF〉. (2.50)
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Thus within the quasi-boson approximation the equations (2.48) can be written
as∑
p′1≤p′2

Xν
p′1p
′
2
(−1)j1+j2−J〈HF|

[
[cp2cp1 ]JM ,

[
H, [c†p′1

c†p′2
]JM
]]
|HF〉

−
∑
h′3≤h′4

Y ν
h′3h
′
4
(−1)j1+j2−J〈HF|

[
[cp2cp1 ]JM ,

[
H, [c†h′4

c†h′3
]JM
]]
|HF〉 = ~ΩνX

ν
p1p2

and∑
p′1≤p′2

Xν
p′1p
′
2
(−1)j3+j4−J〈HF|

[
[ch3ch4 ]JM ,

[
H, [c†p′1

c†p′2
]JM
]]
|HF〉

−
∑
h′3≤h′4

Y ν
h′3h
′
4
(−1)j3+j4−J〈HF|

[
[ch3ch4 ]JM ,

[
H, [c†h′4

c†h′3
]JM
]]
|HF〉 = ~ΩνY

ν
h3h4

.

These equations can be written in the matrix form

AXν +BY ν = ~ΩνX
ν , (2.51)

−B†Xν − CY ν = ~ΩνY
ν (2.52)

or (
A B
−B† −C

)(
Xν

Y ν

)
= ~Ων

(
Xν

Y ν

)
, (2.53)

with

Ap1p2,p′1p′2 = (−1)j1+j2−J〈HF|
[
[cp2cp1 ]JM ,

[
H, [c†p′1

c†p′2
]JM
]]
|HF〉, (2.54)

Bp1p2,h′3h
′
4

= −(−1)j1+j2−J〈HF|
[
[cp2cp1 ]JM ,

[
H, [c†h′4

c†h′3
]JM
]]
|HF〉, (2.55)

Ch3h4,h′3h′4 = (−1)j3+j4−J〈HF|
[
[ch3ch4 ]JM ,

[
H, [c†h′4

c†h′3
]JM
]]
|HF〉. (2.56)

In general the matrices A and B have different dimensions and B is a rectangular
matrix.

Now we derive the formulae for the matrices A,B and C. We start with the
matrix A. Since cπ1 annihilates the HF vacuum |HF〉, we can write

Ap1p2,p′1p′2 =(−1)j1+j2−J〈HF|[cp2cp1 ]JM
[
H, [c†p′1

c†p′2
]JM
]
|HF〉

=(−1)j1+j2−J〈HF|[cp2cp1 ]JMH[c†p′1
c†p′2

]JM |HF〉

− (−1)j1+j2−J〈HF|[cp2cp1 ]JM [c†p′1
c†p′2

]JMH|HF〉

=A
(1)

p1p2,p′1p
′
2
− A(2)

p1p2,p′1p
′
2
, (2.57)

where

A
(1)

p1p2,p′1p
′
2

= (−1)j1+j2−J〈HF|[cp2cp1 ]JMH[c†p′1
c†p′2

]JM |HF〉 = (−1)j1+j2−J

×Np1p2(J)Np′1p′2(J)
∑
m1m2
m′1m

′
2

(j2m2j1m1|JM)(j′1m
′
1j
′
2m
′
2|JM)〈HF|cπ2cπ1Hc

†
π′1
c†π′2
|HF〉

= Np1p2(J)Np′1p′2(J)
∑
m1m2
m′1m

′
2

(j1m2j2m2|JM)(j′1m
′
1j
′
2m
′
2|JM)〈HF|cπ2cπ1Hc

†
π′1
c†π′2
|HF〉,

31



where the relation (2.5) was used. Comparing this with (2.3) we find out that

A
(1)

p1p2,p′1p
′
2

is the ppTDA matrix. Similarly, the second part of the matrix Ap1p2,p′1p′2
is

A
(2)

p1p2,p′1p
′
2

= (−1)j1+j2−J〈HF|[ap2ap1 ]JM [a†p′1
a†p′2

]JMH|HF〉

=Np1p2(J)Np′1p′2(J)
∑
m1m2
m′1m

′
2

(j1m1j2m2|JM)(j′1m
′
1j
′
2m
′
2|JM)

× 〈HF|aπ2aπ1a
†
π′1
a†π′2

H|HF〉, (2.58)

where we consider proton pp configurations (for neutrons the derivation is anal-
ogous with the same result). The Hamiltonian H is given by (1.40), (1.41)
and (1.42). It is obvious that the residual interaction Vres doesn’t contribute

to A
(2)

p1p2,p′1p
′
2
, thus we substitute only the mean-field Hamiltonian Hmf into (2.58)

and obtain

A
(2)

p1p2,p′1p
′
2

= N p1p2(J)Np′1p′2(J)

×
[∑

α

επα
∑
m1m2
m′1m

′
2

(j1m1j2m2|JM)(j′1m
′
1j
′
2m
′
2|JM)〈HF|aπ2aπ1a

†
π′1
a†π′2

a†αaα|HF〉

+
∑
α

ενα
∑
m1m2
m′1m

′
2

(j1m1j2m2|JM)(j′1m
′
1j
′
2m
′
2|JM)〈HF|aπ2aπ1a

†
π′1
a†π′2

b†αbα|HF〉

+K
∑
m1m2
m′1m

′
2

(j1m1j2m2|JM)(j′1m
′
1j
′
2m
′
2|JM)〈HF|aπ2aπ1a

†
π′1
a†π′2
|HF〉

]
,

where K is given by (1.47). Since

〈HF|aπ2aπ1a
†
π′1
a†π′2

a†αaα|HF〉 = 〈HF|aπ2aπ1a
†
π′1
a†π′2

b†αbα|HF〉

= θ(εF − εα)〈HF|aπ2aπ1a
†
π′1
a†π′2
|HF〉 (2.59)

and
〈HF|aπ2aπ1a

†
π′1
a†π′2
|HF〉 = δπ1π′1δπ2π′2 − δπ1π′2δπ2π′1 , (2.60)

using the relations (2.5), (1.49) and (1.43) we obtain after some manipulations

A
(2)

p1p2,p′1p
′
2

= Np1p2(J)Np′1p′2(J)[δp1p′1δp2p′2 − δp1p′2δp2p′1(−1)j1+j2−J ]EHF. (2.61)

We see that A
(2)

p1p2,p′1p
′
2

is a diagonal term giving the constant contribution EHF.

We omit this term because we are interested in the excitation energies. The
conclusion is that the matrix A is nothing but the ppTDA matrix from Section
2.1.

Let us have a look at the matrix C. Since 〈HF|cη3 = 0, from (2.56) we get

Ch3h4,h′3h′4 =− (−1)j3+j4−J〈HF|
[
H, [c†h′4

c†h′3
]JM
]
[ch3ch4 ]JM |HF〉

=− (−1)j3+j4−J〈HF|H[c†h′4
c†h′3

]JM [ch3ch4 ]JM |HF〉

+ (−1)j3+j4−J〈HF|[c†h′4c
†
h′3

]JMH[ch3ch4 ]JM |HF〉. (2.62)
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Similarly as in the case of A
(2)

p1p2,p′1p
′
2
, it can be shown that the firs term in (2.62)

is diagonal and gives the contribution −EHF. Thus we omit this term because we
are interested in the excitation energies. Thus

Ch3h4,h′3h′4 = (−1)j3+j4−J〈HF|[c†h′4c
†
h′3

]JMH[ch3ch4 ]JM |HF〉

= Nh′3h′4(J)Nh3h4(J)
∑
m′4m

′
3

m3m4

(j′4m
′
4j
′
3m
′
3|JM)(j4m4j3m3|JM)〈HF|c†η′4c

†
η′3
Hcη3cη4|HF〉,

where the relation (2.5) was used. It can be shown that this is exactly the hhTDA
matrix from Section 2.1.

Next we derive the formula for the matrix B. Since cπ1 annihilates the HF
vacuum |HF〉, from (2.55) we get

Bp1p2,h′3h
′
4

= −(−1)j1+j2−J〈HF|[cp2cp1 ]JM
[
H, [c†h′4

c†h′3
]JM
]
|HF〉. (2.63)

Since c†η′3
|HF〉 = 0, we get

Bp1p2,h′3h
′
4

= (−1)j1+j2−J〈HF|[cp2cp1 ]JM [c†h′4
c†h′3

]JMH|HF〉

= Np1p2(J)Nh′3h′4(J)
∑
m1m2
m′3m

′
4

(j1m1j2m2|JM)(j′4m
′
4j
′
3m
′
3|JM)〈HF|cπ2cπ1c

†
η′4
c†η′3
H|HF〉,

where the relation (2.5) was used. The Hamiltonian H is given by (1.40) and it
is obvious that the contribution of the mean-field Hamiltonian (1.41) is zero and
only the residual interaction Vres contributes. Let us suppose that p1, p2, h

′
3, h
′
4

are proton states (for neutron states the derivation is analogous). Substitution
from (1.42) yields

Bp1p2,h′3h
′
4

= N p1p2(J)Nh′3h′4(J)

×
[1

4

∑
αβγδ

〈αβ|V |γδ〉π
∑
m1m2
m′3m

′
4

(j1m1j2m2|JM)(j′4m
′
4j
′
3m
′
3|JM)

×〈HF|aπ2aπ1a
†
η′4
a†η′3

: a†αa
†
βaδaγ : |HF〉

+
1

4

∑
αβγδ

〈αβ|V |γδ〉ν
∑
m1m2
m′3m

′
4

(j1m1j2m2|JM)(j′4m
′
4j
′
3m
′
3|JM)

×〈HF|aπ2aπ1a
†
η′4
a†η′3

: b†αb
†
βbδbγ : |HF〉

+
∑
αβγδ

〈αβ|V |γδ〉πν
∑
m1m2
m′3m

′
4

(j1m1j2m2|JM)(j′4m
′
4j
′
3m
′
3|JM)

×〈HF|aπ2aπ1a
†
η′4
a†η′3

: a†αb
†
βaγbδ : |HF〉

]
. (2.64)

It holds

〈HF|aπ2aπ1a
†
η′4
a†η′3

: b†αb
†
βbδbγ : |HF〉 = 0, (2.65)

〈HF|aπ2aπ1a
†
η′4
a†η′3

: a†αb
†
βaγbδ : |HF〉 = 0 (2.66)
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and 〈HF|aπ2aπ1a
†
η′4
a†η′3

: a†αa
†
βaδaγ : |HF〉 doesn’t vanish only if α, β are particle

states and δ, γ are hole states. Therefore, we obtain

Bp1p2,h′3h
′
4

= N p1p2(J)Nh′3h′4(J)
1

4

∑
π3π4
η1η2

〈π3π4|V |η1η2〉π
∑
m1m2
m′3m

′
4

(j1m1j2m2|JM)

×(j′4m
′
4j
′
3m
′
3|JM)〈HF|aπ2aπ1a

†
η′4
a†η′3
a†π3a

†
π4
aη2aη1|HF〉. (2.67)

Using the anticommutation relations (1.17) one gets

〈HF|aπ2aπ1a
†
η′4
a†η′3
a†π3a

†
π4
aη2aη1 |HF〉 = δη′3η2δη′4η1δπ1π3δπ2π4−δη′3η2δη′4η1δπ1π4δπ2π3

−δη′3η1δη′4η2δπ1π3δπ2π4+δη′3η1δη′4η2δπ1π4δπ2π3 .

Substitution into (2.67) yields

Bp1p2,h′3h
′
4

= Np1p2(J)Nh′3h′4(J)
1

4

∑
m1m2
m′3m

′
4

(j1m1j2m2|JM)(j′4m
′
4j
′
3m
′
3|JM)

×
[
〈π1π2|V |η′4η′3〉π − 〈π2π1|V |η′4η′3〉π − 〈π1π2|V |η′3η′4〉π + 〈π2π1|V |η′3η′4〉π

]
.

