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Nomenclature

Vector, matrix and tensor operations

|.| Let c ∈ R be a scalar, v ∈ Rn be an n dimensional vector, A ∈ Rn×m be
a real matrix and T ∈ Rn×n be a matrix representation of a second order
tensor. Then |c | denotes the absolute value of c , |v| denotes Euclidean
norm of v, |A| denotes Frobenius norm of A and |T| denotes Frobenius
norm of T.

|v| =

√ n∑
i=1

v 2
i , |A| =

√ n∑
i=1

m∑
j=1

A2
ij , |T| =

√ n∑
i=1

n∑
j=1

T 2
ij .

I Identity matrix I ∈ Rn×n.
δij Kronecker delta,

δij =

{
1, i = j ,

0, i ̸= j .

tr Trace of a second order tensor or a square matrix T ∈ Rn×n,

trT =
n∑

i=1

Tii .

vol Volumetric part of a second order tensor or a square matrix T ∈ Rn×n,

volT =
trT

3
I.

Td Deviatoric part of a second order tensor or a square matrix T ∈ Rn×n,

Td = T− trT

3
I.

A⊤ Transposition of a matrix A ∈ Rn×m.
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Differential operators

div Divergence operator. Let g : Rn → Rn be a vector-valued function, let
J : Rn → Rn×n be a square matrix valued function then

div g = div g(x) =
n∑

i=1

∂gi(x)

∂xi
,

div J = div J(x), (div J)i =
n∑

j=1

∂Jij(x)

∂xj
.

∇ Gradient operator. Let f : Rn → R be a scalar valued function and g :
Rn → Rn be a vector-valued function, then

∇f = ∇f (x), (∇f )i =
∂f (x)

∂xi
,

∇g = ∇g(x), (∇g)ij =
∂gi(x)

∂xj
.

∆ Laplace operator. Let f : Rn → R be a scalar valued function and g : Rn →
Rn be a vector-valued function, then

∆ f = div∇f (x) =
n∑

i=1

∂2f (x)

∂x2i
,

∆ g = div∇g(x), (∆ g)i =
n∑

j=1

∂2gi(x)

∂x2j
.

E Symmetric gradient operator. Let u : Rn → Rn be a vector-valued function,
then

E u =
1

2

(
∇u+ (∇u)⊤

)
, (E u)ij =

1

2
(
∂ui
∂xj

+
∂uj
∂xi

).

divX Divergence operator in the refference configuration.

∇X Gradient operator in the reference configuration.

∆X Laplace operator in the reference configuration.
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Solid mechanics

B Material body that is studied.

κR(B) Reference configuration of an undeformed state, X ∈ κR(B) denotes a
material point of the body B in the reference coordinate system.

κ∞(B) Configuration of a deformed steady state, x ∈ κ∞(B) denotes a point of
the body B in the spatial coordinate system.

χ Deformation mapping,

χ : κR(B) → κ∞(B), χ = χ(X).

u Displacement vector,
u = χ(X)− X.

F Deformation gradient,

F = ∇X χ = I+∇X u.

B Left Cauchy-Green strain tensor,

B = FF⊤.

C Right Cauchy-Green strain tensor,

C = F⊤F.

ε Small strain tensor,
ε =

1

2

(
∇u+ (∇u)⊤

)
.

T Cauchy stress tensor.

PI The first Piola Kirchoff stress tensor,

PI = TF−T detF.
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PII The second Piola Kirchoff stress tensor,

PII = F−1PI.

Constitutive relations

Ĝ Tensor function characterising the constitutive relation between the stress
tensor T̄ and strain tensor Ē of the type Ĝ(T̄, Ē) = 0.

G̃ Tensor function characterising the constitutive relation between the stress
tensor T̄ and strain tensor Ē of the type T̄ = G̃(Ē).

G Tensor function characterising the constitutive relation between the stress
tensor T̄ and strain tensor Ē of the type Ē = G(T̄).
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1. Introduction
In this thesis, we study a new class of nonlinear elastic materials that arise from
the theory for implicitly constituted non-dissipative solids developed under the ad-
ditional assumption that the norm of the gradient of deformation is supposed to be
small. First of all, we study the potential of these models in capturing the available
experimental data for beta titanium alloys. Then, we aim to develop a mathemat-
ical theory for boundary value problems relevant to this class of elastic materials.
Finally, we study these boundary value problems computationally focusing on the
V-notch geometry and the behavior of stress and strain near the tip of the V-notch.

More specifically, the objective of this thesis is to study the following boundary
value problem.

1.1 Formulation of the problem
Definition 1.1 (Problem (P)). Let Ω ⊂ Rn, n = 2 or 3 be an open, bounded, connected
set with the boundary ∂Ω consisting of two smooth disjoint parts ΓD and ΓN such that
∂Ω = ΓD ∪ ΓN , see Figure 1.1, where ν = ν(x) denotes the unit outward normal vector
at x ∈ ∂Ω. Let G : Rn×n

sym → Rn×n
sym , u0 : Ω → Rn, f : Ω → Rn and g : ΓN → Rn be

given. We say that the pair of functions (u,T) : Ω → Rn×Rn×n
sym solves the Problem (P)

if

− divT = f in Ω, (1.1a)
E u = G(T) in Ω, (1.1b)
u = u0 on ΓD , (1.1c)

Tν = g on ΓN , (1.1d)

where
E u =

1

2

(
∇u+ (∇u)⊤

)
.

The above problem describes the state of the elastic body occupying the set
Ω at equilibrium characterized by the equation (1.1a), where T is the stress tensor
and f stands for external body forces. The body obeys the nonlinear constitutive
equation (1.1b) that relates the linearized strain E u, which is a symmetric gradient

Ω ΓDΓN

ν

Figure 1.1: Domain illustration.
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of the displacement u, and the stress tensor T by means of a nonlinear function
G. The equation (1.1c) prescribes the displacement u0 on the Dirichlet part of the
boundary ΓD , and the equation (1.1d) prescribes the boundary traction g on the
Neumann part of the boundary ΓN . The state of the body is subject to an addi-
tional assumption that the square of the norm of the displacement gradient can be
neglected in comparison to the norm of the displacement gradient itself.

We are interested in the responses where the nonlinear dependence of strain
on the deviatoric part of stress and its trace are mutually separated in the way that

tr ε = σ1(trT) trT,

εd = σ2(|Td |)Td ,
(1.2)

where σ1 and σ2 are nondecreasing scalar functions such that σ1(0) = 0 and
σ2(0) = 0. The formulation (1.2) enables one to divide non-isochoric part of de-
formation from isochoric parts of deformation to capture these two responses sep-
arately. In addition, these responses need not be of the same type, e.g. they could
have different polynomial growth. Finally, (1.2) seems to be more appropriate for
capturing experimental data as the experiments measure the effect of shear, dila-
tion, etc. separately, see Criscione et al. (2000). Upon substituting (1.2) into (1.1b),
the constitutive function G takes the following form:

G(T) =
trT

3
σ1(trT)I+ σ2(|Td |)Td .

Power-law response

A natural example of nonlinear constitutive function, which can capture a range
of responses and yet is reasonably simple, is the power-law model. In this thesis,
we consider power-law models where the constitutive function G(T) varies as the
power of the stress T. Using the setting (1.2), we consider the model

tr ε =
1

3K

(
τ 2K + | trT|2

τ 2K

) s′−2
2

trT,

εd =
1

2µ

(
τ 2µ + |Td |2

τ 2µ

) q′−2
2

Td ,

(1.3)

where s ′ ∈ (1,∞), q′ ∈ (1,∞), K > 0, τK > 0, µ > 0, τµ > 0 are material moduli.
The response to the mean normal stress has the power-law exponent s ′ while the
isochoric response has the power-law exponent q′, where in general s ′ ̸= q′.

1.2 Main results
A recently developed framework of implicit constitutive theory due to Rajagopal
(2003, 2007, 2016) provides justification for a number of fluid and solid models,
which were previously proposed without a proper reasoning. In this thesis we focus
on one specific area of this theory, namely the theory of nonlinear responses in
the range of small strains, see Rajagopal (2010, 2011a). This theory provides a rig-
orous justification for nonlinear constitutive relations of the type (1.1b) in the small
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displacement gradient range. That would be impossible within the context of any
Cauchy elastic model where the linearization of a nonlinear constitutive expression
for the stress leads to Hooke’s law, which is a linear relationship between the stress
and the linearized strain.

Modeling beta phase titanium alloys

Many materials, including beta phase titanium alloys and concrete, exhibit nonlinear
stress strain response in the range of small strains, see Saito et al. (2003); Talling
et al. (2009); Sakaguch et al. (2004); Hao et al. (2005); Hou et al. (2010). Gum Metal,
which is a beta phase titanium alloy when cold swagged, exhibits reversible elastic
response up to the strain magnitude of 2.5%, which is often referred to as supere-
lasticity, see Saito et al. (2003). In Rajagopal (2014), an exponential model within
implicit constitutive theory that is able to capture tensile loading response of Gum
Metal was proposed. In Devendiran et al. (2017), two exponential models were pro-
posed to capture the tensile loading response of three different beta phase titanium
alloys. We have found out that the power law models (1.3) are able to describe ten-
sile loading behavior of Gum Metal and other beta phase titanium alloys in the full
range of nonlinear elastic response. From the direct comparison, we conclude that
the power-law model (1.3) when fitting tensile loading data is better than the previ-
ous models in terms of the quality of fit. When having an additional information,
in the form of Voigt-Reuss-Hill estimates of single crystal data, by employing maxi-
malization of an obective function based on these data, we have identified a model
with physically realistic material moduli, which fits the available tensile loading data.

Mathematical analysis

In this thesis, we establish the existence of the weak solutions to the Problem (P)
from Definition 1.1 when using the power-law model (1.3). We use the notation of
the exponents with primes, s ′ and q′, to emphasize their meaning for the weak
formulation of the Problem (P). Let s and q be Hölder conjugates of the exponents
s ′ and q′

s =
s ′

s ′ − 1
, q =

q′

q′ − 1
,

then the natural Lebesque space for the trace of the small strain tr ε is Ls and the
natural space for the deviatoric part of the small strain εd is Lq. The natural space
for the trace of the stress trT is Ls

′ and the natural space for the deviatoric part
of the stress Td is Lq

′ . The spaces for the weak solutions with this structure were
introduced in the context of the analysis of Norton-Hoff materials in Geymonat et al.
(1986).

The proof of the existence of solutions works with a system of two coupled first
order partial differential equations and it does not invert or assume invertibility of
the constitutive function G. We divide the proof into two parts. First, we introduce
an ε regularized problem with a proper smoothing operator and show the existence
of the weak solution to the ε regularized problem. Then, we show that as ε → 0,
the sequence of the solutions to the ε regularized problem converges to the weak
solution of the original Problem (P).

In the spatial dimension n ∈ {2, 3}, for s, q ∈ (1,∞), where Hölder conjugates
s ′ and q′ are exponents of the power law dependence (1.3), we show the existence
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of the solution (u,T) so that

u ∈ Lmin(s,q)(Ω)n, (E u)d ∈ Lq(Ω)n×n
sym , div u ∈ Ls(Ω), (1.4)

and
Td ∈ Lq

′
(Ω)n×n

sym , trT ∈ Ls
′
(Ω),

whereas
Tr u ∈ W 1− 1

min(s,q)
,min(s,q)(∂Ω)n. (1.5)

For n = 3, we use the generalized Korn’s inequality, see Schirra (2012), to further
improve regularity of the solution spaces (1.4) and (1.5).

Computer simulations

Computer simulations of the most implicit models in solid mechanics are yet to be
made. Simulations regarding the strain-limiting model can be found in Ortiz et al.
(2012, 2014); Kulvait et al. (2013). In Devendiran et al. (2017), there are some illustrative
simulations of behavior of exponential models.

In the thesis, we focus on the singular behavior of stress around cracks, edges
and notches, which is a known phenomenon, see Neuber (1961); Rice (1967). In
the anti-plane stress setting, asymptotic solutions of the stress distribution for the
linear response in unbounded domains are known for geometries of the V-notch and
the V-notch with an end hole, see Jun – Yuqiu (1992); Zappalorto – Lazzarin (2011).
Asymptotic solutions for the V-notch geometry in unbounded domains exists also
for power-law models, see Bassani (1984). Since these results are valid only in the
close vicinity of singularity, in the thesis, we study to what extent these analytical
solutions correspond to numerical solutions in finite domains.

We systematically study the response of the power-law models in different ge-
ometries of the anti-plane stress setting, where stress concentration can occur. The
anti-plane stress setting enables us to reformulate the Problem (P) as a variation-
al problem for an unknown potential called Airy-stress function. We study finite
element approximations to the given problem. More precisely, we construct trian-
gulation Th of the computational domain, and use the space of piece-wise quadratic
functions

X 2
h = {uh ⊂ C 0(Ω), uh|T ∈ P2(T ),∀T ∈ Th}.

On adaptively refined triangular meshes, we perform computer simulations of the
power-law models for titanium alloys, which were proposed in Chapter 3. We study
differences in stress and strain distributions depending on the power-law exponent.
We systematically study stress and strain distributions in the anti-plane stress set-
ting for 194 different geometries of a square plate with a V-notch with various
opening angles α and levels of tip smoothening. Computer simulations in this the-
sis complement the simulations that were performed in Kulvait et al. (2013) for the
strain-limiting model.

1.3 Structure of the thesis

The thesis is organized as follows.
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Chapter 2 describes in detail constitutive models used in this thesis. After his-
torical remarks, it summarizes important results from implicit constitutive theory
regarding modeling of solids in the small strain range. It proposes a hierarchy of
models of the form (1.1b). The power-law model of the type (1.3) is put into the con-
text of proposed models. We also introduce strain-limiting models and show that
they can be understood as a borderline case of power-law models.

In chapter 3, we show that the power-law models (1.3) are capable of modeling
response of many beta phase titanium alloys. First, we estimate material moduli of
the studied titanium alloys. Then, we fit the tensile loading experiments with the
cold swagged Gum Metal and three other beta phase titanium alloys to the power-
law model presented in the thesis. We obtain optimal model parameters for each
studied alloy using an algorithm based on the linear regression. Among the models
available in the literature, the models proposed and studied in this thesis seems to
be the best in corroborating the experimental data.

In Chapter 4, we establish the existence of the weak solution to the Problem
(P) with the power-law response (1.3). We derive the variational formulation of the
problem and define the proper function spaces. The proof of the existence of weak
solutions is divided into two parts. First, we introduce an ε regularized problem
with a proper smoothing operator and show the existence of the weak solution to
the regularized problem. Using the Galerkin method, we prove the existence of a
sequence of solutions in finite-dimensional subspaces of the appropriate functional
space. We obtain apriori estimates and show the convergence of solutions for
the Galerkin system to the limit in T and in u. Applying this procedure, we get
the solution of the ε regularized problem. Then we show that, as ε converges to
zero, the weak solution of the regularized problem converges to the weak solution
of the original problem. We prove the existence of weak solutions for power law
exponents p′, q′ ∈ (1,∞). We then improve the spaces in which the solution is. In
n = 2, we employ the compact embedding of the Sobolev spaces to the Lebesque
spaces to improve integrability of the solution. In the spatial dimension n = 3, we
utilize generalized Korn’s inequality where only the deviatoric part of the symmetric
gradient is used instead of the full symmetric gradient, see Schirra (2012).

In Chapter 5, we present the results of computer simulations for exactly the
same models that are proposed in Chapter 3 to obtain a very good fit of the be-
havior of three different titanium alloys. In the anti-plane stress setting, we set up
a discrete variational formulation of the Problem (P). We solve this problem by the
Finite element method using the damped Newton method on 872 different geome-
tries of a square plate with a V-notch with various opening angles α and levels of tip
smoothening. For each geometry, we use a hierarchy of 6 nested triangular mesh-
es. We compare solutions to the asymptotic solutions for the linear and power-law
models. We study global stability of solutions with respect to a refinement level with
very satisfying results. We conclude the chapter by showing differences between
the linear model and the power-law models with different exponents of power-law
relationship. Results are complementary to the work Kulvait et al. (2013) where we
studied the strain-limiting model. Source code that implements computer simu-
lations and utilizes FEniCS software library, see Logg et al. (2012), is a part of the
supplementary material of this thesis.

In appendix A, we briefly survey notation and basic results from tensor algebra
and calculus. We review important results from functional analysis and analysis of
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Partial differential equations (PDEs) and we summarize the basic facts regarding the
solid mechanics, focusing on small strain elastostatics.
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2. Studied models of material
response
When we think about elastic bodies from the scientific perspective, we think about
their deformation, stress and strain distribution caused by the action of internal or
external forces on it. Response of an elastic solid to the deformation is described
by the constitutive relation. The quality and accuracy of the constitutive model is
thus an important prerequisite for trustworthy predictions of the material response.

In this chapter, we briefly describe historical context of mathematical model-
ing in solid mechanics. We discuss three main scientific fields on which the thesis
is focused. These are solid mechanics as a theory of constructing material mod-
els, computational mechanics which involve solving these models numerically and
mathematical analysis of related boundary value problems. Then we discuss one di-
mensional phenomenological models that are frequently used to describe material
responses and that motivate the use of power-law models in the thesis. One sec-
tion is devoted to a new class of elastic solids defined in the context of the implicit
constitutive theory, which complements the classical theory of Cauchy elasticity.
We also show important implications of implicit constitutive theory for the small
strain elasticity. In constitutive models that we study small strain is an isotropic
nonlinear function of Cauchy stress. We define, describe and further classify these
models by introducing their subclasses that posses less complexity but are still
rich enough to describe a variety of responses. Particularly, we define and show
important properties of power-law models and strain-limiting models.