Using the symmetry properties (1.22) we obtain

Bp1p2,h′3h
′
4

= −Np1p2(J)Nh′3h′4(J)
∑
m1m2
m′3m

′
4

(j1m1j2m2|JM)(j′4m
′
4j
′
3m
′
3|JM)〈π1π2|V |η′3η′4〉π.

Since (j′4m
′
4j
′
3m
′
3|JM) = (−1)j

′
3+j′4−J(j′3m

′
3j
′
4m
′
4|JM), the final result is

Bp1p2,h′3h
′
4

= −(−1)j
′
3+j′4−J〈p1p2, J |V |h′3h′4, J〉π. (2.68)

If p1, p2, h
′
3, h
′
4 are neutron states, the result is the same except that the index π

is replaced with ν.
Now we proceed to analogous derivation of the hhRPA equations. Within

the hhRPA the eigenstate ν of a system with A − 2 nucleons in the angular-
momentum-coupled representation is

|A− 2, ν; JM〉 = Q†ν |A, 0〉

=

(∑
h1≤h2

Xν
h1h2

[h†h1h
†
h2

]JM −
∑
p3≤p4

Y ν
p3p4

[h†p4h
†
p3

]JM

)
|A, 0〉 (2.69)

where h1 and h2 are hole states and p3 and p4 are particle states. The variation
δQ of the phonon operator is

δQ =

( ∑
h1≤h2

δXh1h2(−1)j1+j2−J [hh2hh1 ]JM

−
∑
p3≤p4

δYp3p4(−1)j3+j4−J [hp3hp4 ]JM

)
|A, 0〉, (2.70)
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where the relation (2.47) was used. Substitution of (2.70) into (1.73) and com-
parison of the terms with δXh1h2 and δYp3p4 on both sides of the equation yield
two sets of equations:

(−1)j1+j2−J〈A, 0|
[
[hh2hh1 ]JM , [H,Q

†
ν ]
]
|A, 0〉

= ~Ων(−1)j1+j2−J〈A, 0|
[
[hh2hh1 ]JM , Q

†
ν

]
|A, 0〉,

(−1)j3+j4−J〈A, 0|
[
[hp3hp4 ]JM , [H,Q

†
ν ]
]
|A, 0〉

= ~Ων(−1)j3+j4−J〈A, 0|
[
[hp3hp4 ]JM , Q

†
ν

]
|A, 0〉, (2.71)

where ~Ων is the excitation energy of the the state |A− 2, ν; JM〉 related to the
state |A, 0〉. Since |Xν

h1h2
|2 is the probability of finding the state [h†h1h

†
h2

]JM |A, 0〉
in the state |A− 2, ν; JM〉, we have

Xν
h1h2

= (−1)j1+j2−J〈A, 0|[hh2hh1 ]JM |A− 2, ν, JM〉
= (−1)j1+j2−J〈A, 0|[hh2hh1 ]JMQ†ν |A, 0〉
= (−1)j1+j2−J〈A, 0|

[
[hh2hh1 ]JM , Q

†
ν

]
|A, 0〉

≈ (−1)j1+j2−J〈HF|
[
[hh2hh1 ]JM , Q

†
ν

]
|HF〉, (2.72)

where we used the commutator, because 〈A, 0|Q†ν = 0, and the quasi-boson ap-
proximation. Since |Y ν

p3p4
|2 is the probability of finding the state [h†p4h

†
p3

]JM |A, 0〉
in the state |A− 2, ν; JM〉, we similarly get

Y ν
p3p4

= (−1)j3+j4−J〈A, 0|[hp3hp4 ]JM |A− 2, ν, JM〉
≈ (−1)j3+j4−J〈HF|

[
[hp3hp4 ]JM , Q

†
ν

]
|HF〉. (2.73)

Thus within the quasi-boson approximation the equations (2.71) can be written
as∑
h′1≤h′2

Xν
h′1h
′
2
(−1)j1+j2−J〈HF|

[
[hh2hh1 ]JM ,

[
H, [h†h′1

h†h′2
]JM
]]
|HF〉

−
∑
p′3≤p′4

Y ν
p′3p
′
4
(−1)j1+j2−J〈HF|

[
[hh2hh1 ]JM ,

[
H, [h†p′4

h†p′3
]JM
]]
|HF〉 = ~ΩνX

ν
h1h2

,

∑
h′1≤h′2

Xν
h′1h
′
2
(−1)j3+j4−J〈HF|

[
[hp3hp4 ]JM ,

[
H, [h†h′1

h†h′2
]JM
]]
|HF〉

−
∑
p′3≤p′4

Y ν
p′3p
′
4
(−1)j3+j4−J〈HF|

[
[hp3hp4 ]JM ,

[
H, [h†p′4

h†p′3
]JM
]]
|HF〉 = ~ΩνY

ν
p3p4

,

which can be written in the matrix form

AY ν +BXν = −~ΩνY
ν , (2.74)

−B†Y ν − CXν = −~ΩνX
ν (2.75)

or (
A B
−B† −C

)(
Y ν

Xν

)
= −~Ων

(
Y ν

Xν

)
, (2.76)
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with

Ap3p4,p′3p′4 = (−1)j3+j4−J〈HF|
[
[hp3hp4 ]JM ,

[
H, [h†p′4

h†p′3
]JM
]]
|HF〉, (2.77)

Ch1h2,h′1h′2 = (−1)j1+j2−J〈HF|
[
[hh2hh1 ]JM ,

[
H, [h†h′1

h†h′2
]JM
]]
|HF〉, (2.78)

Bp3p4,h′1h
′
2

= −(−1)j3+j4−J〈HF|
[
[hp3hp4 ]JM ,

[
H, [h†h′1

h†h′2
]JM
]]
|HF〉. (2.79)

Let us now have a look at these matrices. Since 〈HF|hπ3 = 0, the matrix A is

Ap3p4,p′3p′4 =− (−1)j3+j4−J〈HF|
[
H, [h†p′4

h†p′3
]JM
]
[hp3hp4 ]JM |HF〉

=− (−1)j3+j4−J〈HF|H[h†p′4
h†p′3

]JM [hp3hp4 ]JM |HF〉

+ (−1)j3+j4−J〈HF|[h†p′4h
†
p′3

]JMH[hp3hp4 ]JM |HF〉, (2.80)

where the first term is diagonal and gives the constant contribution EHF. We
omit this term because we are interested in the excitation energies. It can be
shown that the second term is the ppTDA matrix. Thus the matrix A is exactly
the same matrix A which is in the ”supermatrix” in the ppRPA equations (2.53).
Since hη1|HF〉 = 0, the matrix C is

Ch1h2,h′1h′2 =(−1)j1+j2−J〈HF|[hh2hh1 ]JM
[
H, [h†h′1

h†h′2
]JM
]
|HF〉

=(−1)j1+j2−J〈HF|[hh2hh1 ]JMH[h†h′1
h†h′2

]JM |HF〉

− (−1)j1+j2−J〈HF|[hh2hh1 ]JM [h†h′1
h†h′2

]JMH|HF〉, (2.81)

where the second term is diagonal and gives the contribution −EHF, thus we drop
it. It is obvious that the first term is the hhTDA matrix. Thus the matrix C is
the same matrix C as in the ppRPA case.

Finally, we derive the formula for the matrix B. Since 〈HF|hπ3 = 0, we get

Bp3p4,h′1h
′
2

= (−1)j3+j4−J〈HF|
[
H, [h†h′1

h†h′2
]JM
]
[hp3hp4 ]JM |HF〉. (2.82)

Since 〈HF|h†η′1 = 0, we get

Bp3p4,h′1h
′
2

= (−1)j3+j4−J〈HF|H[h†h′1
h†h′2

]JM [hp3hp4 ]JM |HF〉, (2.83)

where the Hamiltonian H is given by (1.40). It is obvious that the mean-field
Hamiltonian Hmf given by (1.41) doesn’t contribute. Let us suppose that the
states p3, p4, h

′
1, h
′
2 are proton states (for neutron states the derivation is analo-

gous). Then it easy to deduce that the contribution of the last two terms in the
residual interaction Vres given by (1.42) vanishes. Thus we obtain

Bp3p4,h′1h
′
2

=(−1)j3+j4−JNh′1h′2(J)Np3p4(J)
∑
m′1m

′
2

m3m4

(j′1m
′
1j
′
2m
′
2|JM)(j3m3j4m4|JM)

× 1

4

∑
αβγδ

〈αβ|V |γδ〉π(−1)j
′
1+m′1+j′2+m′2+j3+m3+j4+m4

× 〈HF| : a†αa
†
βaδaγ : a−η′1a−η′2a

†
−π3a

†
−π4|HF〉, (2.84)
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where α, β have to be hole states and γ, δ have to be particle states for a non-
zero contribution. Since the Clebsch-Gordan coefficients are non-zero only if
m′1 +m′2 = M and m3 +m4 = M , we effectively have

(−1)j3+j4−J(−1)j
′
1+m′1+j′2+m′2+j3+m3+j4+m4 = (−1)j

′
1+j′2−J .

Thus

Bp3p4,h′1h
′
2

= (−1)j
′
1+j′2−JNh′1h′2(J)Np3p4(J)

∑
m′1m

′
2

m3m4

(j′1m
′
1j
′
2m
′
2|JM)(j3m3j4m4|JM)

× 1

4

∑
η5η6
π7π8

〈η5η6|V |π7π8〉π〈HF|a†η5a
†
η6
aπ8aπ7a−η′1a−η′2a

†
−π3a

†
−π4|HF〉, (2.85)

where 〈η5η6|V |π7π8〉π = 〈π7π8|V |η5η6〉π according to the symmetry properties
(1.22) (our two-body interaction matrix elements are real). Using the anticom-
mutation relations (1.17) one gets

〈HF|a†η5a
†
η6
aπ8aπ7a−η′1a−η′2a

†
−π3a

†
−π4|HF〉 = δ−π3π7δ−η′1η6δ−π4π8δ−η′2η5

−δ−π3π7δ−π4π8δ−η′2η6δ−η′1η5 − δ−η′1η6δ−π4π7δ−π3π8δ−η′2η5 + δ−π4π7δ−π3π8δ−η′2η6δ−η′1η5 .

Substitution into (2.85) yields

Bp3p4,h′1h
′
2

=(−1)j
′
1+j′2−JNh′1h′2(J)Np3p4(J)

∑
m′1m

′
2

m3m4

(j′1m
′
1j
′
2m
′
2|JM)(j3m3j4m4|JM)

× 1

4

(
〈−π3 − π4|V |−η′2 − η′1〉π − 〈−π3 − π4|V |−η′1 − η′2〉π

− 〈−π4 − π3|V |−η′2 − η′1〉π + 〈−π4 − π3|V |−η′1 − η′2〉π
)
. (2.86)

Using the symmetry properties (1.22) we obtain

Bp3p4,h′1h
′
2

= −(−1)j
′
1+j′2−JNh′1h′2(J)Np3p4(J)

∑
m′1m

′
2

m3m4

(j′1m
′
1j
′
2m
′
2|JM)(j3m3j4m4|JM)

×〈−π3 − π4|V |−η′1 − η′2〉π
= −(−1)j

′
1+j′2−J〈p3p4, J |V |h′1h′2, J〉π. (2.87)

If p3, p4, h
′
1, h
′
2 are neutron states, the result is the same except that the index π

is replaced with ν. Comparing the result (2.87) with (2.68) we find out that the
matrix B is the same as in the ppRPA case.