2.1 History of Mathematical modeling in continuum
mechanics

In the 17th century, Robert Hooke published his work ’Ute tensio, sic vis’ (1678) that
means ’As the extension, so the force’, which is now recognized as a foundation
of the theory of elasticity. Another milestone was reached when in 1687, Newton
published his ’Principia’ that includes three Newton laws of motion. In the 18th cen-
tury, the works of Leonhard Euler set the foundation for the calculus of variations
and the proper mathematical description of continuous media. In the 19th century,
the theory was further extended by works of Siméon Denis Poisson and Augustin
Louis Cauchy. Cauchy was the first who used the continuum description formalism
as is known today. He introduced the concept of the 3 × 3 symmetric matrix de-
scribing the stress state of the body, see Cauchy (1827), which is now referred to as
Cauchy stress tensor. In his treatment of continuum mechanics, he also used the
displacement vector and the strain tensor and he can be regarded as the author of
the modern theory of elasticity. At the beginning of the 20th century, despite the
advent of the quantum mechanics, particle physics and the atomistic description
of the matter, the attention of the scientific community to the continuum mechan-
ics did not fully disappear. It was evident that, as stated in Little (2007): ’we are
surrounded by matter in the form of continuous media; deformable solids, fluids and
gases. We will need a science that describes the responses of these materials to the
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external forces imposed upon them until, if ever, the science of particles can be de-
veloped such that it predicts the response of the aggregate’. The book Love (1927)
includes a complete description of the theory of small strain elasticity with an ex-
tensive list of references and the historical background. Up to the half of the 20th
century, the models that were used to model the response of elastic solids were
mainly linear. However, it was yet evident that materials under particular conditions
behave nonlinearly, see Ramberg – Osgood (1943). The theory of large deformations
including nonlinear constitutive relations is to a great extent built upon the work
of Ronald Samuel Rivlin. He was primarily focused on the rubber deformation and
rupture, see Rivlin – Thomas (1951). By studying these phenomena, he built the ba-
sis for the theory of nonlinear continuum mechanics. The modern highly abstract
treatment of nonlinear models in continuum mechanics was disseminated through
the work of Clifford Truesdell and his collaborators. The classical continuum me-
chanics books, Truesdell – Toupin (1960) and Truesdell – Noll (1969), include rigorous
mathematical description of the theory of elasticity. The latter book, Truesdell –
Noll (1969), focuses primarily on nonlinear models. A relation that describes defor-
mation response of an elastic material to the applied force, so called constitutive
relation, was understood from the early works of Cauchy as an equation where the
stress at a given point is a function of the configuration (e.g. deformation gradient
or strain). In the definition of elastic material in Truesdell – Noll (1969), we can find
: ’A change in stress arises solely in response to a change in configuration, and the
material is outright oblivious to the manner in which the change of configuration has
occurred in space and time.’ In contrast to that definition, works of Rajagopal on
constitutive relations admit implicit stress strain relations for the constitution of an
elastic solid, see Rajagopal (2003, 2007, 2011a). These works are referred to in this
thesis as implicit constitutive theory. They can be seen as complementary to
the classical theory of Cauchy elasticity. Implicit constitutive theory has its strong
implications for small strain elasticity where it provides the theoretical background
for models where the relation between the linearized strain and stress is nonlinear.

The problems that arise in continuum mechanics lead to the boundary value
problems for solutions of PDEs. These PDEs are in general nonlinear and their
mathematical properties, such as existence, uniqueness and smoothness of solu-
tions, may present open mathematical problems. One of the most famous problems
is smoothness of solutions to the Navier-Stokes equations in the fluid dynamics, see
Fefferman (2000). Properties of the solutions are important also in the context of
convergence of numerical methods to the solutions of original problems. The mod-
ern theory of PDEs and its applications to continuum mechanics originates in the
20th century and was influenced by works of Jean Leray, Sergej Sobolev, Jacques-
Louis Lions, Olga Ladyzhenskaya and many others. Mathematical analysis of the
boundary value problems in continuum mechanics is an ongoing work with a broad
community of scientists involved.

Computational mechanics. as a field that involves solving problems arising in
continuum mechanics using computers, has evolved in the second half of the 20th
century. It was the development of computers and computing technology that
has provided a momentum for the growth of computational mechanics and its ap-
plications. Computational mechanics is deeply connected with the Finite element
method (FEM). The central idea of the FEM is to construct discretization of the
computational domain by dividing it into simple elements (e.g. triangles). Solutions
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of the boundary value problems are then sought on the finite dimensional spaces
constructed using this finite element discretization. Finite element problems are
typically constructed in a way that leads to the linear systems with sparse matrices.
Theoretical background for these approaches was set in Courant (1943). First works
that developed FEM as a method of computational mechanics were motivated by
the demand for material strength models in aerospace industry. In the former work
Argyris (1955), structural analysis models that use finite elements are described and
studied. Actual implementation of FEM for the structural analysis was performed by
Turner and Clough in Boeing company, see Turner (1956). The method was initially
called Direct Stiffness Method, the term Finite element method was first used in
Clough (1960). One of the first books about FEM is Zienkiewicz – Cheung (1967).
From the advent of FEM, there was a strong cooperation between the applications
(Turner, Clough - Boeing company) and the formal mathematical development of
the theory itself (Argyris - Royal Aeronautical Society, Clough - Berkeley University,
Zienkiewicz - Northwestern University), see Clough (2004). Computational mechan-
ics has gained new applications over the decades in the areas including industry,
biology and medicine. With the drop of the price of computational power, increase
of the computer speed and accessible cloud technologies finite element method
can be now applied to solve systems of tremendous complexity, see Ayachit (2016).
In recent years, there has been a noticeable trend to open software to the public,
and its development to the communities of interested people. In the thesis, we use
the FEniCS Project1, which is ’a collection of free software with an extensive list of fea-
tures for automated, efficient solution of differential equations’, see Logg et al. (2012).
FEniCS is written in C++ and Python programming languages. It includes an open
source framework for writing variational formulation of boundary value problems
for PDEs and solving it using FEM.

Solid mechanics as a theory of constructing material models, formulation of
Boundary value problems (BVPs) and their mathematical analysis, and computational
mechanics, which involve solving these problems numerically, are overlapping fields
that should work together to create accurate, stable and reliable models. Further
integration of these three fields is one of the challenges for the next generation
of scientists. This thesis is going in that direction by integrating the study of new
models of elastic materials, performing computer simulations and conducting the
mathematical analysis of underlying boundary value problems.

2.2 One dimensional nonlinear material responses

In this section, we review the basic approaches for the treatment of nonlinear re-
sponses studied in the context of elasticity. For the purpose of providing motivation,
we use one dimensional models where σ represents a stress measure (e.g. tensile
loading stress) and e represents a strain measure (e.g. relative elongation).

As we study monotone responses, we divide the nonlinear responses in terms of
strain stress relationship into two categories of superlinear and sublinear response.
The superlinear response is the behavior that the strain grows faster than linearly
with respect to stress. This effect is observed in stainless steel and numerous
alloys, see Rasmussen (2003). The sublinear response is the oposite behavior, where

1For an overview of available finite element packages, see Wikipedia (2017a).
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Figure 2.1: One dimensional diagram of stress strain responses.

the strain grows slower than linearly with respect to stress. Sublinear response is
sometimes called strain stiffening2. It is attributed to materials such as plastics,
rubber or biological tissues, see Horgan – Saccomandi (2002, 2006). An extreme
case of sublinear response is captured by models where the strain remains bounded
as the stress grows into the infinity. This class of models is referred to as strain-
limiting models. In the theory of finite strain elasticity, similar models are called
limiting chain extensibility models. For the schematic diagram of the described
types of material responses, see Figure 2.1.

Power-law responses

Power-law model is a phenomenological model where one quantity varies propor-
tionally to the power of another quantity (in our case, these quantities are stress
and strain). Power-law model is capable to capture both superlinear and sublinear
responses.

The power-law model, which was proposed to model nonlinear behavior of the
aircraft construction materials when subject to high stresses, so called Ramberg-
Osgood model, is of the form

e =
σ

E
+ K

(σ
E

)n
, (2.1)

2According to Erk et al. (2010), strain stiffening is defined as increase in a material’s elastic modulus
with applied strain.
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where E , K and n are model parameters. The model (2.1) was formulated due to
the inadequacy of linear relationship to capture material response prior to plastic
deformation range. The Ramberg-Osgood model was able to capture behavior of
aluminium alloy, stainless steel and carbon-steel3, see Ramberg – Osgood (1943).
Mathematical analysis of a three dimensional model of this type can be found in
Knees – Sändig (2004).

The Knowles model is another power-law model proposed to study stress and
strain distribution around the crack tip for the incompressible hyperelastic materials
in the anti-plane strain setting, see Knowles (1977). The strain energy density func-
tion of the Knowles model leads to the representation where stress is a power-law
function of strain such that as one dimensional analogue, we have model

σ = µ
(
1 + ce2

)n−1
e,

where µ and c are material parameters and n is a power-law exponent, see Horgan
– Saccomandi (2001).

Exponential responses

Exponential models, where one quantity varies exponentially with respect to other
quantity, are another phenomenological models used to model nonlinear material
responses. One of the well known exponential models is the Fung model, which was
proposed to model sublinear response of muscles, skin and soft tissues, see Fung
(1967)4. One dimensional analogue of the Fung model takes the form

σ = µ exp
(
be2
)
e,

where µ and b are material parameters, see Horgan – Saccomandi (2001).
Exponential models were also used in the context of implicit constitutive theory

to fit response of Gum Metal alloy in Rajagopal (2014). Aforementioned model is of
the form

e = 2λ exp (ησ)σ,

where λ and η are model parameters.

Strain-limiting responses

The class of models of special interest is a class, where the strain is bounded for
arbitrary stress, so called strain-limiting models. The first model of this type was
proposed in Neuber (1961). These models were studied in the context of implicit con-
stitutive theory in Rajagopal (2011b); Kulvait et al. (2013). One dimensional analogue
of the model from Kulvait et al. (2013) takes the form

e =
τµ
2µ

σ√
τ a
µ + |σ|2

, (2.2)

3Materials such as steel present plastic deformation when subject to high stresses. Thus for high
stresses they can not be accurately modelled by purely elastic models.

4Fung accents the importance of considering full stress strain response and using nonlinear
models for modeling biological materials. In Fung (1967), the author states that ’It is necessary,
however, to give up the usual practice of trying to characterize the elasticity of a tissue by a representative
Young’s modulus, because this modulus varies over a very wide range.’
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where µ > 0 and τµ > 0 are model parameters. We can see that as the stress σ in
(2.2) approaches infinity, the strain e remains bounded by τµ/(2µ). Analogous mod-
els in the context of finite strain elasticity are known as limiting chain extensibility
models, see for example Gent (1996); Horgan – Saccomandi (2003).

2.3 New class of elastic models
In this section, we describe implicit constitutive theory, see Rajagopal (2003, 2007,
2011a) and its implications for the theory of elasticity in the small strain range. The
classical definition of an elastic solid is a definition by Cauchy. It requires that the
stress tensor T at a given point is an explicit function of the deformation gradient
F at a given point.

Definition 2.1 (Cauchy elastic solid). Cauchy elastic solid is a generally anisotropic
material with a constitutive relation of the type

T = G̃(F). (2.3)

The constitutive function behaves under the action of arbitrary orthogonal transfor-
mation given by matrix Q ∈ OG (n) in the way that (objectivity, frame indifference)

G̃(QF) = QG̃(F)Q⊤, G̃(0) = 0.

In the equation (2.3), the stress T is a function of a kinematic quantity, namely
the deformation gradient F, not vice versa. We might justify an unequal status of
these quantities by the definition of hyperelastic (Green elastic) solid in finite strain
theory. Hyperelastic solid is defined by its particular form of Hemholtz free energy
W , called strain energy density function, which describes energy stored in a given
deformation state of the body W = W (F). The constitutive equation is then de-
rived by utilizing the Clausius-Planck equation which is a form of the second law of
thermodynamics under the natural requirement that there is no dissipation and all
the energy stored in the body can be recovered in a purely mechanical process, see
Rajagopal (2003). Energy dissipation is understood as an irreversible process of con-
verting a part of mechanical energy into the heat. By the Coleman-Noll procedure,
it is possible to derive a constitutive equation of the form

PI =
∂W

∂F
, (2.4)

where PI is the First Piola-Kirchoff stress tensor. For details of the Coleman-Noll
procedure, see (Holzapfel, 2000, p. 208). Thus, by thermodynamical reasoning,
we have a constitutive relation (2.4) that is of the form (2.3) in the sense that a
measure of stress is a function of a measure of deformation. Green elastic solid is
a special case of Cauchy elastic solid, see Truesdell – Noll (1969). The open question
was whether the zero energy dissipation of a material would guarantee that the
constitutive relation for that material must be of the form (2.4). The answer is
negative. In the work Rajagopal (2007), the author discusses the natural meaning of
elasticity and argues that when we consider an elastic body defined as the material
incapable of energy dissipation, then we don’t need to restrict ourselves to the
Green’s type constitutive relation. Rajagopal – Srinivasa (2007, 2009) proposed rate
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type models for solids incapable of dissipation, which are not Green elastic. For
further thermodynamic discussion of these models, see Bridges – Rajagopal (2014)5.

Implicitly constituted solids

The fact that all non dissipative materials do not have a constitutive relation of the
form (2.4) leaves unjustified why the basic definition of elastic material should be
Cauchy’s definition. It is natural to use a fully implicit model of elastic materials that
extends Cauchy’s model and prefers neither stress nor strain. Implicit models for
describing constitutive relations were first considered in Morgan (1966). In the con-
text of elasticity of isotropic materials, these models were reinvented in Rajagopal
(2007). The most general implicit constitutive model relates Cauchy stress T to the
left Cauchy-Green stress tensor B by means of the following definition.

Definition 2.2 (Isotropic implicitly constituted solid). The isotropic implicitly consti-
tuted solid is a body with a constitutive relation of the type

Ĝ(B,T) = 0, (2.5)

the constitutive function behaves under the action of arbitrary orthogonal transfor-
mation given by matrix Q ∈ OG (n) in the way that (objectivity, frame indifference,
isotropy)

Ĝ(QBQ⊤,QTQ⊤) = QĜ(B,T)Q⊤.

The materials with the constitutive relation (2.5) are classified as a new class of
elastic solids. Fully implicit models are however difficult to work with. Even though
there is an intention to decipher their structure, see Sfyris – Bustamante (2014), the
implicit nature of the constitutive relations makes it harder to fit experimental data
to these models and to work with these models in numerical schemes. The class
(2.5) of isotropic implicitly constituted solids has two important explicit subclasses.

Stress as function of strain

A classical sub-class of the bodies defined through (2.5) is the isotropic compressible
Cauchy elastic solid.

Definition 2.3 (Isotropic Cauchy elastic solid). The isotropic Cauchy elastic solid is a
material with a constitutive relation of the type

T = G̃(B), (2.6)

the constitutive function behaves under the action of arbitrary orthogonal transfor-
mation given by matrix Q ∈ OG (n) in the way that (objectivity, frame indifference,
isotropy)

G̃(QBQ⊤) = QG̃(B)Q⊤, G̃(0) = 0.

From the Rivlin Ericksen Representation Theorem A.35, (p. 132) the function G̃(B)
can be rewritten to the form

G̃(B) = α1I+ α2B+ α3B
2,

5For applications of these models in biomechanics, see Freed – Einstein (2013); Freed et al. (2013).
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where the material moduli αi , i ∈ {0, 1, 2} depend on the principal invariants of the
left Cauchy-Green strain tensor IB, IIB and IIIB. We also require G̃(0) = 0 to assure
zero strain for zero stress. This condition takes the form α1(0, 0, 0) = 0.

Linearization

There is a plenty of settings where the assumption of the norm of the displacement
gradient being small is perfectly reasonable, while at the same time, the linear rela-
tionship between stress and strain is quite often too restrictive. However, the only
known rigorous way to approximate a constitutive relation of the isotropic Cauchy
elastic solid (2.6) using small strain tensor ε is a linearization that leads to Hooke’s
law

T = λ(tr ε)I+ 2µε. (2.7)

Here, ε is linearized strain and λ and µ are material moduli. For details, see Propo-
sition A.133 (p. 127).

Strain as function of stress

To use nonlinear models consistently with a theory, we use the following class of
elastic solids that is different from the class of the isotropic Cauchy elastic solids
(2.6). It is another subclass of isotropic implicitly constituted solid models (2.5),
which has not been studied until recently, see Rajagopal (2007).

Definition 2.4 (Isotropic material where strain is a function of stress). An isotropic
material where strain is a function of stress is a material with a constitutive relation of
the type

B = G(T), (2.8)

the constitutive function behaves under the action of arbitrary orthogonal transforma-
tion given by matrix Q ∈ OG (n) in the following way (objectivity, frame indifference,
isotropy)

G(QTQ⊤) = QG(T)Q⊤, G(0) = 0. (2.9)

From the Rivlin Ericksen Representation Theorem and (2.9), we obtain the rep-
resentation

G(T) = β1I+ β2T+ β3T
2,

where material moduli βi , i ∈ {0, 1, 2} are functions of the invariants of Cauchy
stress IT , IIT and IIIT and β1(0, 0, 0) = 0.

Constitutive relations of the type (2.8) are complimentary to the constitutive
relations for the Cauchy elastic solid (2.5). The role of stress and strain is flipped as
strain is an explicit function of stress. This is coherent with the classical Newtonian
concept of causality, where force represented by stress is the cause for kinematic
phenomena of deformation, see Rajagopal (2010). Fitting the experimental data to
the models (2.8) is of a similar difficulty as fitting the data to models of the type
(2.5). For example, in Criscione – Rajagopal (2013), the authors use a particular
model of the type (2.8) to obtain a very good fit of the experimental data for large
deformations of rubber, published in Penn (1970).
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Linearization

When assuming that the norm of displacement gradient is small, that is | ∇X u| <
δ ≪ 1, then we can easily approximate the constitutive equation (2.8) by the model
working with a small strain tensor ε. We can estimate B ≈ I + 2ε, see Proposition
A.121 (p 144). From (2.8), we have that

I+ 2ε = G(T). (2.10)

The equation (2.10) leads to the following definition of isotropic solid where small
strain is a function of stress.