Finally, we can conclude that the ”supermatrices” in the ppRPA equations
(2.53) and hhRPA equations (2.76) are the same. Thus the diagonalization of
this ”supermatrix” simultaneously yields both ppRPA and hhRPA phonons, but
in the case of hhRPA phonons excitation energies have opposite sign and the
amplitudes Xν and Y ν have opposite meaning. In practice, we distinguish the
ppRPA and hhRPA phonons in the following way. We solve the equation (2.53)
and obtain eigenenergies ~Ων and amplitudes Xν and Y ν . If the amplitudes Xν

are large and the amplitudes Y ν are small, the corresponding phonon is of the
ppRPA type. If the amplitudes Xν are small and the amplitudes Y ν are large,
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the corresponding phonon is of the hhRPA type and the amplitudes Xν and Y ν

have opposite meaning.
Next we derive the orthonormality relation for the ppRPA eigenstates (2.43).

We require

δνν′ = 〈A+ 2, ν; JM |A+ 2, ν ′; J ′M ′〉 = 〈A, 0|QνQ
†
ν′|A, 0〉

= 〈A, 0|[Qν , Q
†
ν′ ]|A, 0〉 ≈ 〈HF|[Qν , Q

†
ν′ ]|HF〉

=
∑
p1≤p2

∑
p′1≤p′2

Xν∗
p1p2

Xν′

p′1p
′
2
(−1)j1+j2−J〈HF|

[
[cp2cp1 ]JM , [c

†
p′1
c†p′2

]J ′M ′
]
|HF〉

+
∑
h3≤h4

∑
h′3≤h′4

Y ν∗
h3h4

Y ν′

h′3h
′
4
(−1)j3+j4−J〈HF|

[
[ch3ch4 ]JM , [c

†
h′4
c†h′3

]J ′M ′
]
|HF〉, (2.88)

where the quasi-boson approximation and the relation (2.47) were used. In the
first term we have

〈HF|
[
[cp2cp1 ]JM , [c

†
p′1
c†p′2

]J ′M ′
]
|HF〉 = 〈HF|[cp2cp1 ]JM [c†p′1

c†p′2
]J ′M ′ |HF〉

= Np1p2(J)Np′1p′2(J
′)
∑
m1m2
m′1m

′
2

(j2m2j1m1|JM)(j′1m
′
1j
′
2m
′
2|J ′M ′)〈HF|cπ2cπ1c

†
π′1
c†π′2
|HF〉.

Substitution of

〈HF|cπ2cπ1c
†
π′1
c†π′2
|HF〉 = δπ1π′1δπ2π′2 − δπ1π′2δπ2π′1 (2.89)

and the relations (2.5) and (1.49) yield

〈HF|
[
[cp2cp1 ]JM , [c

†
p′1
c†p′2

]JM
]
|HF〉

= δJJ ′δMM ′ [Np1p2(J)]2
[
δp1p′1δp2p′2(−1)j1+j2−J − δp1p′2δp2p′1

]
. (2.90)

Analogously we obtain

〈HF|
[
[ch3ch4 ]JM , [c

†
h′4
c†h′3

]JM
]
|HF〉

= −δJJ ′δMM ′ [Nh3h4(J)]2
[
δh3h′3δh4h′4(−1)j3+j4−J − δh3h′4δh4h′3

]
. (2.91)

Now we substitute (2.90) and (2.91) into (2.88). It is easy to deduce that the
second term in (2.90) contributes only if p1 = p2 = p′1 = p′2 and if this is the
case, it gives the same contribution as the first term and this is compensated by
the normalization factor [Np1p2(J)]2, which is equal to 1/2 in this case and 1 in
other cases. The situation in (2.91) is analogous. Thus the substitution yields
the ppRPA orthonormality relation

〈A+ 2, ν; JM |A+ 2, ν ′; JM〉 =
∑
p1≤p2

Xν∗
p1p2

Xν′

p1p2
−
∑
h3≤h4

Y ν∗
h3h4

Y ν′

h3h4
= δνν′ , (2.92)

which contains the ppRPA normalization condition

〈A+ 2, ν; JM |A+ 2, ν; JM〉 =
∑
p1≤p2

|Xν
p1p2
|2 −

∑
h3≤h4

|Y ν
h3h4
|2 = 1. (2.93)
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In the case of the hhRPA, the derivation of the orthonormality and normalization
relations is analogous and the results are

〈A− 2, ν; JM |A− 2, ν ′; JM〉 =
∑
h1≤h2

Xν∗
h1h2

Xν′

h1h2
−
∑
p3≤p4

Y ν∗
p3p4

Y ν′

p3p4
= δνν′ , (2.94)

〈A− 2, ν; JM |A− 2, ν; JM〉 =
∑
h1≤h2

|Xν
h1h2
|2 −

∑
p3≤p4

|Y ν
p3p4
|2 = 1. (2.95)

2.4 Electromagnetic transitions within ppRPA

and hhRPA

In this section we derive the formula for the reduced probability of an electric
transition of multipolarity J from the ground state with the angular momentum
and parity 0+ to some excited state with angular momentum J (in Section 2.2, it
is shown that the angular momentum of the final state has to be equal to the mul-
tipolarity of the transition) within the ppRPA and hhRPA. The relation (2.28),
in which the angular momentum projection M is arbitrary, is still valid, but the
final state |νf ; JM〉 is a ppRPA or hhRPA phonon as well as the ground state
|νgs; 00〉, which is the lowest 0+ phonon.

Let us start with the ppRPA case. We have

|νf ; JM〉 = Q†νf |A, 0〉 =

(∑
p1≤p2

X
νf
p1p2 [c

†
p1
c†p2 ]JM −

∑
h3≤h4

Y
νf
h3h4

[c†h4c
†
h3

]JM

)
|A, 0〉

and

|νgs; 00〉 = Q†νgs|A, 0〉 =

∑
p′1≤p′2

X
νgs
p′1p
′
2
[c†p′1

c†p′2
]00 −

∑
h′3≤h′4

Y
νgs
h′3h
′
4
[c†h′4

c†h′3
]00

 |A, 0〉.
At first, we calculate the commutator [Qν , Q

†
ν′ ], where (see the relation (2.47))

Qν =
∑
p1≤p2

Xν∗
p1p2

(−1)j1+j2−J [cp2cp1 ]JM −
∑
h3≤h4

Y ν∗
h3h4

(−1)j3+j4−J [ch3ch4 ]JM . (2.96)

Using the relation

[AB,CD] = A{B,C}D − AC{B,D}+ {A,C}DB − C{A,D}B (2.97)

we obtain

[Qν , Q
†
ν′ ] =

∑
p1≤p2

∑
p′1≤p′2

Xν∗
p1p2

Xν′

p′1p
′
2
(−1)j1+j2−J

[
[cp2cp1 ]JM , [c

†
p′1
c†p′2

]J ′M ′
]

+
∑
h3≤h4

∑
h′3≤h′4

Y ν∗
h3h4

Y ν′

h′3h
′
4
(−1)j3+j4−J

[
[ch3ch4 ]JM , [c

†
h′4
c†h′3

]J ′M ′
]

≈
∑
p1≤p2

∑
p′1≤p′2

Xν∗
p1p2

Xν′

p′1p
′
2
(−1)j1+j2−J〈HF|

[
[cp2cp1 ]JM , [c

†
p′1
c†p′2

]J ′M ′
]
|HF〉

+
∑
h3≤h4

∑
h′3≤h′4

Y ν∗
h3h4

Y ν′

h′3h
′
4
(−1)j3+j4−J〈HF|

[
[ch3ch4 ]JM , [c

†
h′4
c†h′3

]J ′M ′
]
|HF〉,
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where another aspect of the quasi-boson approximation, namely replacing the
commutator by its HF expectation value, was applied (see [15]). Comparing this
with the relation (2.88) we find out that

[Qν , Q
†
ν′ ] ≈ δνν′ . (2.98)

The matrix element in the relation (2.28) is

〈νf ; JM |M (el)
JM |νgs; 00〉 = 〈A, 0|QνfM

(el)
JMQ

†
νgs|A, 0〉

= 〈A, 0|Qνf [M
(el)
JM , Q

†
νgs ]|A, 0〉+ 〈A, 0|QνfQ

†
νgsM

(el)
JM |A, 0〉,

where the second term is

〈A, 0|Q†νgsQνfM
(el)
JM |A, 0〉 = 0 (2.99)

because of the commutation relation (2.98). Since Qνf |A, 0〉 = 0, we can write

〈νf ; JM |M (el)
JM |νgs; 00〉 =〈A, 0|

[
Qνf , [M

(el)
JM , Q

†
νgs ]
]
|A, 0〉

≈〈HF|
[
Qνf , [M

(el)
JM , Q

†
νgs ]
]
|HF〉

=〈HF|Qνf [M
(el)
JM , Q

†
νgs ]|HF〉 − 〈HF|[M (el)

JM , Q
†
νgs ]Qνf |HF〉

=〈HF|QνfM
(el)
JMQ

†
νgs|HF〉 − 〈HF|QνfQ

†
νgsM

(el)
JM |HF〉

− 〈HF|M (el)
JMQ

†
νgsQνf |HF〉+ 〈HF|Q†νgsM

(el)
JMQνf |HF〉,

(2.100)

where the quasi-boson approximation was used. Now we substitute the phonon
creation and annihilation operators into (2.100). Several terms of the phonon
operators don’t contribute (because [c†h′4

c†h′3
]00|HF〉 = 0, for instance). It can be

deduced that

〈νf ;JM |M (el)
JM |νgs; 00〉

=
∑
p1≤p2

∑
p′1≤p′2

X
νf∗
p1p2X

νgs
p′1p
′
2
(−1)j1+j2−J〈HF|[cp2cp1 ]JMM

(el)
JM [c†p′1

c†p′2
]00|HF〉

−
∑
p1≤p2

∑
p′1≤p′2

X
νf∗
p1p2X

νgs
p′1p
′
2
(−1)j1+j2−J〈HF|[cp2cp1 ]JM [c†p′1

c†p′2
]00M

(el)
JM |HF〉

−
∑
h3≤h4

∑
h′3≤h′4

Y
νf∗
h3h4

Y
νgs
h′3h
′
4
(−1)j3+j4−J〈HF|M (el)

JM [c†h′4
c†h′3

]00[ch3ch4 ]JM |HF〉

+
∑
h3≤h4

∑
h′3≤h′4

Y
νf∗
h3h4

Y
νgs
h′3h
′
4
(−1)j3+j4−J〈HF|[c†h′4c

†
h′3

]00M
(el)
JM [ch3ch4 ]JM |HF〉. (2.101)

Let us suppose that the valence particles are protons (for neutrons the deriva-

tion is analogous). Then the substitution of M
(el)
JM given by (2.30) into the matrix
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element in the first term in (2.101) yields

〈HF|[ap2ap1 ]JMM
(el)
JM [a†p′1

a†p′2
]00|HF〉

=e(eff)
p Np1p2(J)Np′1p′2(0)

∑
m1m2
m′1m

′
2

(j2m2j1m1|JM)(j′1m
′
1j
′
2m
′
2|00)

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|aπ2aπ1a†αaβa
†
π′1
a†π′2
|HF〉

+ e(eff)
n Np1p2(J)Np′1p′2(0)

∑
m1m2
m′1m

′
2

(j2m2j1m1|JM)(j′1m
′
1j
′
2m
′
2|00)×

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|aπ2aπ1b†αbβa
†
π′1
a†π′2
|HF〉.

If we compare this with (2.35) and use the relation (2.5), we find out that this is
equal to the result (2.36), valid for electromagnetic transitions within the ppTDA,
multiplied by (−1)j1+j2−J , except that the indices p3 and p3 are replaced with p′1
and p′2.

The matrix element in the last term in (2.101) is

〈HF|[a†h′4a
†
h′3

]00M
(el)
JM [ah3ah4 ]JM |HF〉

=e(eff)
p Nh3h4(J)Nh′3h′4(0)

∑
m3m4
m′3m

′
4

(j3m3j4m4|JM)(j′4m
′
4j
′
3m
′
3|00)

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|a†η′4a
†
η′3
a†αaβaη3aη4|HF〉,

(2.102)

where we skipped the neutron part of the electric multipole operator M
(el)
JM be-

cause, similarly as in the case of electromagnetic transitions within the ppTDA,
it gives zero contribution due to the orthogonality of Clebsch-Gordan coeffi-
cients (1.49). Using the anticommutation relations (1.17) one gets

〈HF|a†η′4a
†
η′3
a†αaβaη3aη4 |HF〉 = δη4αδη′3βδη′4η3 + δη3αδη′4βδη′3η4 − δη3αδη′3βδη′4η4

− δη4αδη′4βδη′3η3 + δαβδη′3η3δη′4η4θ(εF − εα)− δαβδη′3η4δη′4η3θ(εF − εα), (2.103)

where the last two terms don’t contribute because of the relation (1.49). Substi-
tution of (2.103) and (j3m3j4m4|JM) = (−1)j3+j4−J(j4m4j3m3|JM) into (2.102)
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yield

〈HF|[a†h′4a
†
h′3

]00M
(el)
JM [ah3ah4 ]JM |HF〉 = (−1)j3+j4−Je(eff)

p Nh3h4(J)Nh′3h′4(0)×[
δh′4h3

1√
2j′3 + 1

〈h4||rJYJ ||h′3〉
∑
m3m4
m′3

(j4m4j3m3|JM)(j3m3j
′
3m
′
3|00)(j′3m

′
3JM |j4m4)

+δh′3h4
1√

2j′4 + 1
〈h3||rJYJ ||h′4〉

∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j4m4|00)(j′4m

′
4JM |j3m3)

−δh′4h4
1√

2j′3 + 1
〈h3||rJYJ ||h′3〉

∑
m3m4
m′3

(j4m4j3m3|JM)(j4m4j
′
3m
′
3|00)(j′3m

′
3JM |j3m3)

−δh′3h3
1√

2j′4 + 1
〈h4||rJYJ ||h′4〉

∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j3m3|00)(j′4m

′
4JM |j4m4)

]

The matrix element in the second term in (2.101) is (as in the previous case,

the neutron part of M
(el)
JM is omitted)

〈HF|[ap2ap1 ]JM [a†p′1
a†p′2

]00M
(el)
JM |HF〉

=Np1p2(J)Np′1p′2(0)
∑
m1m2
m′1m

′
2

(j2m2j1m1|JM)(j′1m
′
1j
′
2m
′
2|00)

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|aπ2aπ1a
†
π′1
a†π′2

a†αaβ|HF〉,

with

〈HF|aπ2aπ1a
†
π′1
a†π′2

a†αaβ|HF〉 = δαβδπ1π′1δπ2π′2θ(εF − εα)− δαβδπ1π′2δπ2π′1θ(εF − εα),

which gives zero contribution due to the relation (1.49). Thus

〈HF|[ap2ap1 ]JM [a†p′1
a†p′2

]00M
(el)
JM |HF〉 = 0. (2.104)

Similarly, we find out that the matrix element in the third term in (2.101) is

〈HF|M (el)
JM [a†h′4

a†h′3
]00[ah3ah4 ]JM |HF〉 = 0. (2.105)
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Substitution of all the matrix elements into (2.101) yields the final result

〈νf ; JM |M (el)
JM |νgs; 00〉 = e(eff)

p

∑
p1≤p2

∑
p′1≤p′2

X
νf∗
p1p2X

νgs
p′1p
′
2
Np1p2(J)Np′1p′2(0)×

[
δp1p′1

1√
2j′2 + 1

〈p2||rJYJ ||p′2〉
∑
m1m2
m′2

(j1m1j2m2|JM)(j1m1j
′
2m
′
2|00)(j′2m

′
2JM |j2m2)

+δp2p′2
1√

2j′1 + 1
〈p1||rJYJ ||p′1〉

∑
m1m2
m′1

(j1m1j2m2|JM)(j′1m
′
1j2m2|00)(j′1m

′
1JM |j1m1)

−δp1p′2
1√

2j′1 + 1
〈p2||rJYJ ||p′1〉

∑
m1m2
m′1

(j1m1j2m2|JM)(j′1m
′
1j1m1|00)(j′1m

′
1JM |j2m2)

−δp2p′1
1√

2j′2 + 1
〈p1||rJYJ ||p′2〉

∑
m1m2
m′2

(j1m1j2m2|JM)(j2m2j
′
2m
′
2|00)(j′2m

′
2JM |j1m1)

]

+e(eff)
p

∑
h3≤h4

∑
h′3≤h′4

Y
νf∗
h3h4

Y
νgs
h′3h
′
4
N h3h4(J)Nh′3h′4(0)×

[
δh′4h3

1√
2j′3 + 1

〈h4||rJYJ ||h′3〉
∑
m3m4
m′3

(j4m4j3m3|JM)(j3m3j
′
3m
′
3|00)(j′3m

′
3JM |j4m4)

+δh′3h4
1√

2j′4 + 1
〈h3||rJYJ ||h′4〉

∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j4m4|00)(j′4m

′
4JM |j3m3)

−δh′4h4
1√

2j′3 + 1
〈h3||rJYJ ||h′3〉

∑
m3m4
m′3

(j4m4j3m3|JM)(j4m4j
′
3m
′
3|00)(j′3m

′
3JM |j3m3)

−δh′3h3
1√

2j′4 + 1
〈h4||rJYJ ||h′4〉

∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j3m3|00)(j′4m

′
4JM |j4m4)

]
(2.106)

where, similarly as in (2.36), the sums of the products of the Clebsch-Gordan
coefficients can be reduced to sums with only one summation index. This result
is valid also for valence neutrons except that the effective charge e

(eff)
p is replaced

with e
(eff)
n . We see that it reduces to the result (2.36) valid for electromagnetic

transitions within the ppTDA, if the amplitudes Y νf , Y νgs are zero.
Now we proceed to analogous derivation of the matrix element

〈νf ; JM |M (el)
JM |νgs; 00〉, where the final state and the ground state are hhRPA

phonons

|νf ; JM〉 = Q†νf |A, 0〉 =

(∑
h1≤h2

X
νf
h1h2

[h†h1h
†
h2

]JM −
∑
p3≤p4

Y
νf
p3p4 [h

†
p4
h†p3 ]JM

)
|A, 0〉,

|νgs; 00〉 = Q†νgs|A, 0〉 =

∑
h′1≤h′2

X
νgs
h′1h
′
2
[h†h′1

h†h′2
]00 −

∑
p′3≤p′4

Y
νgs
p′3p
′
4
[h†p′4

h†p′3
]00

 |A, 0〉.
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As in the ppRPA case, it holds:

[Qν , Q
†
ν′ ] ≈ δνν′ . (2.107)

Therefore, as in the ppRPA case, we have

〈νf ; JM |M (el)
JM |νgs; 00〉 ≈〈HF|QνfM

(el)
JMQ

†
νgs|HF〉 − 〈HF|QνfQ

†
νgsM

(el)
JM |HF〉

− 〈HF|M (el)
JMQ

†
νgsQνf |HF〉+ 〈HF|Q†νgsM

(el)
JMQνf |HF〉,

(2.108)

where (see the relation (2.47))

Qνf =
∑
h1≤h2

X
νf∗
h1h2

(−1)j1+j2−J [hh2hh1 ]JM −
∑
p3≤p4

Y
νf∗
p3p4(−1)j3+j4−J [hp3hp4 ]JM .

Now we substitute the phonon creation and annihilation operators into (2.108).
Several terms of the phonon operators don’t contribute (because [h†p′4

h†p′3
]00|HF〉 =

0, for instance). It can be deduced that

〈νf ;JM |M (el)
JM |νgs; 00〉

=
∑
h1≤h2

∑
h′1≤h′2

X
νf∗
h1h2

X
νgs
h′1h
′
2
(−1)j1+j2−J〈HF|[hh2hh1 ]JMM

(el)
JM [h†h′1

h†h′2
]00|HF〉

−
∑
h1≤h2

∑
h′1≤h′2

X
νf∗
h1h2

X
νgs
h′1h
′
2
(−1)j1+j2−J〈HF|[hh2hh1 ]JM [h†h′1

h†h′2
]00M

(el)
JM |HF〉

−
∑
p3≤p4

∑
p′3≤p′4

Y
νf∗
p3p4Y

νgs
p′3p
′
4
(−1)j3+j4−J〈HF|M (el)

JM [h†p′4
h†p′3

]00[hp3hp4 ]JM |HF〉

+
∑
p3≤p4

∑
p′3≤p′4

Y
νf∗
p3p4Y

νgs
p′3p
′
4
(−1)j3+j4−J〈HF|[h†p′4h

†
p′3

]00M
(el)
JM [hp3hp4 ]JM |HF〉 (2.109)

Similarly as in the ppRPA case,

〈HF|[hh2hh1 ]JM [h†h′1
h†h′2

]00M
(el)
JM |HF〉 ∝ δJ0δM0 = 0, (2.110)

〈HF|M (el)
JM [h†p′4

h†p′3
]00[hp3hp4 ]JM |HF〉 ∝ δJ0δM0 = 0 (2.111)

and 〈HF|[hh2hh1 ]JMM
(el)
JM [h†h′1

h†h′2
]00|HF〉 is equal to the result (2.41), valid for the

electromagnetic transitions within hhTDA, multiplied by (−1)j1+j2−J except that
the indices h3 and h4 are replaced with h′1 and h′2.

Now we calculate the matrix element in the last term in (2.109). We substitute

the electric multipole operator M
(el)
JM given by (2.30) into this matrix element and

suppose that the states p3, p4, p
′
3 and p′4 are proton states (for neutron states the

derivation is analogous). As in the previous derivations, we omit the neutron part

of M
(el)
JM , because it gives zero contribution due to the relation (1.49), and obtain

〈HF|[hπp′4
†hπp′3

†]00M
(el)
JM [hπp3h

π
p4

]JM |HF〉

=e(eff)
p Np3p4(J)Np′3p′4(0)

∑
m3m4
m′3m

′
4

(j3m3j4m4|JM)(j′4m
′
4j
′
3m
′
3|00)

×
∑
αβ

1√
2jb + 1

(jbmβJM |jamα)〈a||rJYJ ||b〉〈HF|hππ′4
†hππ′3

†a†αaβh
π
π3
hππ4|HF〉,

(2.112)
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with

〈HF|hππ′4
†hππ′3

†a†αaβh
π
π3
hππ4|HF〉

=(−1)j3+m3+j4+m4+j′3+m′3+j′4+m′4〈HF|a−π′4a−π′3a
†
αaβa

†
−π3a

†
−π4|HF〉

=(−1)j3+m3+j4+m4+j′3+m′3+j′4+m′4

(
δ−π′4αδ−π4βδπ′3π3 + δ−π′3αδ−π3βδπ′4π4

− δ−π′4αδ−π3βδπ′3π4 − δ−π′3αδ−π4βδπ′4π3 + δαβδπ′3π3δπ′4π4θ(εF − εα)

− δαβδπ′3π4δπ′4π3θ(εF − εα)
)
, (2.113)

where, as in the previous derivations, the last two terms give zero contribution
due to the relation (1.49). Thus substitution of (2.113) into (2.112) yields