Definition 2.5 (Isotropic solid where small strain is a function of stress). The isotropic
material where strain is a function of stress is a material with a constitutive relation of
the type

ε = G(T). (2.11)

The constitutive function behaves under the action of arbitrary orthogonal transfor-
mation given by matrix Q ∈ OG (n) in the way that (objectivity, frame indifference,
isotropy)

G(QTQ⊤) = QG(T)Q⊤, G(0) = 0.

Using Rivlin Ericksen Representation Theorem and (2.12), the equation (2.11) takes
the form

G(T) = γ1I+ γ2T+ γ3T
2. (2.12)

The material moduli γi , i = 1 ... 3 are functions of the invariants of Cauchy stress
IT , IIT and IIIT and γ1(0, 0, 0) = 0. It should be noted that the small strain tensor
ε is not objective. However, under the small displacement gradient assumption, ε
should be understood as an approximation of the objective tensor (B− I)/2, which
is constituted by the relation (2.11) and fulfils (2.12).

Models (2.11) can only be rigorously justified within the newly developed frame-
work of implicit constitutive relations, see Rajagopal (2003, 2007); Rajagopal – Srini-
vasa (2007). In the classical theory, using linearized strain and at the same time ad-
mitting nonlinear response would lead to inconsistency of the model, see Rajagopal
(2007); Criscione – Rajagopal (2013). Therefore the models from Definition 2.5 ex-
tend significantly the admissible range of material responses. In general, models of
the type (2.11) are useful for modeling situations and regimens where strain remains
small6 and at the same time where nonlinear response occurs during the studied
process. There are no restrictions on the stress magnitude. It can even be very
high. In particular, these models are suitable for numerous materials, which exhibit
nonlinear relationship between stress and strain in the small displacement gradient
range, see Rajagopal (2014); Saito et al. (2003); Zhang et al. (2009); Penn (1970).

In Chapter 3, we study models of the type (2.11) for describing responses of beta
phase titanium alloys, namely Gum Metal, Ti-30Nb-10Ta-5Zr alloy, Ti-24Nb-4Zr-7.9Sn
alloy and Ti-30Nb-12Zr alloy.

6According to Rajagopal (2014), the strain can be regarded as small when ∥ε∥ < 0.1.
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2.4 Studied constitutive models
The representation (2.12) is relatively complex. In the thesis we restrict ourselves
to the particular subclasses of (2.12). We define a reduced constitutive model as
follows.

Definition 2.6 (Reduced constitutive model). In the thesis, we study a subclass of
materials constituted by Definition 2.5 for which

ε = γ1(IT , IIT )I+ γ2(IT , IIT )T, (2.13)

where γ1 and γ2 are scalar functions that depend on the first two invariants of Cauchy
stress IT and IIT and γ1(0, 0) = 0.

In the scientific literature, sometimes γi(trT, |T|) is used instead of γi(IT , IIT ).
We will show that these representations are equivalent.

Lemma 2.7. Let T be a symmetric second order tensor. The trace trT and the norm
|T| can be expressed as a functions of the first two invariants of T.

Proof. Recall that

IT = trT, IIT =
1

2

(
(trT)2 − |T|2

)
, where |T| =

√
trT2. (2.14)

By a simple manipulation with (2.14), we get

trT = IT , |T| =
√

I2T − 2IIT ,

that finishes the proof.

Therefore it is possible to write coefficients γi , i ∈ {1, 2} in (2.13) equivalently in
the form

γ1 = γ1(trT, |T|), γ2 = γ2(trT, |T|),

where γ1(0, 0) = 0.

2.4.1 Separation of non-isochoric part from isochoric parts of
deformation

Shearing deformation is an isochoric response. That means that the deformation
preserves volume of the deformed body. Bulk deformation is a response to the
mean normal stress that changes volume. In Hooke’s law, the shearing deformation
is described by the shear modulus µ and the non-isochoric deformation by the bulk
modulus K , see Section A.3.4, (p. 148). The ratio of the shear modulus to the bulk
modulus differs from material to material. Some materials such as rubber are usually
modeled as incompressible due to the fact that the ratio of shear modulus to bulk
modulus is of order 104, see Horgan – Saccomandi (2004). Another materials such as
steel are much more compressible and their shear modulus is of the same order as
the bulk modulus. Moreover, as the measurement of the non-isochoric response is
in the most cases independent from the measurement of shear or tensile response,
it seems to be more appropriate to separate these responses also on the level of the

22



model, see Criscione et al. (2000); Fook et al. (1976). In the following definition, we
employ such separation of non-isochoric part of deformation from isochoric parts
of deformation to model the response of the isotropic solid where small strain is a
function of the stress.

Definition 2.8 (Reduced model with separated non-isochoric and isochoric respons-
es). The constitutive model defined by relations between deviatoric parts and traces of
the small strain tensor ε and Cauchy stress T.

tr ε = σ1(trT) trT,

εd = σ2(|Td |)Td ,
(2.15)

where σ1 and σ2 are scalar functions, σ1(0) = 0 and σ2(0) = 0.

The following Lemma shows that the models with non-isochoric part of deforma-
tion separated from the isochoric parts of deformation (2.15) are a special subclass
of the models from Definition 2.6.

Lemma 2.9. Constitutive relation for the material from Definition 2.8 can be expressed
as a special case of the constitutive relation from Definition 2.6.

Proof. The term |Td | can be expressed as

|Td | = |T− trT

3
I| =

√
|T|2 − 1

3
(trT)2, (2.16)

thus from Lemma 2.7, |Td | is a function of invariants IT and IIT . From (2.15),

ε = γ1(trT, |T|)I+ γ2(trT, |T|)T, (2.17)

where

γ1(trT, |T|) =
σ1(trT) trT

3
− trT

3
σ2

(√
|T|2 − 1

3
(trT)2

)
,

γ2(trT, |T|) = σ2

(√
|T|2 − 1

3
(trT)2

)
.

(2.18)

When trT = 0 and |T| = 0, we have that

σ1(trT) = 0, σ2(
√
|T|2 − (trT)2/3) = 0

and thus γ1(trT, |T|) = 0. We see that the model from Definition 2.8 is a subclass
of the model from Definition 2.6.

The reduced model with separated non-isochoric and isochoric responses, see
Definition 2.8 is a special case of the model from Definition 2.6. This model still
includes linear Hooke’s law, see (A.30) (p. 149). The only restriction is that the non-
isochoric response and the shearing response have to be modeled independently.
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2.4.2 Power-law model with separated response

Power-law models were introduced in Section 2.2 as elegant tools to describe mate-
rial response phenomenologically. We mention Generalized Ramberg-Osgood model
proposed in Knees – Sändig (2004).

Definition 2.10 (Generalized Ramberg-Osgood model). The constitutive model de-
fined by relations between deviatoric parts and traces of the small strain tensor ε and
Cauchy stress T in the form

tr ε =
1

3K
trT,

εd =
1

2µ
Td + C

(
|Td |
τµ

)q′−2

Td ,

(2.19)

where K > 0, µ > 0, C > 0, τµ > 0, q′ ∈ [2,∞) are material moduli.

In this thesis, we study a more general model of the power-law response justified
by Definition 2.8, which uses the separation of the non-isochoric part from the
isochoric parts of the deformation and admits independent power-law exponents
in those two parts of the response.

Definition 2.11 (Power-law solid). The constitutive model defined by relations between
deviatoric parts and traces of the small strain tensor ε and Cauchy stress T in the form

tr ε =
1

3K

(
τ 2K + | trT|2

τ 2K

) s′−2
2

trT,

εd =
1

2µ

(
τ 2µ + |Td |2

τ 2µ

) q′−2
2

Td ,

(2.20)

where q′ ∈ (1,∞), s ′ ∈ (1,∞), K > 0, τK > 0, µ > 0, τµ > 0 are material moduli.

We wish to remark that the model (2.20) can be put in the appropriate thermo-
dynamic setting, see Rajagopal – Srinivasa (2007, 2009); Bridges – Rajagopal (2014).
In particular, there is a (Gibbs) potential G(T), see Buĺıček et al. (2014), of the form

G(T) = 1

2

∫ | trT|2

0

1

9K

(
τ 2K + ξ

τ 2K

) s′−2
2

dξ +
1

2

∫ |Td |2

0

1

2µ

(
τ 2µ + ξ

τ 2µ

) q′−2
2

dξ, (2.21)

so that (2.20) can be written in the form

ε =
∂G
∂T

.

Lemma 2.12 (Linearization of power-law solid). By linearizing the constitutive relation
(2.20) from Definition 2.11 around T = 0, we obtain Hooke’s law, see (A.34) (p. 151) with
bulk modulus K and shear modulus µ.
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Proof. Using classical linearization, we approximate tr ε around trT = 0 and εd

around Td = 0 by linear functions L tr ε and Lεd so that

L tr ε(trT) = tr ε(0) +
d tr ε

d trT

⏐⏐⏐⏐
trT=0

trT ,

Lεdij(T) = εd(0) +
∑
k,l

∂εdij
∂T d

kl

⏐⏐⏐⏐⏐
Td=0

T d
kl .

(2.22)

To compute derivatives in (2.22), first recall that

∂|A|
∂Aij

=
Aij

|A|
. (2.23)

Combining (2.22) with (2.20), the derivative of tr ε with respect to trT is of the form

d tr ε

d trT
=

s ′ − 2

3Kτ 2K

(
τ 2K + | trT|2

τ 2K

) s′−4
2

(trT)2 +
1

3K

(
τ 2K + | trT|2

τ 2K

) s′−2
2

(2.24)

and partial derivatives of εd(Td) with respect to Td take the form

∂εdij(T
d)

∂T d
kl

=
q′ − 2

2µτ 2µ

(
τ 2µ + |Td |2

τ 2µ

) q′−4
2

T d
klT

d
ij +

1

2µ

(
τ 2µ + |Td |2

τ 2µ

) q′−2
2

δikδjl . (2.25)

We rewrite (2.24) and (2.25) using εd(0) = 0, tr εd(0) = 0 to get that

d tr ε

d trT

⏐⏐⏐⏐
trT=0

=
1

3K
, (2.26)

∂εdij(T
d)

∂T d
kl

⏐⏐⏐⏐⏐
Td=0

=
1

2µ
δikδjl . (2.27)

We conclude that the linearization (2.22) leads to the Hooke’s law, where

L tr ε(trT) =
1

3K
trT ,

Lεdij(T) =
1

2µ
T d

ij ,
(2.28)

and the material moduli K and µ have the meaning of bulk modulus and shear
modulus.

In Chapter 3, we estimate material moduli using the model (2.20) for four dif-
ferent beta phase titanium alloys that behave nonlinearly in the small strain range.
We show that these sets of material moduli fit the experimental data from tensile
loading experiment very well. In chapter 4, we derive the weak formulation of Prob-
lem (P), see Definition 1.1, (p. 7). Then we prove the existence of the weak solution
to the Problem (P) when using the constitutive model (2.20). In chapter 5, we study
the behavior of the power-law solids by computer simulation.
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2.4.3 Strain-limiting models

In this thesis, we are mostly interested in studying the power law model (2.20), which
can have different polynomial growth in the non-isochoric part and in the isochoric
parts of the response. For the sake of completeness, we also include important
results for the so called strain-limiting response, which can be understood as a
borderline case of power-law response, where we admit to set q′ = 1 and s ′ = 1 in
the model (2.20).

Definition 2.13 (Basic strain-limiting solid). The constitutive model defined by rela-
tions between deviatoric parts and traces of the small strain tensor ε and Cauchy stress
T in the form

tr ε =
τK
3K

trT√
τ 2K + | trT|2

,

εd =
τµ
2µ

Td√
τ 2µ + |Td |2

,
(2.29)

where K > 0, τK > 0, µ > 0, τµ > 0 are model parameters.

A model of this type was first proposed in Neuber (1961). When setting q′ = 1
and s ′ = 1 in the model (2.20), we obtain exactly the model (2.29) and therefore
we can use Lemma 2.12 to show that upon its linearization we get Hooke’s law with
the bulk modulus K and the shear modulus µ. Next lemma shows that the strain-
limiting model (2.29) represents a sublinear response where strain is bounded for
any stress.

Lemma 2.14. Let K > 0, τK > 0, µ > 0, τµ > 0 be parameters of the model (2.29),
then there exists a constant C > 0 such that ∀T ∈ R3×3

sym : |ε(T)| < C .

Proof. By rewriting (2.29) into the form

|tr ε| = τK
3K

√
| trT|2

τ 2K + | trT|2
≤ τK

3K
, (2.30)

and ⏐⏐εd ⏐⏐ = τµ
2µ

√
|Td |2

τ 2µ + |Td |2
≤ τµ

2µ
, (2.31)

we immediately get the claim of the Lemma.

Rajagopal strain-limiting solid

In the context of the implicit constitutive theory, another strain limiting model was
proposed in Rajagopal (2011b); Rajagopal – Walton (2011) to study brittle materials
and problems in fracture mechanics.

Definition 2.15 (Rajagopal strain-limiting solid). The constitutive model defined by
relations between small strain tensor ε and Cauchy stress T in the form

ε = −β

(
1− exp

−γ trT

1 + |T|

)
I+

τµ
2µ

T(
τ a
µ + |T| a

)1/a , (2.32)
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where β ≥ 0, γ > 0, µ > 0, τµ > 0, a > 0 are material moduli7.

The model (2.32) does not have the non-isochoric part separated from the iso-
choric parts of deformation and therefore it does not belong to the class of models
given by the Definition 2.8. However, we can propose a strain-limiting model that is
similar to (2.32) that separates aforementioned parts of the deformation.

Definition 2.16 (Strain-limiting solid with non-isochoric response separated from
isochoric response). The constitutive model defined by relations between deviatoric
parts and traces of the small strain tensor ε and Cauchy stress T in the form

tr ε = 3β

(
1− exp

−γ trT

1 + | trT|

)
,

εd =
τµ
2µ

Td(
τ a
µ + |Td | a

)1/a , (2.33)

where β ≥ 0, γ > 0, µ > 0, τµ > 0, a > 0 are material moduli.

Following results documents that models of the type (2.32) and (2.33) has bound-
ed stains for arbitrary stress and that they can be linearized around T = 0 to obtain
Hooke’s law.

Lemma 2.17. Let β ≥ 0, γ > 0, µ > 0, τµ > 0, a > 0 be material moduli of the model
(2.32). Then there exists a constant C > 0 such that ∀T ∈ R3×3

sym : |ε(T)| < C .

Proof. We begin by noticing that

|Tii | ≤
√

T 2
11 + T 2

22 + T 2
33, i ∈ {1, 2, 3}, (2.34)

and that
|T| ≥

√
T 2

11 + T 2
22 + T 2

33. (2.35)

From the previous inequalities, we establish the inequality

|trT|
1 + |T|

≤ |T11|+ |T22|+ |T33|
1 +

√
T 2

11 + T 2
22 + T 2

33

≤ 3. (2.36)

By similar reasoning, we obtain

τµ
2µ

|Tij |(
τ a
µ + |T| a

)1/a ≤ τµ
2µ

|Tij |
|T|

≤ τµ
2µ

. (2.37)

Setting a bound on |εij | will be divided into two parts. First, when i ̸= j , we combine
(2.32) and (2.37) to obtain

− τµ
2µ

≤ εij ≤
τµ
2µ

for i ̸= j . (2.38)

7The former strain-limiting model from Rajagopal (2010) has β < 0, but it would lead to λ̂ being
always negative in the linearized relation, see Lemma 2.18 To avoid this in Definition 2.15, we change
the sign of β.
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When i = j , we have to deal with the first term in (2.32). From (2.36) and (2.32), we
derive an additional estimate⏐⏐⏐⏐−β

(
1− exp

−γ trT

1 + | trT|

)⏐⏐⏐⏐ ≤ β(1 + e3γ). (2.39)

Combining results from (2.38) and (2.39), we can set a bound on the εij for all
i , j ∈ {1 ... 3} such that

−β(1 + e3γ)− τµ
2µ

≤ εij ≤ β(1 + e3γ) +
τµ
2µ

,

therefore we can conclude that |ε(T)| is bounded for an arbitrary T ∈ R3×3
sym .

Lemma 2.18 (Linearization of strain-limiting model). When we linearize the consti-
tutive relation (2.32) from Definition 2.15 around T = 0, we obtain Hooke’s law, see
(A.30) (p. 149) with Lamé parameters λ̂, µ̂, where

λ̂ =
4βγµ2

1− 6βγµ
, µ̂ = µ.

Proof. Recall that the derivatives of tensor invariants take the form

∂ trA

∂Aij
= δij ,

∂|A|
∂Aij

=
Aij

|A|
. (2.40)

Using (2.40), we compute derivatives of ε(T) with respect to T for the constitutive
relation (2.32). We have that

∂εij(T)

∂Tkl
= −δijβγ exp

(
−γ trT

1 + |T|

)(
δkl

1 + |T|
− trTTkl

|T|(1 + |T|)2

)
+

τµδikδjl

2µ
(
τ aµ + |T| a

)1/a − τµTijTkl |T|a−2

2µ
(
τ aµ + |T| a

) a+1
a

,

from which is easy to show that

∂εij
∂Tkl

⏐⏐⏐⏐
T=0

= −δijδklβγ +
δikδjl
2µ

. (2.41)

Using linearization, we approximate ε(T) around T = 0 by linear function Lεij(T)
such that

Lεij(T) = ε(0) +
∑
k,l

∂εij
∂Tkl

⏐⏐⏐⏐⏐
T=0

Tkl . (2.42)

When we substitute the equation (2.41) into (2.42) and utilize that ε(0) = 0, we have
that

Lεij(T) = −
∑
k,l

δijδklβγTkl +
∑
k,l

δikδjl
2µ

Tkl = −βγδij trT+
Tij

2µ
. (2.43)

It is a simple matter to rewrite (2.43) into the form

Lε(T) = −βγ trTI+
T

2µ
.
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Comparing the last equation to Hooke’s law (A.30) with Lamé parameters λ̂ and µ̂,
we get

βγ =
λ̂

2µ̂(3λ̂+ 2µ̂)
, µ = µ̂,

which yields

λ̂ =
4βγµ2

1− 6βγµ
, µ̂ = µ.