〈HF|[hπp′4
†hπp′3

†]00M
(el)
JM [hπp3h

π
p4

]JM |HF〉 = (−1)j3+j4−Je(eff)
p Np3p4(J)Np′3p′4(0)

×
[
δp′3p3

1√
2j4 + 1

〈p′4||rJYJ ||p4〉

×
∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j3m3|00)(j4 −m4JM |j′4 −m′4)(−1)j4+m4+j′4+m′4

+ δp′4p4
1√

2j3 + 1
〈p′3||rJYJ ||p3〉

×
∑
m3m4
m′3

(j4m4j3m3|JM)(j4m4j
′
3m
′
3|00)(j3 −m3JM |j′3 −m′3)(−1)j3+m3+j′3+m′3

− δp′3p4
1√

2j3 + 1
〈p′4||rJYJ ||p3〉

×
∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j4m4|00)(j3 −m3JM |j′4 −m′4)(−1)j3+m3+j′4+m′4

− δp′4p3
1√

2j4 + 1
〈p′3||rJYJ ||p4〉

×
∑
m3m4
m′3

(j4m4j3m3|JM)(j3m3j
′
3m
′
3|00)(j4 −m4JM |j′3 −m′3)(−1)j4+m4+j′3+m′3

]
.
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Substitution of all the matrix elements into (2.109) yields the final result

〈νf ; JM |M (el)
JM |νgs; 00〉 = e(eff)

p

∑
h1≤h2

∑
h′1≤h′2

X
νf∗
h1h2

X
νgs
h′1h
′
2
Nh1h2(J)Nh′1h′2(0)

×
[
δh2h′1

1√
2j1 + 1

〈h′2||rJYJ ||h1〉

×
∑
m1m2
m′2

(j1m1j2m2|JM)(j2m2j
′
2m
′
2|00)(j1 −m1JM |j′2 −m′2)(−1)j1+m1+j′2+m′2

+ δh1h′2
1√

2j2 + 1
〈h′1||rJYJ ||h2〉

×
∑
m1m2
m′1

(j1m1j2m2|JM)(j′1m
′
1j1m1|00)(j2 −m2JM |j′1 −m′1)(−1)j2+m2+j′1+m′1

− δh2h′2
1√

2j1 + 1
〈h′1||rJYJ ||h1〉

×
∑
m1m2
m′1

(j1m1j2m2|JM)(j′1m
′
1j2m2|00)(j1 −m1JM |j′1 −m′1)(−1)j1+m1+j′1+m′1

− δh1h′1
1√

2j2 + 1
〈h′2||rJYJ ||h2〉

×
∑
m1m2
m′2

(j1m1j2m2|JM)(j1m1j
′
2m
′
2|00)(j2 −m2JM |j′2 −m′2)(−1)j2+m2+j′2+m′2

]

+ e(eff)
p

∑
p3≤p4

∑
p′3≤p′4

Y
νf∗
p3p4Y

νgs
p′3p
′
4
Np3p4(J)Np′3p′4(0)

×
[
δp′3p3

1√
2j4 + 1

〈p′4||rJYJ ||p4〉

×
∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j3m3|00)(j4 −m4JM |j′4 −m′4)(−1)j4+m4+j′4+m′4

+ δp′4p4
1√

2j3 + 1
〈p′3||rJYJ ||p3〉

×
∑
m3m4
m′3

(j4m4j3m3|JM)(j4m4j
′
3m
′
3|00)(j3 −m3JM |j′3 −m′3)(−1)j3+m3+j′3+m′3

− δp′3p4
1√

2j3 + 1
〈p′4||rJYJ ||p3〉

×
∑
m3m4
m′4

(j4m4j3m3|JM)(j′4m
′
4j4m4|00)(j3 −m3JM |j′4 −m′4)(−1)j3+m3+j′4+m′4

− δp′4p3
1√

2j4 + 1
〈p′3||rJYJ ||p4〉

×
∑
m3m4
m′3

(j4m4j3m3|JM)(j3m3j
′
3m
′
3|00)(j4 −m4JM |j′3 −m′3)(−1)j4+m4+j′3+m′3

]
,

(2.114)
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where, as in the previous cases, the sums of the products of Clebsch-Gordan
coefficients can be reduced to sums with only one summation index. This re-
sult is valid also for transitions between neutron hhRPA eigenstates except that
e

(eff)
p is replaced with e

(eff)
n . We see that it reduces to the result (2.41) valid for

electromagnetic transitions within the hhTDA, if the amplitudes Y νf , Y νgs are
zero.
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3. Numerical calculations

In this chapter we present the results of numerical calculations of energy spectra
and reduced transition probabilities of electric type performed for selected nuclei
within the TDA, RPA, ppTDA, hhTDA, ppRPA and hhRPA.

The harmonic oscillator wave functions (see Appendix A) have been used as
the initial basis for solving the HF equations. We have used the program HFB DD
(Hartree-Fock-Bogoliubov Code with Density Dependent Interaction) [38], which
represents a numerical implementation of the HF method and requires the
nucleon-nucleon interaction matrix elements in the oscillator basis as the input.

We have used the realistic nucleon-nucleon potential NNLOopt [3] with pa-
rameters optimized to minimize the effect of three-body interactions. The inter-
action matrix elements were generated by the computer program vrenorm.exe,
which belongs to the package CENS (a Computational Environment for Nuclear
Structure) [39]. The input parameters of this program are ~ω, which is the pa-
rameter of the oscillator basis, and lmax, nmax, which determine the size of the
basis and represent the maximal values of the quantum numbers l and n in the
relation (A.4), which implies that Nmax = lmax = 2(nmax − 1). The parameter
Nmax is the maximal value of the quantum number N and thus determines the
number of the used single-particle states.

The program HFB DD provide all data needed for further calculations,
namely the information about the HF single-particle basis, including the single-
particle energies, and the transformed angular-momentum-coupled two-body in-
teraction matrix elements in the HF basis.

For the description of excitation probability of the nucleus as a function of
the excitation energy E it is convenient to introduce so called strength function.
The strength function for given type of the excitation is defined as the energy
distribution of the excitation probability

S0(Xλ) ≡
∑
ν

B(Xλ; 0+
gs → ν)δ(E − Eν), (3.1)

where the summation goes through all excited states |ν〉 with excitation energy
Eν calculated in the framework of the used model (e. g. TDA and RPA) and
|0+

gs〉 is the model ground state of a given eve-even nucleus. In order to simu-
late a finite width and effects of omitted configurations the delta-function in the
definition (3.1) is usually substituted by the Lorentzian (see [40])

ξ∆(E − Eν) =
1

2π

∆

(E − Eν)2 + ∆2

4

, (3.2)

which satisfies
lim
∆→0

ξ∆(E − Eν) = δ(E − Eν). (3.3)

The arbitrary parameter ∆ characterizes the width of the Lorentzian.

3.1 Calculations within TDA and RPA

In this section we compare results of calculations performed for 16O, 40Ca and
208Pb within the TDA and RPA. The TDA calculations were performed by the
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program HFB DD. In order to perform the RPA calculations, we have developed
a new computer program. This program forms a basis of all possible ph states for
a given angular momentum and parity from the HF single-particle states provided
by the program HFB DD in the given valence space. Then it constructs the TDA
matrix using the formulae (1.50), (1.57), (1.60) and (1.61) and the correlation ma-
trix using the formulae (1.88), (1.92) and (1.93) in this basis. Then it solves the
RPA equations using the method described in Section 1.4, which is based on
the equations (1.102), (1.103) and (1.104). If the decomposition (1.102) fails,
the program doesn’t compute the phonon amplitudes, but it still computes the
eigenenergies solving the eigenvalue problem (1.101). The factorization (1.102),
the diagonalization and the matrix inverse are performed by subroutines from
the package LAPACK (Linear Algebra Package) [41]. This program reproduces
the same results as the TDA calculations performed by the program HFB DD,
concerning the eigenenergies and the structure of the phonons, for vanishing cor-
relation matrix. Thus we assume that the program works correctly. All TDA and
RPA calculations have been performed in complete valence space for the given
Nmax.

The program computes also the reduced probabilities of electric transitions
from the ground state using the formulae (1.105) and (1.106). The reduced single-

particle matrix elements 〈a||M (X)
J ||b〉 of the transition operator are provided by

the program HFB DD. The electric multipole operator in the long-wave approx-
imation is

M
(el)
JM =

A∑
i=1

eir
J
i YJM(θi, ϕi). (3.4)

Since the nucleon charge

ei = e

(
1

2
− (tz)i

)
, (3.5)

where (tz)i is the isospin projection, the electric multipole operator can be de-
composed to

M
(el)
JM =

e

2

A∑
i=1

rJi YJM(θi, ϕi)− e
A∑
i=1

(tz)ir
J
i YJM(θi, ϕi). (3.6)

The first term is the isoscalar operator and the second one is the isovector oper-
ator. Our RPA program computes the reduced matrix element 〈ν||M (X)

J ||RPA〉π
given by (1.106), where a and b are only proton states, and 〈ν||M (X)

J ||RPA〉ν
given by (1.106), where a and b are only neutron states. Then it computes the
isoscalar reduced transition probability of multipolarity J as the square of the
absolute value of

〈ν||M (X)
J ||RPA〉is =

1

2

(
〈ν||M (X)

J ||RPA〉π + 〈ν||M (X)
J ||RPA〉ν

)
, (3.7)

the isovector reduced transition probability as the square of the absolute value of

〈ν||M (X)
J ||RPA〉iv =

1

2

(
〈ν||M (X)

J ||RPA〉π − 〈ν||M (X)
J ||RPA〉ν

)
(3.8)

and the physical reduced transition probability as the square of the absolute value
of 〈ν||M (X)

J ||RPA〉π.
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The spectra of the states of 16O, 40Ca and 208Pb calculated within the TDA
and RPA for ~ω = 16.3 MeV in the case of 16O and 40Ca and ~ω = 11 MeV in
the case of 208Pb1 and for different values of Nmax are shown in Fig. 3.1, 3.2 and
3.3 together with the experimental values taken from [43]. The figures contain
five lowest states with positive and negative parity and the angular momenta
from 0 to 4. We can see that the results of the TDA and RPA calculations are
very similar except that the excitation energies of the lowest 3− states calculated
within the RPA are lower in comparison to the TDA values, which agrees with
the results of Gillet et al. [44] (see Fig. 7 therein), who performed calculations for
208Pb. This is a consequence of a strong enhancement of the collectivity of the
lowest 3− state in the RPA. Another aspect of this enhancement is a significant
increase of the transition probability from the ground state to the lowest 3− state
(see below). Our results give also a large energy gap between the ground and the
first excited state characteristic for doubly magic nuclei, if we don’t consider the
lowest 1− state, which is a spurious state corresponding to the nucleus center-
of-mass motion. We can also see that the configuration space corresponding to
Nmax = 14 is not sufficient to obtain converged results. However, a trend of a
convergence can be observed. One can notice a significant disagreement with the
experimental data.

In some cases, the RPA gives imaginary energy of the lowest 1− state. The
energy of this spurious state should be zero and in Fig. 3.4, 3.5 and 3.6 it is shown
that the absolute value of the energy of the lowest 1− state calculated within the
RPA approaches zero with increasing Nmax. A similar behavior can be noticed in
the results of RPA calculations performed by Paar et al. [45] using the realistic
interaction Argonne V18 [46] renormalized by the unitary correlation operator
method (UCOM) (see references therein). The calculated excitation energies
depend also on ~ω, but this dependence becomes less significant with increasing
Nmax.

The excitation energies of the lowest 3− states in 16O, 40Ca and 208Pb calcu-
lated within the TDA and RPA are shown in Table 3.1 together with the exper-
imental values taken from [43]. We can see that the values calculated within the
RPA are closer to the experimental values than the TDA results. Thus the RPA
leads to better agreement with the experiment concerning the collectivity of the
lowest 3− states, which can be seen also from the values of the reduced transition
probabilities (see below).