In Kulvait et al. (2013), computer simulations relevant to the strain-limiting solid
(2.32) in a plate with a V-notch, subject to the state of anti-plane stress, are pre-
sented. In particular, the existence of stress concentration near the V-notch tip and
the boundedness of strain is computationally documented therein. The asymptotic
behavior of stress near the V-notch tip is further studied in Gou et al. (2015); Zap-
palorto – Lazzarin (2011). Numerical studies regarding stress and strain distributions
in a tensile loaded finite rectangular plate with an elliptic hole were published in
Ortiz et al. (2012, 2014).
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3. Modeling of Gum Metal and other
newly developed titanium alloys

Titanium is the 9th most abundant element in the Earth’s crust, see Neal et al. (2011).
At temperature of 882.5 ◦C, it undergoes allotropic transformation from the close
packed hexagonal alpha phase to the body centered cubic beta phase. Transforma-
tion temperature can be altered by addition of some elements. Alpha stabilisers are
elements that increase transformation temperature, such as Aluminium (Al), Oxygen
(O), Nitrogen (N) or Carbon (C). Elements that decrease transformation temperature,
such as Molybdenum (Mo), Vanadium (V), Niobium (Nb), Cooper (Cu) or Silicon (Si),
are called beta stabilisers. Titanium alloys are metals that consists of a mixture
of titanium, as a dominant component, and other chemical elements. In general,
there are three types of titanium alloys, alpha alloys with alpha stabilisers where
titanium is in alpha phase, alpha-beta alloys where titanium exists in both phases
and beta alloys with beta stabilisers where titanium is in beta phase, see Machado
– Wallbank (1990). We follow a notation, where a titanium alloy is denoted by the
chemical symbol of Titanium (Ti) followed by chemical symbols of other elements in
the mixture preceded by their relative abundance in the alloy. For example, Titani-
um alloy with a composition of 6% Alluminium (Al) and 4% Vanadium (V) is denoted
by Ti-6Al-4V. Titanium alloys provide extraordinary material properties such as high
strength, resistance to corrosion and resistance to high temperatures. They are
expensive to manufacture and thus their main areas of application are high tech
industries (automotive industry, aerospace industry, premium electronics), military
equipment and medical materials, see Wikipedia (2017b).

In material science, there is an ongoing effort to develop new titanium alloys in
virtue of their beneficial properties. An illustrative example is Gum Metal1, a material
that has been developed by Toyota central R&D labs. Gum Metal is a designation for
a class of beta titanium alloys with unique elastic properties that include low Young’s
modulus, high strength and high yield strain relative to the other conventionally used
materials and titanium alloys, see Nagasako et al. (2013) and Figure 3.1. Cold swagged
Gum Metal has reversible nonlinear elastic response up to strains of 2.5%, which is
referred to as super elasticity, see Talling et al. (2009); Saito et al. (2003).

Gum Metal, however, is not the only titanium alloy that exhibits nonlinear re-
sponse between the strain and the stress in the elastic regime, which can be con-
sidered small strain. Such nonlinear elastic behavior seems to be typical for many
beta phase titanium alloys, see Sakaguch et al. (2004); Hao et al. (2005); Hou et al.
(2010). Therefore, in addition to Gum Metal, we study the following beta phase ti-
tanium alloys: Ti-30Nb-10Ta-5Zr alloy, see Sakaguch et al. (2004), Ti-24Nb-4Zr-7.9Sn
alloy, see Hao et al. (2005) and Ti-30Nb-12Zr alloy, see Hou et al. (2010). We show
that these beta phase titanium alloys in their elastic regime can be modeled using
power-law models (2.20).

1GUMMETAL is a trademark owned by TOYOTSU MATERIAL INCORPORATED company (as of 2017).
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Figure 3.1: Unique elastic properties of the Gum Metal alloy. Image source: http:
//www.tytlabs.com/tech/tec2.html

3.1 Experimental data

We use the power-law models (2.20) to capture behavior of beta phase titanium
alloys. For comparison, we are using the same experimental data as the works
Rajagopal (2014) and Devendiran et al. (2017). These data originate from uniaxial
tensile loading experiments.

A tensile loading experiment is described by the set of pairs (σi , ηi), i = {1 ...N}.
Each pair contains the value of strain ηi corresponding to the loading stress σi .
There is no loss of generality in assuming that the tensile stress is applied along the
direction of the first Cartesian coordinate. Therefore, the stress tensor takes the
form

T = (e1 ⊗ e1)σ =

⎛⎝ σ 0 0
0 0 0
0 0 0

⎞⎠ , (3.1)

where T11 = σ is its only nonzero component2. We shall also identify the normal
strain components (ε11, ε22, ε33) with (η, γ, γ), i.e. we assume that ε22 = ε33. Note
that to our best knowledge there are no data regarding the transverse strain γ.

Experiments describing tensile loading behavior of Gum Metal, Ti-30Nb-10Ta-5Zr
alloy, Ti-24Nb-4Zr-7.9Sn alloy and Ti-30Nb-12Zr alloy can be found in the following
works Saito et al. (2003); Sakaguch et al. (2004); Hao et al. (2005); Hou et al. (2010).
We use the data from the elastic regime of these experiments as they were present-
ed in Rajagopal (2014) and Devendiran et al. (2017). Data describing tensile loading
of cold swagged Gum Metal are from (Rajagopal, 2014, Figure 1). Data for Ti-30Nb-
10Ta-5Zr alloy were obtained from (Devendiran et al., 2017, Figure 1, top). Data for
Ti-24Nb-4Zr-7.9Sn alloy are from (Devendiran et al., 2017, Figure 1, middle). Data that

2Symbol e1 denotes the unit vector in the direction of the first Cartesian coordinate and symbol
⊗ denotes the tensor product.
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Figure 3.2: A tensile loading data of beta phase titanium alloys, see also Tables
3.1–3.4.

describe Ti-30Nb-12Zr alloy originate from (Devendiran et al., 2017, Figure 1, bottom).
We extracted data from the referenced figures using Plot Digitizer3. These data can
be found in Tables 3.1–3.4, they are summarized in Figure 3.2.

3.2 Existing models

The reversible elastic response of cold swagged Gum Metal can be observed up to
strains of 2.5%, see Saito et al. (2003) and Figure 3.2. Since the elastic response
of Gum Metal and many other titanium alloys is in the range |ε| < 0.025, such
strains could be regarded as large by experimentalists because most metals exceed
elastic regime for this magnitude of strain. On the other hand, from the modeling
point of view we can use a small displacement gradient approximation and model
the response using a small strain tensor since the displacement gradient is small
enough that its square can be neglected, see Rajagopal (2014). Therefore existing
models proposed in Rajagopal (2014) and Devendiran et al. (2017) use small strain to
predict response of beta phase titanium alloys in their elastic regime.

Modeling Gum Metal

Two models were proposed in Rajagopal (2014) to fit the experimental data for cold
swagged Gum Metal, see Table 3.1. The first model is a power-law model wherein
the strain is given by

ε = λ1I trT+ λ2(1 + α trT2)nT,

3Plot Digitizer is an open source software for digitizing scanned plots of functional data, see http:
//plotdigitizer.sourceforge.net. Plot Digitizer is written in Java and licensed under the GNU General
Public License.
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Point # Stress σ [MPa] Strain η

1 102.8 0.0017
2 194.1 0.0033
3 289.1 0.0050
4 376.4 0.0066
5 464.5 0.0083
6 551.8 0.0100
7 635.2 0.0118
8 710.1 0.0136
9 777.4 0.0154
10 837.0 0.0168
11 904.2 0.0186
12 960.0 0.0203
13 1015.2 0.0219
14 1062.8 0.0238
15 1103.9 0.0253

Table 3.1: Uniaxial tensile loading data of the cold swagged Gum Metal alloy, see
Saito et al. (2003). Data were extracted from (Rajagopal, 2014, Figure 1).

where λ1, λ2, α and n are the material moduli. The second is an exponential model
of the form

ε = λ1I trT+ λ2T exp(β trT), (3.2)

where λ1, λ2 and β are the material moduli. For the uniaxial loading, when setting
λ1 = 0, the model (3.2) reduces to

η = λ2σ exp(βσ). (3.3)

Actual material parameters that were used in Rajagopal (2014) are

λ2 = 1.57× 10−11 Pa−1, β = 3.22× 10−10 Pa−1. (3.4)

The model (3.3) with parameters (3.4) provides a very good agreement with experi-
mental data, see Figure 3.3. If we linearize this model around σ = 0, we obtain an
estimate for Young’s modulus

1

E
=

dη

dσ
(0) = λ2,

which yields E = 63.7 GPa.

Modeling beta phase titanium alloys

In Devendiran et al. (2017), two models to capture the response of beta phase tita-
nium alloys were proposed. The first is an implicit model

ε− α1((trT+ trT tr ε− 2 tr(Tε))I+ 2(trT)ε)−
(α2 + α3 exp (1 + α4(trT

2 + 2 tr(T2) tr ε+ 4 tr(T2ε)))
n
2 )T = 0, (3.5)
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Point# Stress σ [MPa] Strain η

1 46.7 0.0007
2 85.4 0.0012
3 117.6 0.0018
4 153.9 0.0024
5 190.4 0.0030
6 218.2 0.0036
7 250.1 0.0042
8 280.1 0.0047
9 310.6 0.0053
10 333.8 0.0059
11 361.6 0.0064
12 382.6 0.0071
13 408.2 0.0077
14 433.4 0.0084
15 452.8 0.0092
16 479.9 0.0101
17 501.8 0.0109
18 522.7 0.0117
19 537.4 0.0125
20 552.5 0.0132

Table 3.2: Uniaxial tensile loading data of Ti-30Nb-10Ta-5Zr alloy, see Sakaguch et al.
(2004). Data were extracted from (Devendiran et al., 2017, Figure 1, top).

where α1, α2, α3, α4 and n are the material moduli. For the uniaxial stress setting
(3.1), the model (3.5) can be rewritten as

η = (α1(1 + η + 2γ) + α2)σ + α3 exp (1 + α4(1 + 6η + 4γ)σ2)
n
2 ,

γ = α1(1 + 4γ − η)σ.
(3.6)

Young’s modulus for the model (3.5) can be estimated as

Eα =
1

α1 + α2
.

The second model is of the form

ε = β1(trT)I+ (β2 + β3 exp (1 + β4 tr(T
2))

n
2 )T, (3.7)

where β1, β2, β3, β4 and n are the material moduli. For the uniaxial loading of the
form (3.1), the model (3.7) simplifies to

η = (β1 + β2 + β3 exp (1 + β4(σ
2))

n
2 )σ,

γ = β1σ.
(3.8)

Young’s modulus for the model (3.8) can be estimated as

Eβ =
1

β1 + β2 + β3e
.
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Point # Stress σ [MPa] Strain η

1 12.9 0.0002
2 37.8 0.0008
3 63.8 0.0012
4 85.7 0.0018
5 110.5 0.0023
6 132.5 0.0028
7 154.5 0.0033
8 174.4 0.0038
9 197.6 0.0043
10 215.7 0.0049
11 243.2 0.0055
12 263.9 0.0062
13 290.1 0.0069
14 312.3 0.0077
15 327.9 0.0084
16 348.6 0.0091
17 368.2 0.0098
18 380.1 0.0105
19 394.2 0.0112

Table 3.3: Uniaxial tensile loading data of Ti-24Nb-4Zr-7.9Sn alloy, see Hao et al.
(2005). Data were extracted from (Devendiran et al., 2017, Figure 1, middle).

In Devendiran et al. (2017), models (3.6) and (3.8) were used to fit experimental
data of Ti-30Nb-10Ta-5Zr alloy, Ti-24Nb-4Zr-7.9Sn alloy and Ti-30Nb-12Zr alloy, see
Table 3.2–3.4. For values of material moduli of these alloys, we refer to (Devendiran
et al., 2017, Tables 1 and 2). In Figures 3.4, 3.5 and 3.6, the explicit model (3.8) is
included as a dashed line.

3.3 Approximation of elastic moduli

In this section, we estimate basic elastic properties of the studied titanium alloys
by providing rough estimates for their bulk modulus, shear modulus and Young’s
modulus. The roughness is twofold. First, each alloy might differ based on a partic-
ular chemical composition and the method of material processing. For example, the
term Gum Metal describes a class of materials, and every unique alloy differs in its
properties. There are differences in chemical composition as each material might
differ in the amount of oxygen in the mixture, and there are differences between the
raw material properties and the cold swagged material properties, see Saito et al.
(2003). Second, there is nonlinearity in the material response in the elastic regime.
Therefore, characterising such complex materials by two independent linearized
moduli is inaccurate. Although we are primarily interested in modeling nonlinearity
in the elastic response of these alloys, we also feel the need to make this first order
estimate just to put studied materials into the context of other materials and their
known elastic properties, see Table 3.5.
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Point # Stress σ [MPa] Strain η

1 28.6 0.0003
2 56.4 0.0007
3 84.5 0.0011
4 110.5 0.0015
5 140.9 0.0020
6 162.4 0.0024
7 190.4 0.0030
8 214.5 0.0034
9 238.4 0.0041
10 262.2 0.0048
11 281.5 0.0056
12 296.9 0.0064
13 307.9 0.0073
14 318.4 0.0082
15 325.7 0.0091
16 330.1 0.0100
17 332.4 0.0109
18 334.5 0.0118
19 337.2 0.0127
20 339.5 0.0137
21 341.9 0.0145
22 344.3 0.0155
23 346.7 0.0164
24 346.6 0.0173
25 349.2 0.0182
26 351.5 0.0191

Table 3.4: Uniaxial tensile loading data of Ti-30Nb-12Zr alloy, see Hou et al. (2010).
Data were extracted from (Devendiran et al., 2017, Figure 1, bottom).

3.3.1 Voigt, Reuss and Voigt-Reuss-Hill approximations

Titanium alloys that we are interested in are beta phase alloys that form a body
centered cubic structure. Following Talling et al. (2008); Rajagopal (2014); Devendiran
et al. (2017), we regard them as isotropic polycrystalline materials. Based on the
single crystal properties, we use Voigt-Reuss-Hill (VRH) approximation scheme, see
Hill (1952), to estimate elastic moduli of isotropic mixture that is composed of these
single crystals. VRH scheme combines the Voigt approximation, see Voigt (1928),
with the Reuss approximation, see Reuss (1929), to estimate elastic moduli of the
material. According to Hill (1952), the Voigt moduli exceed the Reuss moduli, while the
true values should lie between them.

A linearized elastic model for a body centered cubic crystal is based on the
general elastic model for anisotropic materials, see Definition A.132, (p. 148), where
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Elastic modulus
Material Shear (µ) [GPa] Bulk (K)[GPa] Young’s E [GPa]
Silicone Rubber 0.0003–0.02 1.5–2 0.001–0.05
Aluminium Extrusions 25–27 65–71 69–73
Stainless Steel 74–81 134–152 190–203
Diamond 440–470 530–548 1050–1210
Titanium Dioxide 90–112 209–218 230–288
Ti-6Al-4V Alloy 40–45 97–153 110–119
Ti-6Al-7Nb Alloy 36–41 111–142 100–110

Table 3.5: Elastic moduli of various materials. Data were obtained from http://www.
azom.com, see AZoNetwork UK Ltd..

the tensor C has the special form

C =

⎛⎜⎜⎜⎜⎜⎜⎝
C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where C11, C12 and C44 are three independent elastic moduli.

Elastic moduli of isotropic mixture

The Voigt estimate of the bulk modulus is equal to the Reuss estimate. We have
that

KV = KR = KVRH =
C11 + 2C12

3
. (3.9)

For the shear modulus, the Voigt estimate µV and the Reuss estimate µR differ

µV =
C11 − C12 + 3C44

5
, µR =

5(C11 − C12)C44

4C44 + 3(C11 − C12)
, (3.10)

while µR ≤ µV . The Voigt-Reuss-Hill estimate is an average of these estimates

µVRH =
µV + µR

2
. (3.11)

To derive Voigt and Reuss estimates for Young’s modulus, we can use (3.9), (3.10)
and conversions between elastic moduli, see Table A.1, (p. 151). The Voigt estimate

EV =
(C11 − C12 + 3C44)(C11 + 2C12)

2C11 + 3C12 + C44
(3.12)

differs from the Reuss estimate

ER =
5(C11 + 2C12)(C11 − C12)C44

(3C11 + C12)C44 + C 2
11 + C11C12 − 2C 2

12

, (3.13)

where ER ≤ EV . The Voigt-Reuss-Hill approximation of Young’s modulus is then

EVRH =
EV + ER

2
. (3.14)
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We finish this section by deriving Voigt and Reuss estimates for Poisson’s ratio.
Combining (3.9), (3.12), (3.13) with a formula from Table A.1, (p. 151), yields the Voigt
estimate

νV = 0.5− C11 − C12 + 3C44

4C11 + 6C12 + 2C44
, (3.15)

and the Reuss estimate

νR = 0.5− 5(C11 − C12)C44

2(3C11 + C12)C44 + 2C 2
11 + 2C11C12 − 4C 2

12

. (3.16)

The Voigt-Reuss-Hill approximation of Poisson’s ratio is an average of the previous
two estimates

νVRH =
νV + νR

2
. (3.17)

Single crystal properties of studied titanium alloys

Elastic moduli of single crystals are available for two different forms of Gum Met-
al Ti-36Nb-2Ta-3Zr-0.3O. ’The first alloy (PH) was obtained by powder metallurgy, in
which arc-melted and plasma-sprayed powder was hot isostatically pressed (HIPed) and
solution treated and quenched. The second processing route involved mixing of pure el-
emental powders (EP) which were then cold pressed, forged, hot rolled, solution treated
and quenched.’, see Talling et al. (2008).

Elastic moduli of single crystals of Ti-30Nb-10Ta-5Zr and Ti-24Nb-4Zr-8Sn can be
found in Obbard et al. (2010) and Zhang et al. (2011) respectively. Elastic moduli of
single crystals of Ti-30Nb-12Zr are not available.

Table 3.6 summarizes the single crystal moduli of aforementioned beta phase
titanium alloys and Table 3.7 lists the estimates of the elastic parameters of the
isotropic mixture of these crystals according to Voigt-Reuss-Hill approximation.

Material C11 [GPa] C12 [GPa] C44 [GPa]
Gum Metal (PH) 125.0 90.0 31.0
Gum Metal (EP) 125.0 93.0 28.0
Ti-30Nb-10Ta-5Zr 67.1 39.9 29.8
Ti-24Nb-4Zr-8Sn 57.2 36.1 35.9

Table 3.6: Single crystal moduli of studied beta phase titanium alloys. The elastic
moduli C11, C12 and C44 of single crystals of Ti-30Nb-10Ta-5Zr alloy, Ti-24Nb-4Zr-8Sn
alloy and the two forms of Gum Metal abbreviated PH and EP were obtained from
Obbard et al. (2010), Zhang et al. (2011) and Talling et al. (2008) respectively.

3.4 Modeling elastic response of titanium alloys
Young’s modulus is defined as a proportion of the tensile stress to tensile strain.
Therefore we might estimate Young’s modulus from the experimental data using
the equation

σi = Eηi , (3.18)

from which we obtain a least square estimate of Young’s modulus E . To demonstrate
the extent to which the tensile response deviates from being linear, represented by
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Material KVRH µR µV µVRH ER EV EVRH νR νV νVRH

Gum Metal (PH) 101.7 23.7 25.6 24.6 65.9 70.9 68.4 0.39 0.38 0.39
Gum Metal (EP) 103.7 21.5 23.2 22.4 60.4 64.8 62.6 0.40 0.40 0.40
Ti-30Nb-10Ta-5Zr 49.0 20.2 23.3 21.8 53.2 60.4 56.8 0.32 0.29 0.31
Ti-24Nb-4Zr-8Sn 43.1 18.3 25.8 22.0 48.1 64.4 56.3 0.31 0.25 0.28

Table 3.7: VRH estimates of the elastic parameters of studied titanium alloys. KVRH

denotes the VRH approximation of the bulk modulus (3.9). µV , µR and µVRH denote
the Voigt and the Reuss approximations (3.10) and the VRH approximation (3.11) of
the shear modulus. ER , EV and EVRH denote the Voigt estimate (3.12), the Reuss
estimate (3.13) and the VRH estimate (3.14) of Young’s modulus. νV , νR and νVRH
denote the Voigt approximation (3.15), the Reuss approximation (3.16) and the VRH
approximation (3.17) of Poisson’s ratio. With the exception of dimensionless Pois-
son’s ratio, all other values are in GPa.

(3.18), we estimate Young’s modulus based on different σi ranges. Let σmax denote
the maximal tensile stress value in the experimental data, which can be understood
as the elastic limit. Let p ∈ (0, 1]. Then the Ep is a least square estimate of Young’s
modulus based on the experimental data pairs (σi , ηi), for which σi < pσmax .

In Table 3.8, there are values of Ep for studied titanium alloys. The variance of
the data, notably in case of Ti-30Nb-12Zr alloy, indicates how misleading it could be
to characterise the response of these materials by a single number in the whole
elastic range without considering the nonlinear nature of the response.

Material E0.1 E0.2 E0.3 E0.5 E0.6 E0.7 E0.8 E0.9 E1

Gum Metal 60.2 58.8 58.1 56.3 55.4 54.4 52.3 50.5 47.8
Ti-30Nb-10Ta-5Zr 71.8 69.4 65.1 61.6 60.2 57.6 55.6 53.1 48.2
Ti-24Nb-4Zr-7.9Sn 49.6 51.1 48.7 47.2 46.0 44.8 43.4 41.7 39.2
Ti-30Nb-12Zr 105.1 86.3 79.4 70.8 68.2 63.7 60.9 51.3 25.5

Table 3.8: Estimates of Young’s modulus, Ep , is computed based on a subset of
experimental data, for which stress σi ≤ pσmax . Units are GPa.

3.4.1 Power-law models

In this section, we use the following model to capture response of studied beta
phase titanium alloys based on experimental data, see Tables 3.1–3.4

Definition 3.1 (Power-law solid for fitting beta phase titanium alloys). The constitutive
model defined by relations between deviatoric parts and traces of the small strain tensor
ε and Cauchy stress T of the form

ε =
1

9K

(
τ 20 + | trT|2

τ 20

) s′−2
2

(trT)I+
1

2µ

(
τ 20 + 3

2
|Td |2

τ 20

) q′−2
2

Td , (3.19)

where τ0 > 0, s ′ ∈ (1,∞), q′ ∈ (1,∞), K > 0 and µ > 0 are model parameters.

The parameter s ′ and the coefficient K describe volume changes in response
to the mean normal stress, while the parameter q′ and the coefficient µ describe
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the isochoric part of deformation. In the remainder of this chapter, we refer to
parameters K and µ as to bulk and shear moduli and we call the response to the
mean normal stress the bulk response. Note that we obtain Hooke’s law (A.31) upon
setting s ′ = q′ = 2 in (3.19). The parameter τ0 is chosen in such a manner that
we are guaranteed that the response of the nonlinear model is reasonably close to
the linearized model if |T| is small. It means that, upon linearizing the model (3.19)
around T = 0, see Lemma 2.12, (p. 24), we obtain the classical linearized elastic
model, which provides good approximation of the response as long as

|T| ≪ τ0. (3.20)

Model (3.19) is a special case of the model (2.20) from Definition 2.11, (p. 24), where
τK = τ0 and τµ =

√
2/3τ0.

3.4.2 Algorithm to estimate model parameters

When describing tensile loading experiment, the Cauchy stress tensor T is of the
form (3.1). It immediately follows that

Td =

⎛⎝ 2
3
σ 0 0
0 −1

3
σ 0

0 0 −1
3
σ

⎞⎠ , |Td | =
√

2

3
σ, trT = σ.

When fitting tensile loading data to the model (3.19) with parameters (τ0, s ′, q′,K ,µ),
the model reduces to

η =
1

9K

(
τ 20 + σ2

τ 20

) s′−2
2

σ +
1

3µ

(
τ 20 + σ2

τ 20

) q′−2
2

σ, (3.21a)

γ =
1

9K

(
τ 20 + σ2

τ 20

) s′−2
2

σ − 1

6µ

(
τ 20 + σ2

τ 20

) q′−2
2

σ. (3.21b)

We use two approaches for fixing τ0 in (3.21a). For all experimental data that we
use, |T| takes values in the range 107−109 (10MPa−1GPa), and for |T| > 5.108, the
response is nonlinear, see Figure 3.2. In the first approach, we set τ0 = 5.108 for all
studied materials. In the second approach, we set τ0 = σmax , where σmax represents
the maximal loading in the elastic regime. In both approaches, we always meet the
assumption (3.20) in the linear regime.

Thus, upon fixing τ0, our model (3.21a) is completely characterized by four pa-
rameters. The model (3.3) used by Rajagopal (2014) to fit tensile response for cold
swagged Gum Metal has two parameters, while the explicit model used by Devendi-
ran et al. (2017) to describe the tensile response of three titanium alloys has five
parameters.

The equation (3.21a) with the values of parameters (τ0, s
′, q′) can be understood

as a linear model of the form

η = c1f1(σ) + c2f2(σ), (3.22)

where

f1(σ) =

(
τ 20 + σ2

τ 20

) s′−2
2

σ, f2(σ) =

(
τ 20 + σ2

τ 20

) q′−2
2 2

3
σ.
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Let (σi , ηi), i ∈ {1 ...N} be the data of a tensile stress experiment, see Tables
3.1–3.4. The values of functions f1(σ

i) and f2(σ
i) are understood as independent

variables and the value of strain ηi is understood as an observed value. Using the
linear regression, we obtain estimates for the coefficients c1 and c2 in (3.22) and
derive estimates of the bulk and shear moduli

K =
1

9c1
, µ =

1

2c2
. (3.23)

Using this procedure, we can estimate optimal values of the parameters K and µ
for a given (τ0, s

′, q′). Since the parameter τ0 is fixed, we need to estimate optimal
values of the exponents s ′ and q′. We decided to perform this estimation based on
comparing quality of fit for many pairs (s ′, q′) from the search space. For measuring
quality of fit of the model, we need the following definitions.

Definition 3.2 (Mean of observations).

η =
1

N

N∑
i=1

ηi .

Definition 3.3 (Total sum of squares4).

Stot =
N∑
i=1

(ηi − η)2. (3.24)

Definition 3.4 (Residual sum of squares).

Sres =
N∑
i=1

(ηi − (c1f1(σ
i) + c2f2(σ

i)))2.

Definition 3.5 (Coefficient of determination R2).

R2 = 1− Sres

Stot
. (3.25)

The coefficient of determination R2 ≤ 1 is a standard measure of the quality of
fit in the linear regression. The closer the value of the coefficient of determination
is to 1, the better the fit is.

Implementation

We outline the algorithm used for fitting tensile loading data for an alloy to the
model (3.22) as follows:

• We fix some particular value of τ0, derived from a characteristic magnitude
of stress for which the response can be modeled as linear for small strain
tending to zero.

4For linear models without an intercept, as is the case (3.22), the formula (3.24) for the total sum
of squares is often used with η = 0. We decided to use the formula (3.24) involving η in order to
obtain more realistic coefficients of determination R2.
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• We choose an admissible set of the model parameters (s ′, q′). In particular,
we use s ′ ∈ {1.01, 1.02, ... , 100}, q′ ∈ {1.01, 1.02, ... , 100}. The values of s ′

and q′ are discrete values from the finite sequence {1.01, 1.02, ... , 100} of
numbers incremented by 0.01.

• For each admissible pair of (s ′, q′), we compute the estimates of coefficients
(c1, c2) of the model (3.22) using linear regression of the experimental data.
From (3.25), we get the value of the coefficient of determination R2.

• We choose the pair (s ′, q′) that maximizes the coefficient of determination
R2 among all admissible pairs of the model exponents.

• For the pair (s ′, q′) that maximizes R2, we substitute the least square estimate
of (c1, c2) into the equation (3.23) to compute parameters of the model K and
µ.

This algorithm yields a set of model parameters (τ0, s
′, q′,K ,µ) that is called

the best fit. The best fit maximizes the coefficient of determination and minimizes
the residual sum of squares among all admissible pairs of (s ′, q′). Linear regression
was performed using function lm from the R software environment and language,
see R Core Team (2016). For more details about fitting models in R, see Chambers
– Hastie (1992). The source code of the algorithm has been deposited to https:
//bitbucket.org/kulvait/fittingtitaniumalloys. It can also be found in the supplemental
material for the thesis.

Apparent ambiguity of the best fit

There is a symmetry in the equation (3.21a) that leads to the existence of two sets
of parameters with the same quality of fit. Let us assume that (τ0, s

′, q′,K ,µ) is
the best fit with the coefficient of determination R2. The alternative choice to the
best fit (τ0, ŝ ′, q̂′, K̂ , µ̂), where

ŝ ′ = q′, q̂′ = s ′, µ̂ = 3K , K̂ =
µ

3
, (3.26)

fits the equation identically (3.21a) as the best fit (τ0, s ′, q′,K ,µ). Therefore it also
leads to the identical coefficient of determination for the model (3.22). However,
the term with exponent s ′ describes volume changing deformation and the term
with exponent q′ describes volume preserving deformation. That means that the
original model from Definition 3.1 will be different when comparing the original and
the alternative set of parameters.

To fix this apparent ambiguity, we have to add an extra condition. One possible
option is to set

|s ′ − 2| > |q′ − 2|. (3.27)

We will refer to the inequality (3.27) as to a highly nonlinear bulk response condition.
An alternative condition takes the form

|s ′ − 2| ≤ |q′ − 2|. (3.28)
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The inequality (3.28) will be referred as a highly nonlinear shear response condition.
In the results section, we show that the condition (3.28) leads to positive strain
component γ and negative Poison’s ratio

ν =
3K − 2µ

2(3K + µ)
. (3.29)

Therefore we have identified the condition (3.27) as being physically more reason-
able.

Using an additional physical information, the VRH estimates for the first three
alloys, see Table 3.7, we can further improve the properties of the model (3.19). In
the outlined algorithm we have maximized the coefficient of determination R2. Let
for a given alloy νV and νR be Voigt and Reuss estimates of Poisson’s ratio. It can
be shown that νV < νR . Let K and µ be parameters of the fit for a given pair (s ′, q′)
and ν be Poisson’s ratio given by (3.29). We define an objective function

O =

⎧⎪⎨⎪⎩
R2 − (νV − ν), if ν < νV ,

R2, if νV ≤ ν ≤ νR ,

R2 − (ν − νR), if νR < ν.

(3.30)

Maximizing the objective function over the whole search space of exponents (s ′, q′)
leads to the unique properties of the best fit. Moreover the model is underpinned
by additional physical information regarding the single crystal data.

3.5 Results

In Tables 3.9–3.13, the values of the best fit of the tensile loading experiments are
presented. Tables 3.9 and 3.10 list the material moduli under the assumption (3.27)
of a highly nonlinear bulk response for τ0 = 5.108 and τ0 = σmax respectively.
Tables 3.11 and 3.12 were created under the constraint (3.28) of highly nonlinear
shear response for τ0 = 5.108 and τ0 = σmax respectively. Table 3.13 lists the
material moduli, when minimizing the objective function defined by (3.30).

In Figures 3.3–3.6, there is a comparison of the best fit of the power law model
(3.21a) for τ0 = 5.108 with the predictions of the explicit models considered in
Rajagopal (2014) and Devendiran et al. (2017) when fitting tensile loading experimental
data. For the first three alloys, these figures were created based on the data from
Table 3.13, for the last alloy, based on the Table 3.9. However, these figures are
almost identical when considering different settings of the model.

Table 3.14 lists the coefficients of determination R2 that were computed for the
models (3.3), (3.6) and (3.8) considered in Rajagopal (2014); Devendiran et al. (2017).

3.5.1 Character of response of power-law model

The power-law model (3.19) can be rewritten into the form

tr ε =
1

3K

(
τ 20 + | trT|2

τ 20

) s′−2
2

trT, εd =
1

2µ

(
τ 20 + 3

2
|Td |2

τ 20

) q′−2
2

Td . (3.31)
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Figure 3.3: Best fit of the model (3.22) compared to (3.3) for Gum Metal.
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Figure 3.4: Best fit of the model (3.22) compared to (3.8) for Ti-30Nb-10Ta-5Zr alloy.
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Figure 3.5: Best fit for the model (3.22) compared to (3.8) for Ti-24Nb-4Zr-7.9Sn alloy.

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Ti−30Nb−12Zr  alloy

σ [Mpa]

η

● Tensile loading data
Power law model, the best fit
Exponential model, see Devendiran et al. (2017)

Figure 3.6: Best fit for the model (3.22) compared to (3.8) for Ti-24Nb-4Zr-7.9Sn alloy.
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Alloy τ0 s ′ q′ K µ R2 E ν

Gum Metal 0.5 GPa 7.65 2.23 6223GPa 20.2 GPa 0.9998 60.5 GPa 0.50
Ti-30Nb-10Ta-5Zr 0.5 GPa 9.15 2.49 334GPa 22.3 GPa 0.9998 65.6 GPa 0.47
Ti-24Nb-4Zr-7.9Sn 0.5 GPa 15.68 2.99 1126GPa 16.5 GPa 0.9997 49.3 GPa 0.49
Ti-30Nb-12Zr 0.5 GPa 56.49 4.29 180 252GPa 25.1 GPa 0.9980 75.4 GPa 0.50

Table 3.9: The values of the best fit, Young’s modulus E and Poisson’s ratio ν, when
τ0 = 0.5GPa under the assumption of the highly nonlinear bulk response (3.27).
Young’s modulus and Poisson’s ratio were estimated from the best fit data based
on the conversion relationships, see Table A.1, (p. 151).

Alloy τ0 s ′ q′ K µ R2 E ν

Gum Metal 1.1 GPa 28.5 2.82 1 283 552GPa 20.0 GPa 0.9999 60.1 GPa 0.50
Ti-30Nb-10Ta-5Zr 0.6 GPa 9.81 2.58 291GPa 22.4 GPa 0.9998 65.5 GPa 0.46
Ti-24Nb-4Zr-7.9Sn 0.4 GPa 12.13 2.65 1201GPa 16.5 GPa 0.9997 49.4 GPa 0.49
Ti-30Nb-12Zr 0.4 GPa 37.89 3.39 804 644GPa 25.7 GPa 0.9980 77.0 GPa 0.50

Table 3.10: The values of the best fit, Young’s modulus E and Poisson’s ratio ν,
when τ0 = σmax under the assumption of the highly nonlinear bulk response (3.27).
Young’s modulus and Poisson’s ratio were estimated from the best fit data based
on the conversion relationships, see Table A.1, (p. 151).