Now we proceed to present the results of calculations of the reduced proba-
bilities of the electric excitations of the ground state. The physical, isoscalar and
isovector E0, E1, E2 and E3 strength functions calculated within the TDA and
RPA for 16O, 40Ca and 208Pb with Nmax = 14 are shown in Fig. 3.7. 3.8, 3.9 and
3.10. We can see that the TDA and RPA results are very similar except that the
probability of the excitation to the lowest 3− state calculated within the RPA is
much larger than the TDA result and the corresponding peak is shifted due to the
energy shift discussed earlier. Thus the RPA leads to strong enhancement of the
collectivity of the lowest 3− state, which was already mentioned before. In the
case of 208Pb we observe an enhancement of the excitation probability calculated
within the RPA also in the case of the lowest 0+ and 2+ state. We can also see

1We have chosen the values of ~ω, for which we have observed fast convergence of the binding
energies, calculated within the HF method, with increasing Nmax (see [42]).
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Figure 3.1: The spectra of five lowest states of 16O with positive and negative
parity and the angular momenta from 0 to 4 calculated within the TDA and RPA
for ~ω = 16.3 MeV and different values of Nmax together with the experimental
values taken from [43]. The label i above the lowest 1− level means that the
corresponding energy is imaginary. This level corresponds to the spurious state
connected with the center-of-mass motion.

that the RPA leads to an enhancement of the E2 strength function for 208Pb at
the excitation energy close to 20 MeV.

Strong collectivity of the lowest 3− RPA phonon can be seen also from the
values of the corresponding phonon amplitudes. These amplitudes, calculated
for 16O and Nmax = 14 are shown in Table 3.2. We can see a considerable size
of some Y amplitudes and a fragmentation into several evenly sized amplitudes.
This fragmentation leads to collectivity, which means that several ph components
act in a coherent way to increase the transition probability.

All strength functions for 16O were calculated for ~ω = 16.3 MeV except the
E1 strength function. This one was calculated for ~ω = 26 MeV because for
~ω = 16.3 MeV and Nmax = 14 the factorization (1.102) in our RPA program
fails in the case of the angular momentum and parity 1−, which means that we
were unable to calculate the amplitudes of the 1− RPA phonons, which makes
the calculation of B(el 1; 0+

gs → 1−) impossible. The E1 strength function for
16O calculated within the RPA doesn’t contain the peak corresponding to the
excitation to the lowest 1− state because the energy of the lowest 1− RPA phonon
calculated for ~ω = 26 MeV and Nmax = 14 is imaginary, which makes the
calculations of the corresponding phonon amplitudes using the equation (1.104)
impossible, which means that we were not able to calculate the corresponding
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Figure 3.2: The same s in Fig. 3.1, but for 40Ca. The oscillator parameter
~ω = 16.3 MeV.
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Figure 3.3: The same s in Fig. 3.1, but for 208Pb. The oscillator parameter
~ω = 11 MeV.
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Figure 3.4: The dependence of the absolute value of the excitation energy of the
lowest 1− state in 16O calculated within the RPA on Nmax for different ~ω.
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Figure 3.5: The same s in Fig. 3.4, but for 40Ca.

6 8 1 0 1 2 1 4
0 , 0
0 , 5
1 , 0
1 , 5
2 , 0
2 , 5
3 , 0

|E(
1- 1)| 

[M
eV

]

N m a x

 � �  =  1 1  M e V

Figure 3.6: The same s in Fig. 3.4, but for 208Pb.
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Table 3.1: The excitation energies of the lowest 3− states in 16O, 40Ca and 208Pb
calculated within the TDA and RPA for Nmax = 14 together with the experimen-
tal values taken from [43]. The used values of ~ω are also shown.

nucleus ~ω TDA value RPA value experiment
[MeV] [keV] [keV] [keV]

16O 16.3 10951.74 6797.57 6129.89± 0.04
40Ca 16.3 8878.86 5122.47 3736.69± 0.05
208Pb 11 8603.695 6820.018 2614.522± 0.010

Table 3.2: The amplitudes of the lowest 3− RPA phonon calculated for 16O,
~ω = 16.3 MeV and Nmax = 14. Only amplitudes with the absolute value greater
than 0.1 are shown. The first three columns contain the information about the
ph configurations (we use the spectroscopic notation - see Appendix A).

excited hole particle X amplitude Y amplitude
nucleon state state
proton 1p3/2 1d5/2 -0.230 0.122
proton 1p3/2 1d3/2 0.164 -0.0874
proton 1p3/2 2d3/2 -0.207 0.123
proton 1p3/2 3d3/2 0.126 -0.0846
proton 1p1/2 1d5/2 0.668 -0.258
proton 1p1/2 2d5/2 -0.178 0.104
neutron 1p3/2 1d5/2 0.125 0.125
neutron 1p3/2 2d3/2 0.118 0.118
neutron 1p1/2 1d5/2 -0.266 -0.266

B(el 1; 0+
gs → 1−1 ). However, this peak corresponds to the spurious isoscalar E1

excitation connected with the nucleus center-of-mass motion, which is the only
isoscalar E1 excitation (within the long-wave approximation) and can be removed
(in the case of nuclei with Z = N) from the physical E1 strength function by
adopting the effective charges (see [47])

e(eff)
p =

N

A
e , e(eff)

n = −Z
A
e (3.9)

for the transition operator (3.4). In order to investigate the convergence with
increasing size of the configuration space the E3 strength functions for 16O, shown
in Fig. 3.8, were calculated for several values of Nmax. We can observe that with
increasing Nmax the probability of the excitation to the lowest 3− state calculated
within the TDA and RPA increases and then the convergence is achieved.

In order to reduce the spurious peak in the physical E1 strength function for
208Pb, we have calculated this strength function also with the effective charges
(3.9) adopted for the transition operator (3.4). The result is shown in Fig. 3.11.,
where the strength of the spurious state has been effectively subtracted from the
strength function.

Our isoscalar electric octupole strength functions for 40Ca and 208Pb calculated
within the RPA are in a qualitative agreement with those calculated by Liu and
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Figure 3.10: The physical, isoscalar and isovector E0, E1, E2 and E3 strength
functions for 208Pb calculated within the TDA (left panel) and RPA (right panel)
for ~ω = 11 MeV and Nmax = 14. Width of the Lorentzian ∆ = 0.5 MeV.
The bottom graphs contain inset graphs with smaller scale for S0(E3) to show a
detailed structure of the strength function.
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for the transition operator (3.4). Width of the Lorentzian ∆ = 0.5 MeV.

Brown [48] (see Fig. 6 therein) within the RPA using the HF basis and the Skyrme
interaction [49]. Their results show also a very strong excitation probability to
the lowest 3− state. Isoscalar monopole strength functions for 16O, 40Ca and
208Pb calculated by Blaizot, Gogny and Grammaticos [50] (see Fig. 3 therein)
are similar to our results.

The energy of centroid of a giant resonance Ē can be calculated as

Ē =

√
m1(Xλ)

m−1(Xλ)
, (3.10)

where
mk(Xλ) ≡

∑
ν

Ek
νB(Xλ; 0+

gs → ν) (3.11)

is the moment of the k-th order. According to Ref. [51], experimental energies of
centroids of the observed electric isoscalar giant monopole resonances (ISGMR)
are in the energy region 18-20 MeV for light nuclei (A < 50) and around 14 MeV
for heavy nuclei (A > 200). This is in reasonable agreement with our calculated
values shown in Table 3.3. The experimental energies of the centroids of the
electric isoscalar (ISGQR) and isovector (IVGQR) giant quadrupole resonances
can be approximated by expressions [47]

Ē(ISGQR)
exp (A) ≈ (61.0± 1.7)A−1/3 MeV, (3.12)

Ē(IV GQR)
exp (A) ≈ (59.2± 2.6)A−1/6 MeV (3.13)

obtained by the fitting to the experimental values of many spherical nuclei. Values
for 16O, 40Ca and 208Pb given by this formulae together with our results are shown
in Table 3.3. We can notice a reasonable agreement between the theoretical and
experimental values for 16O, but for heavier systems there is a difference of several
MeV.

Table 3.4 contains the reduced probabilities of electric excitations of multi-
polarity 3 from the ground state 0+

gs to the lowest 3− state calculated for 16O,
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Table 3.3: The energies of centroids of some giant resonances calculated in the
framework of the TDA (ĒTDA) and RPA (ĒRPA) for Nmax = 14 together with the
experimental values (Ēexp). The used values of ~ω are also shown.

nucleus ~ω type of giant ĒTDA ĒRPA Ēexp

[MeV] resonance [MeV] [MeV] [MeV]
16O 16.3 ISGMR 21.91 21.41 18-20
16O 16.3 ISGQR 28.30 28.37 24.21± 0.67
16O 16.3 IVGQR 41.74 41.41 37.3± 1.6

40Ca 16.3 ISGMR 21.99 21.45 18-20
40Ca 16.3 ISGQR 26.72 26.71 17.84± 0.50
40Ca 16.3 IVGQR 42.54 42.17 32.0± 1.4
208Pb 11 ISGMR 17.61 16.83 14
208Pb 11 ISGQR 15.55 13.73 10.30± 0.29
208Pb 11 IVGQR 31.13 30.47 24.3± 1.1

Table 3.4: The physical reduced probabilities B(el 3; 0+
gs → 3−1 ) of electric excita-

tions of multipolarity 3 from the ground state to the lowest 3− state calculated
for 16O, 40Ca and 208Pb within the TDA and RPA with Nmax = 14 together with
the experimental values taken from [52]. The values of ~ω used in the calculations
are also shown.

nucleus ~ω TDA value RPA value experiment
[MeV] [e2fm6] [e2fm6] [e2fm6]

16O 16.3 437 1199 1550± 12
40Ca 16.3 2288 11320 (204± 17) · 102

208Pb 11 42654 169145 (31± 10) · 104

40Ca and 208Pb within the TDA and RPA with Nmax = 14 together with the
experimental values taken from [52] determined from lifetime measurements. We
can see that the values of B(el 3; 0+

gs → 3−1 ) calculated within the RPA are much
closer to the experimental data than the TDA results. Thus the RPA gives better
agreement with the experiment concerning the strong collectivity of the lowest
3− states than the TDA.

Our values of B(el 3; 0+
gs → 3−1 ) for 16O and 208Pb calculated within the RPA

are similar to the results of RPA calculations performed by Krewald et al. [53]
(see Tables 3 and 5 therein) using self-consistent basis and Skyrme interaction.
Large values of B(el 3; 0+

gs → 3−1 ) for 208Pb have been calculated also by Ring
and Speth [54], [55], who have performed RPA calculations using the Migdal
interaction (see [24] and references therein) and phenomenological Woods-Saxon
basis. Their values are even 55 ·104 e2fm6 in [54] and 546 ·103 e2fm6 in [55]. Their
results overestimate the experimental value, whereas our result underestimates
it significantly (by factor 1.8). The claculations of the transition probabilities
between the ground state and the collective state 3−1 in 16O, 40Ca and 208Pb
performed by Blaizot and Gogny [56] show also that the values obtained in the
RPA are much greater than those obtained in the TDA (see Table 7 therein).
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The results of our TDA and RPA calculations for 16O and 40Ca, especially the
behavior of the lowest 3− states concerning the enhancement of the collectivity,
are similar to results of TDA and RPA calculations performed by Suhonen [15]
using the so called surface delta interaction (SDI) [57]. Calculations of Gillet and
Sanderson [58], who have used a central effective interaction with a Gaussian ra-
dial dependence and phenomenological harmonic oscillator basis, have also shown
that the energy of the lowest 3− state in 40Ca calculated within the RPA is lower
and closer to the experimental value than the result obtained in the TDA (see
Table 2a therein). Similar result has been obtained by Blomqvist and Kuo [59],
who have used the Hamada-Johnston potential [60] and obtained the energy of
the state 3−1 in 40Ca equal to 5.57 MeV in the TDA and 3.37 MeV in the RPA.
Improvement of the description of the collective state 3−1 in 16O in the RPA was
also shown by Mavromatis et al. [61], who have used the Kuo-Brown effective
interaction [62] derived from the Hamada-Johnston potential and the oscillator
basis and calculated that the energy of the state 3−1 obtained in the RPA is lower
and closer to the experimental value than the TDA result (see Table 7 therein).

Giant dipole resonance is observed in photo-absorption experiments. The
dominant contribution to the photo-absorption cross section comes from the E1
transitions and all other contributions are much smaller and usually neglected.
Then the photo-absorption cross section σ is given by [63]

σ =
16π3α

9

∑
ν

EνB(el 1; 0+
gs → ν)δ(E − Eν), (3.14)

where α is the fine structure constant and, similarly as in the case of the strength
function (3.1), the delta-function is usually replaced with the Lorentzian (3.2).
The photo-absorption cross sections for 16O, 40Ca and 208Pb calculated within
the TDA and RPA are shown in Fig. 3.12, 3.13 and 3.14 together with experi-
mental data. Since in the isoscalar electric dipole strength function there are no
excitations except spurious zero energy E1 excitation, the photo-absorption cross
sections are calculated from the isovector E1 excitations. We can see that the
cross-sections calculated within the TDA and RPA are similar (the cross-sections
calculated within the RPA are reduced, but by a negligible amount) and they are
in a reasonable agreement with the experimental cross sections.

3.2 Calculations in the framework of ppTDA,

hhTDA, ppRPA and hhRPA

In this section we present results of calculations performed for 16O, 40Ca and
208Pb within the ppTDA, hhTDA, ppRPA and hhRPA. These calculations pro-
vide data describing nuclei with two protons or neutrons added to or removed
from the closed-shell nucleus. In order to perform these calculations, we have
developed two computer programs. These programs form bases of all possible
pp and hh states for a given angular momentum and parity from the HF single-
particle states provided by the program HFB DD in the given valence space.
The first program constructs the ppTDA and hhTDA matrices using the formu-
lae (2.7), (2.12), (2.15) and (2.21) in the corresponding bases, diagonalizes them
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Figure 3.12: The photo-absorption cross section for 16O calculated within the
TDA and RPA for ~ω = 26 MeV and Nmax = 14 together with the experimental
data taken from [64]. Width of the Lorentzian ∆ = 4 MeV.
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Figure 3.13: The same as in Fig. 3.12, but for 40Ca, ~ω = 16.3 MeV and
Nmax = 14. Experimental data taken from [65]. Width of the Lorentzian ∆ = 3
MeV.
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Figure 3.14: The same as in Fig. 3.12, but for 208Pb, ~ω = 11 MeV and
Nmax = 14. Experimental data taken from [66]. Width of the Lorentzian ∆ = 2
MeV.
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using a subroutine from LAPACK and provides the eigenenergies and eigenvec-
tors satisfying the orthonormality relation (2.23). The second program constructs
the ppRPA ”supermatrix” appearing in the ppRPA equations (2.53), where A is
the ppTDA matrix, C is the hhTDA matrix and the matrix B is given by (2.68),
and diagonalizes it using a subroutine from LAPACK for a general eigenvalue
problem, which yields excitation energies of ppRPA and hhRPA phonons (with
opposite sign in the case of hhRPA phonons). The program provides also the
correponding phonon amplitudes satisfying the orthonormality relations (2.92)
and (2.94). All calculations have been performed with the maximal possible va-
lence space for the given Nmax.

The programs compute also the reduced probabilities of electric transitions
from the ground state using the formulae (2.28) and (2.34), (2.36) in the case
of ppTDA, (2.39), (2.41) in the case of hhTDA, (2.106) in the case of ppRPA
and (2.114) in the case of hhRPA. The reduced single-particle matrix elements
〈a||rJYJ ||b〉 are provided by the program HFB DD.

The program performing the ppTDA and hhTDA calculations gives the same
results, concerning the excitation energies and the amplitudes of the eigenvectors,
as the quasiparticle TDA calculations performed by the program HFB DD, which
reduce effectively to the TDA, ppTDA and hhTDA calculations in the case of
closed-shell nuclei (see Appendix B). Thus we assume that the program works
correctly.

The spectra of the energy levels of the open-shell nuclei 18O, 18Ne, 14C, 14O,
42Ca, 42Ti, 38Ar, 38Ca, 210Pb, 210Po, 206Hg and 206Pb calculated in the framework
of the ppTDA, hhTDA, ppRPA and hhRPA applied to 16O, 40Ca and 208Pb for
Nmax = 14 are shown in Fig. 3.15, 3.16 and 3.17 together with the experimental
values taken from [43]. The energies of the lowest 0+ states have been set to zero
and the other energies are the excitation energies related to the these ground
states. The figures contain several low-lying states with positive and negative
parity and the angular momenta from 0 to 4.

We see that the results of the ppTDA and hhTDA calculations are very sim-
ilar to those obtained within the ppRPA and hhRPA. In the case of 18O, 18Ne
and 210Pb the spin and parity of the first and the second excited state is 2+ and
4+, respectively, which agrees with the experiment, and the corresponding excita-
tion energies calculated within the ppRPA are slightly closer to the experimental
values than the results obtained within the ppTDA as shown in Table 3.5. In
the case of 38Ar and 38Ca the calculations give the right spin and parity only for
the first excited state 2+

1 and, concerning the corresponding excitation energy,
the hhRPA gives again a slightly better agreement with the experiment than the
hhTDA as shown in Table 3.5. In the case of 42Ca and 42Ti only the ppRPA gives
the right spin and parity of the first excited state 2+

1 , while the energy of the state
2+

1 calculated within the ppTDA is below the energy of the ground state 0+
1 (it is

negative in Fig. 3.16 and Table 3.5). In the case of 14C and 14O the calculations
don’t give the right spins and parities of the lowest excited states. In the case of
210Po, 206Hg and 206Pb the calculated energies of the states 2+

1 and 4+
1 are below

the the energy of the ground state 0+
1 (they are negative and the ppRPA and

hhRPA values are less negative than the ppTDA and hhTDA values as shown
in Table 3.5) except the energy of the state 4+

1 in 206Hg calculated within the
hhRPA. The agreement with the experiment in the region of higher energies is
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Figure 3.15: The spectra of states of 18O, 18Ne, 14C and 14O calculated within the
ppTDA or hhTDA (the first column) and ppRPA or hhRPA (the second column)
for ~ω = 16.3 MeV and Nmax = 14 together with the experimental values taken
from [43] (the third column).

even worse.
In order to investigate the convergence with increasing Nmax, in the case of

18O we calculated the spectra for various values of Nmax. The result is shown in
Fig. 3.18. We can observe a trend of a convergence. The calculated excitation
energies depend also on ~ω, but this dependence becomes less significant with
increasing Nmax as shown in Fig. 3.19 which contains the excitation energies of
the states 0+

2 and 2+
2 in 18O calculated within the ppTDA for various ~ω and

Nmax as an example.
The low-lying part of our spectrum of 210Pb calculated within the ppTDA

is in a reasonable agreement with the results of similar calculations performed
by Ma and True [67] (see Fig. 3 therein), Freed and Rhodes [68] (see Fig. 3
therein), Klemt and Speth [69] (see Fig. 3 therein) and Herling and Kuo [70],
who performed ppTDA calculations using the Hamada-Johnston interaction and
obtained the excitation energy of the first excited state 2+

1 equal to 0.4 MeV
which is similar to our result. Concerning the low-lying part of the spectrum of
210Pb, our ppRPA calculations give results similar to results of ppRPA calcula-
tions performed by Vary and Ginocchio [71], who obtained the excitation energies
of two lowest excited states 2+

1 and 4+
1 equal to 0.648 MeV and 0.742 MeV, re-

spectively. The ppRPA calculations performed by Bouyssy and Vinh Mau [72]
with the Tabakin interaction give the low-lying part of the spectrum of 18O sim-
ilar to our result (see Fig. 4 therein). Their excitation energies of the states 2+

1
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Figure 3.16: The same s in Fig. 3.15, but for 42Ca, 42Ti, 38Ar and 38Ca. The
oscillator parameter ~ω = 16.3 MeV and Nmax = 14.
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Figure 3.17: The same as in Fig. 3.15, but for 210Pb, 210Po, 206Hg and 206Pb.
The oscillator parameter ~ω = 11 MeV and Nmax = 14.
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Figure 3.18: The spectra of five lowest states of 18O with positive and negative
parity and the angular momenta from 0 to 4 calculated within the ppTDA and
ppRPA for ~ω = 16.3 MeV and different values of Nmax.
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Table 3.5: The excitation energies of selected states in a sample of open-shell
nuclei calculated within the ppTDA, hhTDA, ppRPA and hhRPA for Nmax = 14
and corresponding ~ω together with the experimental values taken from [43].

nucleus ~ω state pp(hh)TDA pp(hh)RPA experiment
[MeV] value [keV] value [keV] [keV]

18O 16.3 2+
1 613.50 830.78 1982.07± 0.09

18O 16.3 4+
1 1492.25 1722.35 3554.84± 0.40

18Ne 16.3 2+
1 603.0 730.4 1887.3± 0.2

18Ne 16.3 4+
1 1650.3 1781.8 3376.2± 0.4

42Ca 16.3 2+
1 -220.57 207.91 1524.71± 0.03

42Ti 16.3 2+
1 -123.7 213.2 1554.6± 0.3

38Ar 16.3 2+
1 26.27 640.63 2167.64± 0.05

38Ca 16.3 2+
1 74.54 780.43 2213.13± 0.10

210Pb 11 2+
1 320.2 384.8 799.7± 0.1

210Pb 11 4+
1 740.5 853.4 1097.7± 1.0

210Po 11 2+
1 -658.551 -269.427 1181.398± 0.010

210Po 11 4+
1 -462.870 -32.906 1426.701± 0.014

206Hg 11 2+
1 -725.92 -205.75 1068.20± 0.20

206Pb 11 2+
1 -880.903 -496.945 803.054± 0.025

and 4+
1 are almost the same as ours. Many other pp and hh calculations were

performed in the past (see e. g. [73], [74], [75] for calculations in the lead region
and [76], [77]).

Now we proceed to present the results of our calculations of electric quadrupole
and octupole strength functions for some open-shell nuclei performed within the
ppTDA, hhTDA, ppRPA and hhRPA. The corresponding effective charges e

(eff)
p/n

have been determined by fitting so that the reduced transition probabilities from
the ground to the lowest 2+ or 3− state calculated within the ppRPA or hhRPA
agree with the experimental values. They are shown in Table 3.6 together with the
corresponding polarization constants χ (see the relation (2.42)) and the calculated
and experimental values of B(E2; 0+

1 → 2+
1 ) and B(E3; 0+

1 → 3−1 ) which were
compared.

The E2 and E3 strength functions calculated using the effective charges in
Table 3.6 and Nmax = 14 are shown in Fig. 3.20 and 3.21. We can see that
the results calculated within the ppTDA or hhTDA are very similar to those
calculated within the ppRPA or hhRPA. In the case of light nuclei with two
valence holes the strength functions contain only few transitions because of a
limited space of the hh configurations with the given angular momentum and
parity.