A set of values (τ0, s
′, q′,K ,µ) associated with the best fit can be used to predict

the character of the response for general deformation based on the equation (3.31).
The bulk and shear responses take the form

B(trT) = tr ε =
1

3K

(
τ 20 + | trT|2

τ 20

) s′−2
2

trT, (3.32a)

S(|Td |) = |εd | = 1

2µ

(
τ 20 + 3

2
|Td |2

τ 20

) q′−2
2

|Td |. (3.32b)

In Figures 3.7–3.17, there is a comparison of the bulk response (3.32a) with the
shear response (3.32b) for the best fit of each alloy. In Figures 3.18, 3.19 and 3.20,
we compare the bulk responses (3.32a) in tension and in compression for all alloys.
Figures 3.7–3.20 come in triplets. The first figure is for the highly nonlinear bulk re-
sponse condition (3.27), the second figure is for the highly nonlinear shear response
condition (3.28) and the third figure, when available, is for the best fit when maxi-
mizing the objective function (3.30). For simplicity, we include these figures only for
models, where τ0 = 0.5GPa.

In a simple tension, we are interested in the behavior of the ratio ν̂(σ) = −γ/η,
which is by (3.21) of the form

ν̂(σ) = −γ

η
= −

1
9K

( 1
τ0
)s

′−2(τ 20 + σ2)
s′−2
2 − 1

6µ
( 1
τ0
)q

′−2(τ 20 + σ2)
q′−2

2

1
9K

( 1
τ0
)s′−2(τ 20 + σ2)

s′−2
2 + 1

3µ
( 1
τ0
)q′−2(τ 20 + σ2)

q′−2
2

. (3.33)

When σ → 0, the equation (3.33) yields Poison’s ratio (3.29). In Figures 3.21 and
3.22, we depict the graph of function ν̂ from (3.33) for all alloys. Moreover, we
include Figure 3.23, which summarizes the behavior of the strain component γ for
all considered models in a simple tension.
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Figure 3.7: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Gum Metal when considering τ0 = 0.5GPa and the
highly nonlinear bulk response condition (3.27).
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Figure 3.8: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Gum Metal when considering τ0 = 0.5GPa and the
highly nonlinear shear response condition (3.28).
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Figure 3.9: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Gum Metal when considering τ0 = 0.5GPa and when
maximizing the objective function (3.30).
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Figure 3.10: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-30Nb-10Ta-5Zr alloy when considering τ0 = 0.5GPa
and the highly nonlinear bulk response condition (3.27).
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Figure 3.11: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-30Nb-10Ta-5Zr alloy when considering τ0 = 0.5GPa
and the highly nonlinear shear response condition (3.28).
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Figure 3.12: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-30Nb-10Ta-5Zr alloy when considering τ0 = 0.5GPa
and when maximizing the objective function (3.30).
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Figure 3.13: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-24Nb-4Zr-7.9Sn alloy when considering τ0 = 0.5GPa
and the highly nonlinear bulk response condition (3.27).
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Figure 3.14: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-24Nb-4Zr-7.9Sn alloy when considering τ0 = 0.5GPa
and the highly nonlinear shear response condition (3.28).
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Figure 3.15: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-24Nb-4Zr-7.9Sn alloy when considering τ0 = 0.5GPa
and when maximizing the objective function (3.30).
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Figure 3.16: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-30Nb-12Zr alloy when considering τ0 = 0.5GPa and
the highly nonlinear bulk response condition (3.27).
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Figure 3.17: Bulk and shear responses (3.32). The power-law model was derived for
the values of the best fit for Ti-30Nb-12Zr alloy when considering τ0 = 0.5GPa and
the highly nonlinear shear response condition (3.28).
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Figure 3.18: Comparison of the bulk responses (3.32a) including compression for all
alloys. Model is based on the best fit when considering τ0 = 0.5GPa and the highly
nonlinear bulk response condition (3.27).
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Figure 3.19: Comparison of the bulk responses (3.32a) including compression for all
alloys. Model is based on the best fit when considering τ0 = 0.5GPa and the highly
nonlinear shear response condition (3.28).
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Figure 3.20: Comparison of the bulk responses (3.32a) including compression for all
alloys. The model is based on the best fit when considering τ0 = 0.5GPa and when
maximizing the objective function (3.30).
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Figure 3.21: Comparison of the ratio −γ/η of the form (3.33) in a simple tension for
all alloys. The model is based on the best fit when considering τ0 = 0.5GPa. In
this graph, we include the best fit data when considering the highly nonlinear bulk
response condition (3.27), labelled NLB, and the best fit data obtained by maximizing
the objective function (3.30), labelled O.
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Figure 3.22: Comparison of the ratio −γ/η of the form (3.33) in a simple tension for
all alloys. The model is based on the best fit when considering τ0 = 0.5GPa and
the highly nonlinear shear response condition (3.28).
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Alloy τ0 s ′ q′ K µ R2 E ν

Gum Metal 0.5 GPa 2.23 7.65 6.7 GPa 18 668GPa 0.9998 60.5 GPa −1.00
Ti-30Nb-10Ta-5Zr 0.5 GPa 2.49 9.15 7.4 GPa 1001GPa 0.9998 65.6 GPa −0.97
Ti-24Nb-4Zr-7.9Sn 0.5 GPa 2.99 15.68 5.5 GPa 3378GPa 0.9997 49.3 GPa −0.99
Ti-30Nb-12Zr 0.5 GPa 4.29 56.49 8.4 GPa 540 755GPa 0.9980 75.4 GPa −1.00

Table 3.11: The values of the best fit, Young’s modulus E and Poisson’s ratio ν, when
τ0 = 0.5GPa under the assumption of the highly nonlinear shear response (3.28).
Young’s modulus and Poisson’s ratio were estimated from the best fit data based
on the conversion relationships, see Table A.1, (p. 151).

Alloy τ0 s ′ q′ K µ R2 E ν

Gum Metal 1.1 GPa 2.82 28.5 6.7 GPa 3 850 656GPa 0.9999 60.1 GPa −1.00
Ti-30Nb-10Ta-5Zr 0.6 GPa 2.58 9.81 7.5 GPa 873GPa 0.9998 65.5 GPa −0.96
Ti-24Nb-4Zr-7.9Sn 0.4 GPa 2.65 12.13 5.5 GPa 3604GPa 0.9997 49.4 GPa −0.99
Ti-30Nb-12Zr 0.4 GPa 3.39 37.89 8.6 GPa 2 413 931GPa 0.9980 77.0 GPa −1.00

Table 3.12: The values of the best fit, Young’s modulus E and Poisson’s ratio ν,
when τ0 = σmax under the assumption of the highly nonlinear shear response (3.28).
Young’s modulus and Poisson’s ratio were estimated from the best fit data based
on the conversion relationships, see Table A.1, (p. 151).

3.5.2 Discussion and concluding remarks

All beta phase titanium alloys that have been studied behave nonlinearly in their
elastic regime. Thus, it would be inappropriate to describe them using the linearized
elastic model. This can be documented by varying estimates of Young’s modulus
for different stress ranges, see Table 3.8. We have considered a class of power-
law models where the nonlinear dependence of the strain on the deviatoric part of
the stress and its trace are mutually separated and can have different polynomial
growth. Such a decomposition is more appropriate for capturing experimental data
as the experiments focus on measuring the effect of shear, dilation, etc. separately,
see see Criscione et al. (2000).

We have found out that the power-law models are able to describe tensile load-
ing behavior of Gum Metal and other beta phase titanium alloys in the full range
of nonlinear elastic response, see Figures 3.3–3.6. The power-law model (3.19) out-
performs or at least is as good as the existing models due to Rajagopal (2014) and
Devendiran et al. (2017). The coefficient of determination R2 is very close to the
ideal value of 1 for all the above mentioned models, see Tables 3.9–3.14.

The algorithm to find the best fit for a tensile loading experiment have to be
supplied with an extra constraint to yield a unique best fit. The effects of using
one of the constraints (3.27) or (3.28) on the bulk and shear responses in (3.19) are
mutually inverse. For the constraint (3.27), the shear response is close to the linear
one and the bulk response is highly nonlinear, see Figures 3.7, 3.10, 3.13, 3.16, 3.18.
Under the constraint (3.28), we have a highly nonlinear shear response and a bulk
response that is almost linear, see Figures 3.8, 3.11, 3.14, 3.17, 3.19. When comparing
the effects of the reversal of the constraints, exponents of the bulk term s ′ and
the shear term q′ are reversed, the bulk and shear moduli change according to the
relation (3.26), while Young’s modulus is the same for both conditions, see Tables
3.9–3.12.

There are compelling reasons to choose the constraint (3.27), which leads to the
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Alloy τ0 s ′ q′ K µ R2 E ν

Gum Metal 0.5 GPa 4.19 1.92 96.6 GPa 20.9 GPa 0.9998 58.6 GPa 0.40
Ti-30Nb-10Ta-5Zr 0.5 GPa 6.43 1.88 59.8 GPa 24.5 GPa 0.9998 64.6 GPa 0.32
Ti-24Nb-4Zr-7.9Sn 0.5 GPa 7.49 2.14 42.7 GPa 18.6 GPa 0.9997 48.8 GPa 0.31

Table 3.13: The values of the best fit, Young’s modulus E and Poisson’s ratio ν,
for τ0 = 0.5GPa when maximizing the objective function (3.30). Young’s modulus
and Poisson’s ratio were estimated from the best fit data based on the conversion
relationships, see Table A.1, (p. 151).

Alloy R2
exp Eexp R2

imp Eimp

Gum Metal 0.9982 63.7 GPa - -
Ti-30Nb-10Ta-5Zr 0.9997 63.8 GPa 0.9960 67.0 GPa
Ti-24Nb-4Zr-7.9Sn 0.9996 48.1 GPa 0.9993 50.5 GPa

Ti-30Nb-12Zr 0.9966 75.6 GPa 0.9944 61.6 GPa

Table 3.14: Basic parameters of the fits of the tensile loading data to models (3.3),
(3.6) and (3.8) that were performed in Rajagopal (2014); Devendiran et al. (2017).
We list the coefficients of determination R2

exp , R2
imp and Young’s modulus estimates

Eexp , Eimp for these models. For Gum Metal, R2
exp and Eexp are the parameters of

the model (3.3). For other alloys, R2
exp and Eexp are the parameters of the explicit

model (3.8) while R2
imp and Eimp are parameters of (3.6). For comparison with the

power-law model (3.22), see the last columns in Tables 3.9–3.12.

highly nonlinear bulk response, over the constraint (3.28). First, the latter constraint
(3.28) yields the positive transverse strain γ in the whole elastic range of tensile
loading for all alloys, see Figure 3.23. In turn, that leads to a negative function
ν̂(σ) = −γ/η, which in the limit σ → 0 leads to negative Poisson’s ratio close to
−1, see Figure 3.22. In contrast, using the constraint (3.27) yields positive Poisson’s
ratio for all alloys, see Figure 3.21. Moreover upon using the constraint (3.27), the
values of the shear modulus µ, see Table 3.9, are in the range that is close to the
VRH estimates of shear moduli of titanium alloys, see Table 3.7.

We now consider the physically more realistic condition (3.27), see Table 3.9. We
wish to compare material moduli with the previous works, see Table 3.14, and with
the VRH estimates, see Table 3.7. Young’s modulus in Table 3.9 for Gum Metal differs
by ∼ 3GPa from the estimate by the model (3.3), see Table 3.14. When compar-
ing the value of Young’s modulus with the model (3.8), we obtain the difference of
∼ 2GPa in case of Ti-30Nb-10Ta-5Zr alloy and the difference that is less than 1GPa
for other two alloys, see Table 3.14. Very good compliance with the VRH estimates,
see Table 3.7, was achieved for the values of the shear modulus and Young’s mod-
ulus from Table 3.9. Young’s modulus is within a range of VRH estimates for Gum
Metal and Ti-24Nb-4Zr-7.9Sn alloy. In case of Ti-30Nb-10Ta-5Zr alloy, the power-law
model predicts Young’s modulus ∼ 5GPa above the VRH range. Shear moduli from
Table 3.9 are ∼ 3GPa under the VRH range for Gum Metal and Ti-24Nb-4Zr-7.9Sn
alloy. In case of Ti-30Nb-10Ta-5Zr alloy, shear modulus is in the VRH range. Bulk
moduli K and Poisson’s ratios ν from Table 3.9 are above the VRH range for all
alloys. Our model predicts that these materials behave initially as incompressible
(very high bulk modulus and Poison’s ratio close to 0.5) while the compressibility
and generalized Poisson’s ratio (3.33) decrease as the stress grows, see Figures 3.18,
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Figure 3.23: Comparison of the strain component γ in a simple tension for all alloys.
Model is based on the best fit when considering τ0 = 0.5GPa. In this graph we
include data when considering nonlinear bulk response condition (3.27), labelled
NLB, with the opposite condition (3.28), labelled NLS, and with the best fit obtained
by maximizing the objective function (3.30), labelled O.

3.21.
To obtain the bulk modulus K and Poisson’s ratio ν that are close to VRH es-

timates (3.9) and (3.17), we introduce an objective function (3.30), which takes into
account deviation from the Poisson’s ratio given by the VRH estimate. Maximiza-
tion of the objective function over the search space of power-law exponents leads
to an unique set of the best fit parameters. The decrease in the quality of fit for
alloys considered is negligible, see Table 3.13. Using the modified algorithm, we were
able to obtain very good compliance with VRH estimates in terms of both the bulk
modulus K (3.9) and the shear modulus µ (3.17), compare Tables 3.7, 3.13. For Ti-
30Nb-12Zr alloy, the single crystal data are not available and this approach is not
applicable.

The main results of this chapter are considered for publication, see Kulvait et al.
(2017).
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4. Existence of solutions
There is a growing number of results regarding the mathematical analysis of the
BVPs that arise when studying implicitly constituted materials. The strain-limiting
model (2.32) in the setting of the anti-plane stress is related to the minimal surface
problem. Some existence results, depending on the geometry of Ω, can be found in
Buĺıček et al. (2015a). In Buĺıček et al. (2015b), the existence of solution to the problem
with strain-limiting response was established in the spatially periodic setting. The
full three-dimensional problem for the strain-limiting model with Dirichlet boundary
conditions considered on the whole part of the boundary was investigated in Buĺıček
et al. (2014), and the authors proved the existence of a weak solution for a ∈
(0, 1/3). In Buĺıček et al. (2014), the authors also established the existence of a
renormalized weak solution for any a > 0. In Beck et al. (2017), the mixed boundary
value problem for the limiting strain model was studied, and the whole theory was
strengthened in the sense that the weak solution exists for all a > 0 with the
caveat that the prescribed traction on the Neumann part of the boundary may not
be attained. The existence of solutions to the three-dimensional problem for the
strain-limiting model, where cracks and displacement discontinuities are allowed,
is studied by means of generalized variational inequalities in Itou et al. (2016). In
Knees – Sändig (2004, 2006), the generalised Ramberg-Osgood model (2.19), see
Definition 2.10, (p. 24), is studied by means of a minimalization problem for the
stress based complementary energy functional of the type (2.21). Regularity results
and the existence of solutions are established. These results can be applied to the
analysis of power-law models (2.20), see Definition 2.11, (p. 24), with a linear response
to the mean normal stress s ′ = 2 and q′ ∈ [2,∞).

In this chapter, we derive the weak formulation of the Problem (P), see Defi-
nition 1.1, (p. 7), which works with anisotropic spaces, studied in Geymonat et al.
(1986). We prove the existence of weak solutions to this problem when the con-
stitutive equation is of the form (2.20). We divide the proof into two parts. First,
we introduce an ε regularized problem with a proper smoothing operator and show
the existence of the weak solution to the ε regularized problem. Using the Galerkin
method, we prove the existence of a sequence of solutions in finite-dimensional
subspaces of the native space of weak solutions. We obtain apriori estimates and
show that we can pass solutions of the Galerkin system to the limit in T and in u
to obtain the solution of the ε regularized problem. Finally, we show that as ε → 0,
the sequence of the solutions to the ε regularized problem converges to the weak
solution of the original problem. The proof of the existence of solutions works with
the system of two coupled first order partial differential equations and it does not
invert or assume invertibility of the constitutive function G.

In the spatial dimension n ∈ {2, 3}, for s, q ∈ (1,∞), where Hölder conjugates
s ′ and q′ are exponents of the power law dependence (2.20), we show the existence
of the solution (u,T), so that

u ∈ Lmin(s,q)(Ω)n, (E u)d ∈ Lq(Ω)n×n
sym , div u ∈ Ls(Ω),

and

Td ∈ Lq
′
(Ω)n×n

sym , trT ∈ Ls
′
(Ω),

59



where u has the trace in

Tr u ∈ W 1− 1
min(s,q)

,min(s,q)(∂Ω)n. (4.1)

For n = 2, q ∈ (1,∞), s ∈ (max(1, 2q
2+q

),∞), we can improve this result, using
compact embedding, to obtain solutions

u ∈ Lq(Ω)2, (E u)d ∈ Lq(Ω)2×2
sym , div u ∈ Ls(Ω),

where the trace of u is still in the space given by (4.1). In the spatial dimension
n = 3, we utilize the generalized Korn inequality where only the deviatoric part of
the symmetric gradient is used instead of the full symmetric gradient, see Schirra
(2012). We get solutions in the space

u ∈ Lq(Ω)3, (E u)d ∈ Lq(Ω)3×3
sym , div u ∈ Lmax(s,q)(Ω),

where u has the trace in W 1− 1
q
,q(∂Ω)3.

4.1 Auxiliary results
In Section A.2 (p. 132), we reviewed the most important results regarding the analysis
of PDEs. Here, we list some auxiliary lemmas, definitions and less-known results,
which we utilize later when proving the existence of the solution to the variational
problem. Unless stated otherwise, by Ω we understand an open, bounded, simply
connected subset of Rn, n ∈ {2, 3}.