In order to investigate the convergence with increasing dimension of the con-
figuration space, we have calculated the electric quadrupole strength function for
18O using various values of Nmax. The result is shown in Fig. 3.22. One can
observe a trend of a convergence.
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Table 3.6: The effective charges and polarization constatnts χ for E2 and E3
strength functions determined from the comparison of the values of B(E2; 0+

1 →
2+

1 ) and B(E3; 0+
1 → 3−1 ) calculated within the ppRPA or hhRPA for Nmax = 14

with the experimental values (denoted by exp) taken from [78] and [52]. The
values of ~ω used in the calculations are also shown.

Effective charges and polarization constants for E2 strength functions

nucleus ~ω B(E2; 0+
1 → 2+

1 ) B(E2; 0+
1 → 2+

1 )exp e
(eff)
p/n χ

[MeV] [e
(eff)
p/n

2
fm4] [e2fm4] [e]

18O 16.3 22.7 45.1± 2.0 1.4 1.4
18Ne 16.3 54 269± 26 2.2 1.2
14C 16.3 1.9 18.7± 2.5 3.1 2.1

42Ca 16.3 17 420± 30 5.0 5.0
42Ti 16.3 21 870± 250 6.4 5.4
38Ar 16.3 6 130± 10 4.7 3.7
38Ca 16.3 5 96± 21 4.4 4.4
210Pb 11 479 510± 15 1.03 1.03
210Po 11 44 200± 40 2.1 1.1
206Pb 11 61 1000± 20 4.0 4.0

Effective charges and polarization constants for E3 strength functions

nucleus ~ω B(E3; 0+
1 → 3−1 ) B(E3; 0+

1 → 3−1 )exp e
(eff)
p/n χ

[MeV] [e
(eff)
p/n

2
fm6] [e2fm6] [e]

18O 16.3 379 1120± 110 1.7 1.7
42Ca 16.3 69 9100± 910 11.5 11.5
38Ar 16.3 23 (95± 26) · 102 20.3 19.3

210Pb 11 25103 (40± 10) · 104 4.0 4.0
210Po 11 97 (53± 8) · 104 73.9 72.9
206Pb 11 1230 (65± 4) · 104 23.0 23.0
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Figure 3.20: The electric quadrupole strength functions calculated within the
ppTDA, hhTDA, ppRPA and hhRPA for various open-shell nuclei withNmax = 14
using the effective charges in Table 3.6. We have used ~ω = 11 MeV for the nuclei
in the lead region (210Pb, 210Po, 206Pb) and ~ω = 16.3 MeV for the remaining
nuclei. Width of the Lorentzian ∆ = 0.5 MeV.
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Figure 3.21: The electric octupole strength functions calculated in the framework
of the ppTDA, hhTDA, ppRPA and hhRPA for various open-shell nuclei with
Nmax = 14 using the effective charges in Table 3.6. We have used ~ω = 11 MeV
for the nuclei in the lead region (210Pb, 210Po, 206Pb) and ~ω = 16.3 MeV for the
remaining nuclei. Width of the Lorentzian ∆ = 0.5 MeV.
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Figure 3.22: The electric quadrupole strength functions for 18O calculated in
the framework of the ppTDA and ppRPA for ~ω = 16.3 MeV and various Nmax

using the effective charge e
(eff)
n = 1.4e. Width of the Lorentzian ∆ = 0.5 MeV.
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Conclusion

We have carried out systematical calculations for 16O, 40Ca and 208Pb within
the TDA and RPA. The spectra, electric monopole, dipole, quadrupole and oc-
tupole strength functions and photo-absorption cross sections calculated in the
framework of both approximations have been compared. The spectra, energies of
centroids of some giant resonances, electric octupole transition probabilities and
cross sections have been compared also with the experimental data. However, we
were unable to reproduce them accurately. Disagreement of our results with the
experiment was caused also by the fact that a bare realistic chiral nucleon-nucleon
potential NNLOopt has been used in all calculations. For better description of real
nuclei an effective interaction relevant for nucleons in the nuclear matter should
be used.

The results obtained in the TDA and RPA are very similar. The most signif-
icant difference between these methods concerns the lowest 3− state. According
to our calculations, the RPA gives lower excitation energy and much greater ex-
citation probability of this state than the TDA and the results obtained in the
RPA are closer to the experimental data. Thus the RPA leads to an improvement
of the description of a strong collectivity of this state.

Moreover, the absolute value of the energy of the lowest 1− state, which is a
spurious state connected with the center-of-mass motion, calculated within the
RPA is closer to zero and approaches zero with increasing dimension of the config-
urations space. We have found out that the configuration space corresponding to
Nmax = 14 is not sufficiently large to obtained fully converged results. However,
a trend of a convergence has been observed.

Another aim of this thesis was to investigate open-shell nuclei. We have
developed microscopical models for nuclei with two valence particles or holes
added to a doubly-magic core based on an analogy to the TDA and RPA. We have
derived the needed formulae and carried out their numerical implementation. In
the framework of these models, namely the ppTDA, hhTDA, ppRPA and hhRPA,
we have calculated the spectra and electric quadrupole and octupole strength
functions of the nuclei formed from doubly-magic nuclei 16O, 40Ca and 208Pb by
adding or removing two nucleons of the same type.

The results of the ppTDA and hhTDA calculations are very similar to those
obtained within the ppRPA and hhRPA. We have noticed a significant disagree-
ment of the calculated spectra with the experiment, but we didn’t expect that
such simple models would reproduce the experimental data. In order to repro-
duce low-lying spectra of open-shell nuclei, realistic description of single-particle
states is desirable. It is well known that NNLOopt (or in general, chiral potentials)
does not give proper description of single-particle states at the mean-field level.
One has to supplement the interaction with corresponding three-body part. This
can be done effectively by adding a phenomenological density-dependent poten-
tial [79].

We have investigated also the convergence of the results with increasing size
of the configuration space and a trend of a convergence has been observed. The
calculated excitation energies depend also on the parameter of the oscillator basis
~ω, but this dependence becomes less significant with increasing Nmax.
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The effective charges determined for the strength functions of open-shell nu-
clei from comparison of the calculated and experimental transition probabilities
between the ground and the first excited state have reasonable values in the case
of the electric quadrupole excitations. On the other hand, the effective charges
corresponding to the electric octupole excitation probabilities are very large. The
explanation is in the following paragraph.

In the ph theories the lowest excitations are ph excitations from the highest
closed major shell to the lowest open major shell. Since the parities of the major
shells alternate, the ph theories yield a good description of the low-lying states
with negative parity. On the other hand, in the pp theories the lowest excitations
correspond to configurations with valence particles in the lowest major shell of
the valence space. Thus the pp theories yield a good description of the low-lying
states with positive parity (analogously for the hh case). For better description
of the low-lying states with negative parity it is necessary to take into account
ph excitations of the core. In our models effects of these omitted configurations
are simulated by the effective charges.

The next step in improvement of the description of nuclei with two particles
above a doubly-magic core could be taking into account the ph excitations of
the core by coupling of ph and pp phonons in the framework of the multiphonon
model, but this is beyond the scope of this work.
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A. Isotropic harmonic oscillator

The states |nlml〉 of a particle in the isotropic harmonic oscillator potential

V (r) =
1

2
Mω2r2 (A.1)

are characterized by three quantum numbers: n, l and ml. The possible values
of these quantum numbers are:

n = 1, 2, 3, . . . ,

l = 0, 1, 2, 3, . . . , (A.2)

ml = −l, . . . , l.

The energy of the state is

E = ~ω
(
N +

3

2

)
, (A.3)

with
N = 2(n− 1) + l. (A.4)

In the case of a nucleon, which has the spin 1/2, it is convenient to introduce
the total angular momentum

~j = ~l + ~s. (A.5)

Then the eigenstates of the isotropic harmonic oscillator are defined by the basis
|nljm〉. The possible values of the quantum numbers are:

j = l +
1

2
, l +

1

2
− 1, . . . , |l − 1

2
|, (A.6)

m = −j, . . . , j. (A.7)

In the spectroscopic notation the (2j+1)-times degenerated state |nlj〉 is denoted
by nXj, where X = s,p,d,f,... for l = 0, 1, 2, 3, ....
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B. Quasiparticle TDA

The residual interaction is usually divided to two parts:

Vres = V (short)
res + V (long)

res , (B.1)

where V
(short)

res is the short-range residual interaction, which is responsible for
pairing of nucleons1, and V

(long)
res is the long-range residual interaction, which is

responsible for collective vibrations of the whole nucleus (correlated motion of
many nucleons) and generates collective vibrational degrees of freedom of the
nuclear motion. The pairing interaction modifies the mean field in open-shell
nuclei and the result is the quasiparticle mean field instead of the single-particle
one.

An effective method which takes into account the pairing short-range residual
interaction is the Bardeen-Cooper-Schrieffer (BCS) theory2. Let us have a basis
of the single-particle eigenstates of the mean field |α〉. The starting point of the
BCS theory is the assumption that the ground state of a system with an even
number of fermions is

|BCS〉 =
∏
α>0

(Ua − Vac†αc̃†α), (B.2)

where the summation goes through the states with a positive angular momentum
projection and Ua and Va are real parameters with the following meaning: V2

a

is the probability that a given pair of single-particle states |α〉 and | − α〉 is
occupied by two particles and U2

a is the probability that this pair is empty. As
denoted, we have made the natural choice for spherical nuclei that the U and V
parameters are independent of the projection quantum number mα. They obey
the normalization condition

U2
a + V2

a = 1 ∀ a. (B.3)

The BCS ground state |BCS〉 is the vacuum for new creation and annihilation
operators, namely the quasiparticle operators β†α and βα, whose companion with
good tensorial properties is β̃α = (−1)ja+mαβ−α according to (1.28). The quasi-
particle operators are related to the particle operators via the Bogoliubov-Valatin
transformation

β†α = Uac†α + Vac̃α, (B.4)

β̃α = Uac̃α − Vac†α, (B.5)

introduced by Bogoliubov(see [86] and [87]) and Valatin(see [88] and [89]). The
quasiparticle operators also obey the fermion anticommutation relations. Each
operator β†α creates a quasiparticle that is a particle with probability amplitude

1The concept of nuclear pairing emerges from experimental observations (see [80] and ref-
erences therein). It has been shown by Mayer [81] that the pairing is caused by a short-range
attractive two-nucleon forces.

2The BCS theory was originally developed to explain the superconductivity of metals at low
temperature [82], where the electrons form pairs behaving like bosons, which was shown by
Cooper [83]. The application of this theory to the nuclear physics has been performed by Bohr,
Mottelson and Pines [84] and Belyaev [85].
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Ua and a hole with probability amplitude Va. In other words, the single-particle
state α is empty with a probability U2

a and occupied with a probability V2
a . The

parameters Ua and Va are obtained by solving the BCS equations, which are not
presented here. For deeper study of the BCS theory see e.g. [90].

In analogy to the TDA we can introduce the quasiparticle TDA (QTDA),
where we consider two-quasiparticle configurations. The QTDA equations can
be derived using the equation-of-motion method described at the beginning of
Section 1.4 with the phonon creation operator

Q†ν =
∑
a≤b

Xν
ab[β

†
aβ
†
b ]JM , (B.6)

where a and b both are either proton or neutron states and Xν
ab are amplitudes,

and |BCS〉 as the corresponding vacuum, i.e. the ground state. For the derivation
and the result see [15].

For closed-shell nuclei we obtain

Va = 1, Ua = 0 for εa < εF,
Va = 0, Ua = 1 for εa > εF,

(B.7)

thus the case of particles and holes is recovered and the vacuum |BCS〉 is the
HF vacuum |HF〉. This means that the QTDA reduces effectively to the TDA,
ppTDA and hhTDA.
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