Lemma 4.1. Let a1, ... , ak ≥ 0, k ∈ N, g > 0. Let p1, ... , pk ≥ 1. If a1 + ... + ak ≥ g ,
then there exists C = C (k , p1, ... , pk) such that

ap11 + ... + apkk ≥ C min(gp1 , ... , gpk ).

Proof. There is no loss of generality in assuming that a1 ≤ ... ≤ ak . Hence

ap11 + ... + apkk
min(gp1 , ... , gpk )

≥ apkk
gpk

≥ apkk
(a1 + ... + ak)pk

≥ apkk
(kak)pk

≥ 1

kpk
. (4.2)

Since pk in (4.2) is the exponent of the largest term ak , in the full generality we have
that

ap11 + ... + apkk
min(gp1 , ... , gpk )

≥ min(
1

kp1
, ... ,

1

kpk
).

Lemma 4.2. Let f : Rn → Rn be a continuous function. If there exists some r > 0
such that

f(x) · x > 0, ∀x ∈ Rn : |x| = r ,

then there exists y ∈ Rn, |y| ≤ r , satisfying f(y) = 0.

Proof. See (Evans, 2010, p. 529).

Lemma 4.3. Suppose that T ∈ Lq
′
(Ω)n×n

sym , v ∈ W 1,q(Ω)n. Then∫
Ω

T : ∇v dx =

∫
Ω

T : E v dx .
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Proof. From the symmetry of T, we have that

T :
1

2

(
∇v − (∇v)⊤

)
= 0.

By splitting ∇v into the symmetric and antisymmetric part

T : ∇v = T :
1

2

(
∇v + (∇v)⊤

)
+ T :

1

2

(
∇v − (∇v)⊤

)
  

0

= T : E v,

we establish the formula.

4.1.1 Proper function spaces

In what follows, we establish the existence of the weak solution to the Problem
(P), see Definition 1.1, (p. 7), when subject to the power-law response (2.20), see
Definition 2.11, (p. 24). We have been using the notation of the power law exponents
with primes, s ′ and q′, to emphasize their meaning for the weak formulation of the
Problem (P). Let s and q be Hölder conjugates of exponents s ′ and q′

s =
s ′

s ′ − 1
, q =

q′

q′ − 1
,

then the natural Lebesque space for the trace of the small strain tr ε is Ls and the
natural space for the deviatoric part of the small strain εd is Lq. The natural space
for the trace of the stress trT is Ls

′ and the natural space for the deviatoric part of
the stress Td is Lq

′ . Let us define these function spaces. Recall that the deviatoric
part of the tensor T is denoted by Td .

Definition 4.4. Let p, q, s ∈ (1,∞). The spaces of functions (L(q,s)(Ω), ∥.∥(q,s)),
(W 1,(p,q,s)(Ω), ∥.∥1,(p,q,s)), (W 1,(q,s)(Ω), ∥.∥1,(q,s)), (W 1,(q,∗)(Ω), ∥.∥1,(q,∗)) are defined
below.

L(q,s)(Ω) = {E : Ed ∈ Lq(Ω)n×n
sym , trE ∈ Ls(Ω)},

with the norm
∥E∥(q,s) = ∥Ed∥q + ∥trE∥s .

W 1,(p,q,s)(Ω) = {u : u ∈ Lp(Ω)n, (E u)d ∈ Lq(Ω)n×n
sym , div u ∈ Ls(Ω)},

with the norm
∥u∥1,(p,q,s) = ∥u∥p + ∥(E u)d∥q + ∥div u∥s .

W 1,(q,s)(Ω) = W 1,(q,q,s)(Ω),

with the norm
∥u∥1,(q,s) = ∥u∥1,(q,q,s).

W 1,(q,∗)(Ω) = {u : u ∈ Lq(Ω)n, (E u)d ∈ Lq(Ω)n×n
sym },

with the norm
∥u∥1,(q,∗) = ∥u∥q + ∥(E u)d∥q.
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The spaces from the Definition 4.4 are Banach spaces. Korn’s inequality and
miscellaneous results of duality, traces, density and orthogonality for these spaces
were established in Geymonat et al. (1986) in the context of the analysis of Norton-
Hoff materials. Some additional results regarding these spaces can be found in
Fuchs – Seregin (2000).

Definition 4.5 (Standard domain properties). Recall that by Ω we understand an
open, bounded, simply connected subset of Rn, n ∈ {2, 3}. From now on, we make the
following additional assumption that Ω ∈ C 0,1, ∂Ω = ΓD ∪ ΓN , where ΓD and ΓN are
open, disjoint parts of the boundary ∂Ω.

We will denote by |ΓD | > 0 the requirement that (n− 1)-dimensional Hausdorff
measure of ΓD is positive.

Lemma 4.6 (Korn’s inequality). Let Ω ∈ C 0,1, q ∈ (1,∞), then there exists a constant
C (Ω, q) > 0, so that

∀u ∈ W 1,q(Ω)n, ∥u∥1,q ≤ C (Ω, q)(∥u∥q + ∥E u∥q).

Proof. See Korn (1907).

Lemma 4.7 (Generalized Korn’s inequality). Let n ≥ 3, Ω ∈ C 0,1, q ∈ (1,∞). Then
the spaces W 1,(q,∗)(Ω) and W 1,q(Ω)n are equivalent in the sense of Definition A.77,
(p. 137) and there exists a constant C (Ω, q) > 0 such that

∥u∥1,q ≤ C (Ω, q)(∥u∥q + ∥(E u)d∥q), ∀u ∈ W 1,(q,∗)(Ω).

Proof. See Schirra (2012).

For n = 2, Lemma 4.7 holds in the space of tracefree functions W 1,q
0 (Ω)2.

However, it does not hold in general, see (Schirra, 2012, p. 150).

Theorem 4.8. Let Ω ∈ C 0,1, q ∈ (1,∞). Then the spaces W 1,(q,q)(Ω) and W 1,q(Ω)n

are equivalent in the sense of Definition A.77, (p. 137), and there exist two constants
C1,C2 > 0 such that

C1∥u∥1,q ≤ ∥u∥1,(q,q) ≤ C2∥u∥1,q, ∀u ∈ W 1,(q,q)(Ω).

Proof. See (Geymonat et al., 1986, Theorem 1).

Theorem 4.9. Let Ω ∈ C 0,1. Let q ∈ (1,∞), s ∈ [q,∞). Then there exists a
continuous linear operator Tr : W 1,(q,s)(Ω) → W 1− 1

q
,q(∂Ω)n that is onto. Moreover,

there exists a continuous lifting operator Lf : W 1− 1
q
,q(∂Ω)n → W 1,(q,s)(Ω).

Proof. See (Geymonat et al., 1986, Proposition 2).

We may now define the meaning of the trace operator in W 1,(p,q,s)(Ω).

Definition 4.10 (Trace). Let p, q, s ∈ (1,∞). In W 1,(p,q,s)(Ω), we understand the trace
Tr as the operator defined by Theorem 4.9 on the space W 1,(min(p,q,s),min(p,q,s))(Ω).

For the space W 1,(q,s)(Ω), we define the trace separately in n = 2 and n = 3.
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Definition 4.11 (Trace in n = 2). Let n = 2. Let q, s ∈ (1,∞). For the space
W 1,(q,s)(Ω), we understand the trace Tr as the operator defined by Theorem 4.9 on
W 1,(min(s,q),min(s,q))(Ω).

Definition 4.12 (Trace in n = 3). Let n = 3. Let q, s ∈ (1,∞). For the spaces
W 1,(q,s)(Ω) and W 1,(q,∗)(Ω), we understand the trace Tr as the operator defined by
Theorem 4.9 on W 1,(q,q)(Ω).

Lemma 4.7 and Theorem 4.8 establish the equivalence of spaces W 1,(q,∗)(Ω),
W 1,(q,q)(Ω) and W 1,q(Ω)n for the spatial dimension n = 3 and q ∈ (1,∞). Consid-
ering a natural embedding W 1,(q,s)(Ω) ⊂ W 1,(q,∗)(Ω), Lemma 4.7 and Theorem 4.8
may be summarized by saying that for s ∈ (1,∞), there exists a constant C > 0
such that

∥u∥1,q ≤ C∥u∥1,(q,s), ∀u ∈ W 1,(q,s)(Ω).

We have also the hierarchy

W 1,(q,s)(Ω) ⊂ W 1,(q,∗)(Ω) ⊂ W 1,(q,q)(Ω). (4.3)

With the help of (4.3), we clarify that the trace operator in Definition 4.12 is well
defined.

Definition 4.13 (Boundary spaces). Let Ω satisfy the assumptions of Definition 4.5 of
standard domain properties, Γ ⊂ ∂Ω, Γ open. Let r ∈ (0, 1), q ∈ (1,∞). We define the
space W r ,q(Γ) as a subspace of W r ,q(∂Ω), which contains only the functions vanishing
on ∂Ω \ Γ.

Now, we have all the tools in place to define natural spaces for the weak solutions.

Definition 4.14 (Natural spaces for the weak solutions). Let Ω satisfy the assumptions
of Definition 4.5 of standard domain properties with |ΓD | > 0, let p, q, s ∈ (1,∞), then
we define the natural spaces for the weak solutions as follows

W
(p,q,s)
ΓD

(Ω) = {u : u ∈ W 1,(p,q,s)(Ω),u|ΓD = 0},

and
W

(q,s)
ΓD

(Ω) = {u : u ∈ W 1,(q,s)(Ω),u|ΓD = 0}.

Lemma 4.15 (Korn-Poincaré inequality). Let Ω satisfy the assumptions of Defini-
tion 4.5 of standard domain properties with |ΓD | > 0. Let q ∈ (1,∞). Then there
exists a constant C > 0 such that

∥u∥q ≤ C (Ω, q)∥E u∥q, ∀u ∈ W 1,q(Ω)n, u|ΓD = 0.

Proof. Suppose the lemma was false. Then there exists a sequence {uk} ⊂ Lq(Ω)n,
∥uk∥q = 1 for k ∈ N, such that

∥uk∥q > k∥E uk∥q,

from which follows
∥E uk∥q <

1

k
. (4.4)
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From (4.4), it may be concluded that

E uk → 0 in Lq(Ω)n×n
sym . (4.5)

Using Korn’s inequality (Lemma 4.6) and Eberlein-Šmulian Theorem A.75, (p. 136), it
can be seen that

uki ⇀ u in W 1,q(Ω)n.

From compact embedding Theorem A.89, (p. 138), we have that u ∈ W 1,q(Ω)n ⊂⊂
Lq(Ω)n and thus

uki → u in Lq(Ω)n, ∥u∥q = 1.

We obtain E u = 0 from (4.5). Employing the result from Hlaváček – Nečas (1970), u
has the structure

ui = Wijxj + ci , Wij = −Wji , i , j ∈ {1, ... , n}, (4.6)

where Wij , ci are constants. Since Ω ∈ C 0,1, we can assume that there exists α > 0
such that some part of ΓD is described by the Lipschitz mapping a, where

x ′k ∈ (−α,α), k ∈ {1, ... , n − 1},
xn = a(x ′1, ... , x

′
n−1),

and (x ′1, ... , x
′
n−1, a(x

′
1, ... , x

′
n−1)) ⊂ ΓD . This involves no loss of generality. On the

assumed part of the boundary we have that

un =
n−1∑
j=1

Wnjx
′
j +Wnna(x

′
1, ... , x

′
n−1) + cn. (4.7)

Since u = 0 on ΓD and Wnn = 0, we can rewrite (4.7) as

0 =
n−1∑
j=1

Wnjx
′
j + cn, x ′j ∈ (−α,α),

which yields cn = 0 and Wnj = 0 for j ∈ {1, ... , n}. We now turn to the case
i ∈ {1, ... , n − 1} where

ui =
n−1∑
j=1

Wijx
′
j +Wina(x

′
1, ... , x

′
n−1) + ci .

Since Win = −Wni = 0 and ui = 0, following the previous argument, we obtain
Wij = 0, ci = 0 for all i , j ∈ {1, ... , n}. As the u is of the form (4.6), we conclude
that u = 0 in Ω, which contradicts ∥u∥q = 1.

Theorem 4.16. Let Ω satisfy the assumptions of Definition 4.5 of standard domain
properties with |ΓD | > 0. Let s, q ∈ (1,∞). There exists a positive constant C , such
that for every u ∈ W

(min(s,q),q,s)
ΓD

(Ω), we have that

∥u∥min(s,q) ≤ C (∥(E u)d∥q + ∥div u∥s).

Proof. Proof is a consequence of Lemma 4.15.
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Theorem 4.17. Let n = 3, let Ω satisfy the assumptions of Definition 4.5 of standard
domain properties with |ΓD | > 0. Let s, q ∈ (1,∞). There exists a positive constant
C > 0 such that for every u ∈ W

(q,s)
ΓD

(Ω), we have that

∥u∥q ≤ C (∥(E u)d∥q + ∥div u∥s).

Proof. Assume the opposite. Then there exists a sequence {uk} ⊂ Lq(Ω)n,

∥uk∥q = 1, (4.8)

for k ∈ N, such that

∥uk∥q > k(∥(E uk)
d∥q + ∥div uk∥s),

and therefore
∥(E uk)

d∥q + ∥div uk∥s <
1

k
. (4.9)

The equation (4.9) yields

(E uk)
d → 0 in Lq(Ω)3×3

sym ,

div uk → 0 in Ls(Ω)
(4.10)

Applying Lemma 4.7 on (4.8) and (4.9) yields that uk is a bounded sequence in
W 1,q(Ω)3. Therefore,

∇uk ∈ Lq(Ω)3×3, ∥∇uk∥q ≤ C (Ω, q)

and specially
div uk ∈ Lq(Ω), ∥div uk∥q ≤ C (Ω, q). (4.11)

Moreover, by Eberlein-Šmulian Theorem A.75 and by the compact embedding the-
orem Theorem A.89, (p. 138), there is a subsequence {ki , i ∈ N} such that

uki ⇀ u in W 1,q(Ω)3,

uki → u in Lq(Ω)n, ∥u∥q = 1.
(4.12)

Combining (4.10) and (4.12) yields ∥E u∥min(s,q) = 0 and therefore E u = 0. Using
Lemma 4.15, we have u = 0, which contradicts ∥u∥q = 1.

We shall remark that for n = 3 in case of s < q, Theorem 4.17 was proven as a
consequence of Lemma 4.7. For n = 2, Lemma 4.7 does not hold, thus to prove a
variant of Theorem 4.17 we need to employ compact embedding. It yields the claim
of the type stated in Theorem 4.7 for q ∈ (1,∞) and s ∈ ( 2q

2+q
,∞).

Theorem 4.18. Let n = 2, let Ω satisfy the assumptions of Definition 4.5 of standard
domain properties with |ΓD | > 0. Let q ∈ (1,∞), s ∈ (max(1, 2q

2+q
),∞). There exists

a positive constant C such that for every u ∈ W
(q,s)
ΓD

(Ω), we have that

∥u∥q ≤ C (∥(E u)d∥q + ∥div u∥s).
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Proof. For contradiction, as in Theorem 4.17, we assume that there exists a sequence
{uk} ⊂ Lq(Ω)n that satisfies

∥uk∥q = 1, (4.13)

for k ∈ N, such that
∥(E uk)

d∥q + ∥div uk∥s <
1

k
. (4.14)

The equation (4.14) yields

(E uk)
d → 0 in Lq(Ω)2×2

sym ,

div uk → 0 in Ls(Ω).
(4.15)

Applying Korn’s inequality, Lemma 4.6, on (4.13) and (4.14) yields that uk is a bound-
ed sequence in W 1,s(Ω)2. Since s ∈ (max(1, 2q

2+q
),∞), we can apply Rellich-

Kondrachov Compactness Theorem A.89, (p. 138), which yields

uki ⇀ u in W 1,s(Ω)2,

uki → u in Lq(Ω)n, ∥u∥q = 1.
(4.16)

Combining (4.15) and (4.16) yields ∥E u∥min(s,q) = 0 and therefore E u = 0. Using
Lemma 4.15, we have u = 0, which contradicts ∥u∥q = 1.

Note that Theorem 4.18 holds for every s ∈ [2,∞). Rephrasing the results of
Theorems 4.16–4.18, we obtain the following result.

Theorem 4.19. Let Ω satisfy the assumptions of Definition 4.5 of standard domain
properties with |ΓD | > 0. Let p, q ∈ (1,∞), then

∥u∥1,(min(q,s),q,s) ≤ C (∥(E u)d∥q + ∥div u∥s), ∀u ∈ W
1,(min(q,s),q,s)
ΓD

, (4.17)

Moreover, for n = 3 and for n = 2, when q ∈ (1,∞), s ∈ (max(1, 2q
2+q

),∞), there
exists a C > 0 such that

∥u∥1,(q,s) ≤ C (∥(E u)d∥q + ∥div u∥s), ∀u ∈ W
1,(q,s)
ΓD

. (4.18)

Proof. The inequality (4.17) follows from Theorem 4.16. The inequality (4.18) is in case
of n = 3 a consequence of Theorem 4.17 and in case of n = 2 a consequence of
Lemma 4.18 .

4.2 Variational formulation of boundary value prob-
lem

This section is intended to establish the weak variational version of the Problem
(P), see Definition 1.1, (p. 7). Throughout this chapter, we will be using the following
notation. Let f ∈ Lp(Ω), g ∈ Lp

′
(Ω), u ∈ Lp(Ω)n, v ∈ Lp

′
(Ω)n, U ∈ Lp(Ω)n×n and

V ∈ Lp
′
(Ω)n×n, then

(f , g) =

∫
Ω

fg dx , (u, v) =

∫
Ω

u · v dx , (U,V) =

∫
Ω

U : V dx .
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When deriving the variational formulation of the Problem (P) with the constitu-
tive equation (2.20) of the power-law type, see Definition 2.11, (p. 24), we have the
exponents q, s ∈ (1,∞). A natural space for solutions to this problem is (u,T) ∈
(W 1,(p,q,s)(Ω), L(q

′,s′)(Ω)), where in the full generality p = min(q, s). We assume
that for the function u0 ∈ W 1− 1

p
,p(ΓD)

n, there exists the function û ∈ W 1,(p,q,s)(Ω)
such that û|ΓD = u0. We can rephrase the Dirichlet boundary condition (1.1c) by
requiring that the solution satisfies u − û ∈ W

1,(p,q,s)
ΓD

(Ω). By multiplying the con-
stitutive equation (1.1b) by the test function S ∈ L(q

′,s′)(Ω) and by integrating over
Ω, we obtain the weak form of (1.1b) that is (E u,S) = (G(T),S). To deal with the
equilibrium equation, consider a general f ∈ (W

1,(p,q,s)
ΓD

(Ω))∗, then multiply (1.1a) by
the test function χ ∈ W

1,(p,q,s)
ΓD

(Ω) and integrate over Ω. According to Theorem 4.9,
the test function χ has the trace in the space W 1− 1

p
,p(ΓN)

n. In the most gener-
al case, the Neumann boundary condition (1.1d) can be reformulated by requiring
g ∈ (W 1− 1

p
,p(ΓN)

n)∗. Integrating by parts and using the assertion

(T, E χ) = (T,∇χ), ∀χ ∈ W
1,(p,q,s)
ΓD

(Ω)

due to Lemma 4.3, we get the weak form of the equilibrium equation (1.1a) in the
form (T, E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩. The weak formulation of the Problem (P) is
established in the following definition.

Definition 4.20 (Weak Problem (P)). Let Ω satisfy the assumptions of Definition 4.5
of standard domain properties with |ΓD | > 0. Let b, p, s, q ∈ (1,∞). Let functions û,
g, f be from the following spaces

(û, g, f) ∈ (W 1,(p,q,s)(Ω), (W 1− 1
b
,b(ΓN)

n)∗, (W
1,(p,q,s)
ΓD

(Ω))∗)

and G : L(q
′,s′)(Ω) → L(q,s)(Ω) be a monotone, radially continuous operator. We

call the pair (u,T) ∈ (W 1,(p,q,s)(Ω), L(q
′,s′)(Ω)) a solution to the weak Problem (P), if

uH = u− û ∈ W
1,(p,q,s)
ΓD

(Ω) and if

(E u,S) = (G(T),S),

(T, E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩
(4.19)

hold for every pair (S,χ) ∈ (L(q
′,s′)(Ω),W

1,(p,q,s)
ΓD

(Ω).

According to Theorem 4.9 for the function û from Definition 4.20, there exists
some u0 ∈ W 1− 1

min(p,q,s)
,min(p,q,s)(ΓD)

n such that û|ΓD = u0. In order to establish
the existence of the solution to the weak Problem (P) in W

1,(p,q,s)
ΓD

(Ω), we define a
regularizing operator.

Definition 4.21. Let the operator H : W
1,(p,q,s)
ΓD

(Ω) × W
1,(p,q,s)
ΓD

(Ω) → R, for any
u, v ∈ W

1,(p,q,s)
ΓD

(Ω), be defined as

H(u, v) = (|div u|s−2 div u, div v) + (
⏐⏐(E u)d

⏐⏐q−2
(E u)d , (E v)d). (4.20)

Now we can us define an ε regularized weak Problem (P).
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Definition 4.22 (ε-regularized weak Problem (P)). Let Ω satisfy the assumptions of
Definition 4.5 of standard domain properties with |ΓD | > 0. Let b, p, s, q ∈ (1,∞). Let
functions û, g, f be from the following spaces

(û, g, f) ∈ (W 1,(p,q,s)(Ω), (W 1− 1
b
,b(ΓN)

n)∗, (W
1,(p,q,s)
ΓD

(Ω))∗),

and G : L(q
′,s′)(Ω) → L(q,s)(Ω) be a monotone, radially continuous operator. We

call the pair (u,T) ∈ (W 1,(p,q,s)(Ω), L(q
′,s′)(Ω)) a solution to the ε regularized weak

Problem (P), if uH = u− û ∈ W
1,(p,q,s)
ΓD

(Ω) and if

(E u,S) = (G(T),S),

(T, E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩ − εH(uH ,χ),
(4.21)

where H is given by (4.20), hold for every pair (S,χ) ∈ (L(q
′,s′)(Ω),W

1,(p,q,s)
ΓD

(Ω)).

Note that for ε = 0, the regularized weak problem reduces to the weak problem.

4.3 Existence of solutions

Prior to proving the existence of solutions to the weak Problem (P), we need to
impose some restrictions on the form of the operator G. The following assumption
on the constitutive function G is coherent with the constitutive equation (2.20) for
the power-law model from Definition 2.11, (p. 24). It will be shown in Section 4.4.

Definition 4.23. Let s, q ∈ (1,∞). We assume that G : L(q
′,s′)(Ω) → L(q,s)(Ω) is a

monotone, radially continuous operator for which there exist constants C1 > 0, C2 > 0
such that for all T ∈ L(q

′,s′)(Ω), the following is true

(G(T),T) ≥ C1(∥Td∥q
′

q′ + ∥G(T)d∥qq + ∥trT∥s′s′ + ∥trG(T)∥ss)− C2|Ω|. (4.22)

The following theorem establishes the existence of solutions to the ε regularised
weak problem for any G that fulfils (4.22). As for prerequisites, some important
results from the theory of monotone operators are formulated in Section A.2.4,
(p. 139).

Theorem 4.24 (Existence of a weak solution to the regularized problem). Let ε > 0.
Let Ω satisfy the assumptions of Definition 4.5 of standard domain properties with
|ΓD | > 0. Let s, q ∈ (1,∞), p = b = min(s, q). Let functions û, g, f be from the
following spaces

(û, g, f) ∈ (W 1,(p,q,s)(Ω), (W 1− 1
b
,b(ΓN)

n)∗, (W
1,(p,q,s)
ΓD

(Ω))∗), (4.23)

and G : L(q
′,s′)(Ω) → L(q,s)(Ω) be a monotone, radially continuous operator that

satisfies (4.22). Then there exists a pair

(u,T) ∈ (W 1,(p,q,s)(Ω), L(q
′,s′)(Ω)), (4.24)

which solves (4.21). In other words, (u,T) is a solution to the ε regularized weak
problem (P).
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When n = 3, then there exists a solution (4.24) to the ε regularized weak problem
(P) even under the assumption p = b = q in (4.23). Moreover, such a solution satisfies
div u ∈ Lmax(s,q)(Ω).

When n = 2, q ∈ (1,∞), s ∈ (max(1, 2q
2+q

),∞), then there exists a solution
(4.24) to the ε regularized weak problem (P) even under the assumption p = q and
b = min(s, q) in (4.23).

Proof. Note that since we have p ≤ max(q, s), then according to Theorem 4.9 for the
function u0 ∈ W 1− 1

q
,q(ΓD)

n, we can always find the function û ∈ W 1,(q,max(q,s))(Ω) ⊂
W 1,(p,q,s)(Ω) such that û|ΓD = u0, therefore the function û satisfying (4.23) can be
constructed from boundary data. We proceed with the proof in the following steps:

• Derivation of the Galerkin system

• Showing the existence of solutions to the Galerkin system

• Deriving apriori estimates

• Passing to the limit in T and u

Step 1 - Derivation of the Galerkin system
Let {S̄i , i ∈ N} represent a sequence which is dense in L(q

′,s′)(Ω) and {χ̄j , j ∈
N} represent a sequence which is dense in W

1,(p,q,s)
ΓD

(Ω). We construct the se-
quence {Si , i ∈ N} such that in the k-th step we pick S̄k and check whether
S̄k ∈ span{S̄i , i = 1, ... , k − 1}. If this assertion is true, we exclude it from the se-
quence. If the assertion is false, we add the element S̄k/∥S̄k∥(q′,s′) at the end of the
sequence. We construct the sequence {χj , j ∈ N} from the sequence {χ̄j , j ∈ N}
by an analogous procedure.

For (n,m) ∈ N2, we define finite-dimensional vector spaces Vn, Um and the
direct sum space Zn,m = Vn ⊕ Um so that any element (S,χ) ∈ Zn,m could be
written as

S =
n∑

i=1

αiSi , χ =
m∑
j=1

βjχj , (4.25)

where αi , βj ∈ R. We also define spaces

V∞ =
⋃
i∈N

Vi , U∞ =
⋃
i∈N

Ui , Z∞,∞ = V∞ ⊕ U∞. (4.26)

Note that V∞, U∞ and Z∞,∞ defined by (4.26) are actually vector spaces since
they are nested in a way that V1 ⊆ V2 ...V∞ ⊆ L(q

′,s′)(Ω) and U1 ⊆ U2 ...U∞ ⊆
W

1,(p,q,s)
ΓD

(Ω). Moreover, V∞ is dense in L(q
′,s′)(Ω) and U∞ is dense in W

1,(p,q,s)
ΓD

(Ω).
For (n,m) ∈ N2, we seek a pair (Tn,um

H ) ∈ Zn,m such that for any pair of test
functions (S,χ) ∈ Zn,m, the following is true

(E û,S) + (E um
H ,S) = (G(Tn),S),

εH(um
H ,χ) + (Tn, E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩.

(4.27)

Since the elements S ∈ Vn, χ ∈ Um can be written as a sum (4.25), it is sufficient
to use S ∈ {Si , i = 1, ... , n} and χ ∈ {χj , j = 1, ... ,m} as test functions in (4.27).
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It is convenient to consider (Tn,um
H ) to be of the form (4.25), such that

Tn(y) =
n∑

i=1

yiSi , um
H (y) =

m∑
j=1

yn+jχj , (4.28)

where y ∈ Rn+m. The system of equations (4.27) when combined with (4.28) can be
understood as a system of nonlinear algebraic equations for unknown coefficients
yi ∈ R, i ∈ {1, ... , n, n + 1, ... , n +m}, we call it the Galerkin system.
Step 2 - Showing the existence of solutions to the Galerkin system

We will construct the function h : Rn+m → Rn+m such that

hi(y) = (G(Tn(y)),Si)− (E û,Si)− (E um
H (y),Si), i ∈ {1, ... , n},

hi(y) = εH(um
H (y),χi) + (Tn(y), E χi),

− ⟨g,χi⟩ΓN − ⟨f,χi⟩, i ∈ {n + 1, ... , n +m}.

Using (4.28), we get the scalar product h(y) · y of the form

h(y) · y = (G(Tn(y)),Tn(y)) + ε∥(E um
H )

d∥qq + ε∥div um
H∥ss

− (E û,Tn(y))− ⟨g,um
H (y)⟩ΓN − ⟨f,um

H (y)⟩.
(4.29)

In order to apply Lemma 4.2, we need to estimate the scalar product (4.29) from
below. To get a lower bound on the first term on the right in (4.29), we use (4.22),
which yields

(G(Tn(y)),Tn(y)) ≥ C1(∥(Tn(y))d∥q
′

q′ + ∥G(Tn(y))d∥qq
+ ∥trTn(y)∥s′s′ + ∥trG(Tn(y))∥ss)− C2|Ω|.

(4.30)

To obtain a lower bound on the second and the third term on the right in (4.29), we
apply Theorem 4.19 to conclude the existence of a constant C3 > 0 such that

∥(E um
H )

d∥qq + ∥div um
H∥ss ≥ C3min(∥um

H∥
q
1,(p,q,s), ∥u

m
H∥s1,(p,q,s)). (4.31)

Now, we wish to construct a lower bound on the last three terms on the right in
(4.29), which can be reformulated as constructing an upper bound on the expression

(E û,Tn(y)) + ⟨g,um
H (y)⟩ΓN + ⟨f,um

H (y)⟩. (4.32)

The first term in (4.32) can be estimated using the Hölder inequality and the Young’s
inequality. Therefore there exist constants C4,C5 > 0 such that

(E û,Tn(y)) ≤ C1

2
∥(Tn(y))d∥q

′

q′+
C1

2
∥trTn(y)∥s′s′+C4∥(E û)d∥qq+C5∥div û∥ss . (4.33)

We proceed to show an upper bound on the boundary term ⟨g,um
H (y)⟩ΓN . Notice

that um
H (y) is understood as an element of W 1,(b,b,b)

ΓD
(Ω). Therefore it has the trace

established by Theorem 4.9 in the space W 1− 1
b
,b(ΓN)

n. It is clear that there exists
a constant C6 > 0 such that

⟨g,um
H (y)⟩ΓN ≤ ∥g∥∥Tr(um

H (y))∥ ≤ C6∥g∥∥um
H (y)∥1,(b,b,b), (4.34)
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where ∥g∥ denotes the norm of g in (W 1− 1
b
,b(ΓN)

n)∗ and ∥Tr(um
H (y))∥ denotes the

norm of the trace Tr of um
H (y) in W 1− 1

b
,b(ΓN)

n. It remains to show that

W
1,(p,q,s)
ΓD

(Ω) ⊂ W
1,(b,b,b)
ΓD

(Ω). (4.35)

When b = min(s, q), p > b, it is easy to check that (4.35) is true. We now turn to
the case of the only exception, which is the spatial dimension n = 3, p = b = q
and s < q, for which we apparently don’t have the embedding (4.35). To show
that (4.35) is true, we combine the natural embedding W

1,(q,s)
ΓD

(Ω) ⊂ W
1,(q,∗)
ΓD

(Ω)

with the equivalence of the spaces W 1,(q,∗)(Ω) and W 1,(q,q)(Ω) in the sense of
Definition A.77, (p. 137) that follows from Lemma 4.7 and Theorem 4.8. Therefore
for n = 3, s < q, the spaces W

1,(q,q,s)
ΓD

(Ω) and W
1,(q,q,q)
ΓD

(Ω) are also equivalent,
which yields (4.35). Summarizing (4.35) and (4.34), we have a constant C7 > 0, such
that

⟨g,um
H (y)⟩ΓN ≤ C7∥g∥∥um

H (y)∥1,(p,q,s). (4.36)

In fact, for n = 3, b = p = q we have even more powerful estimate than (4.35) of
the form

W
1,(q,∗)
ΓD

(Ω) ⊂ W
1,(q,q)
ΓD

(Ω). (4.37)

That means, when having (4.37), we don’t even need to consider the divergence term
in ∥um

H∥1,(q,s) and we can use the norm ∥um
H∥1,(q,∗) in (4.36) instead. In order to unify

the treatment of all cases in this theorem, we use the estimate (4.36) universally.
By applying Young’s inequality on (4.36), we conclude that there exists a constant
C8 > 0, which depends on ε, such that

⟨g,um
H (y)⟩ΓN ≤ ε

C3

3
min(∥um

H (y)∥
q
1,(p,q,s), ∥u

m
H (y)∥s1,(p,q,s)) + C8max(∥g∥q′ , ∥g∥s′).

(4.38)
It remains to construct an upper bound on the third term in (4.32). Using Young’s
inequality, we have the constant C9 > 0, which depends on ε, such that

⟨f,um
H (y)⟩ ≤ ε

C3

3
min(∥um

H (y)∥
q
1,(p,q,s), ∥u

m
H (y)∥s1,(p,q,s)) + C9max(∥f∥q′ , ∥f∥s′),

(4.39)
where by ∥f∥, we understand the norm in (W

1,(p,q,s)
ΓD

(Ω))∗.
It follows immediately from estimates (4.30), (4.31), (4.33), (4.38) and (4.39) that

there exist constants C1,C2,C3,C4,C5,C8,C9 > 0 such that

h(y).y ≥ C1

2
∥(Tn(y))d∥q

′

q′ +
C1

2
∥trTn(y)∥s′s′

+ ε
C3

3
min(∥um

H (y)∥
q
1,(p,q,s), ∥u

m
H (y)∥s1,(p,q,s))− C4∥(E û)d∥qq

− C5∥div û∥ss − C8max(∥g∥q′ , ∥g∥s′)− C9max(∥f∥q′ , ∥f∥s′)− C2|Ω|. (4.40)

Employing standard tools (Observation A.18, Theorem A.9, Lemma 4.1), we can show
there is a constant C10 > 0, which depends on ε, such that

C1

2
∥(Tn(y))d∥q

′

q′ +
C1

2
∥trTn(y)∥s′s′ + ε

C3

3
min(∥um

H (y)∥
q
1,(p,q,s), ∥u

m
H (y)∥s1,(p,q,s))

≥ C10min (|y|q, |y|s , |y|q′ , |y|s′). (4.41)
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Combining (4.41) and (4.40) we have a constant C (Ω, ε, g, f, û) > 0 such that

h(y) · y ≥ C10min (|y|q, |y|s , |y|q′ , |y|s′)− C (Ω, ε, g, f, û). (4.42)

The inequality (4.42) fulfils the assumptions of Lemma 4.2 by assuring that there
exists r > 0 such that for all y for which |y| = r we have h(y) · y ≥ 0. Therefore
there exists ȳ ∈ Rn+m such that h(ȳ) = 0. We can conclude that the discrete
system (4.27) has the solution (Tn(ȳ),um

H (ȳ)) ∈ Zn,m for any pair (n,m) ∈ N2.
Step 3 - Deriving apriori estimates

Let {(Tn,um
H ) ∈ Zn,m, (n,m) ∈ N2} be the set of solutions to the Galerkin

system. We can use (Tn,um
H ) ∈ Zn,m as test functions in (4.27) to obtain the system

(E û,Tn) + (E um
H ,T

n) = (G(Tn),Tn)

εH(um
H ,u

m
H ) + (Tn, E um

H ) = ⟨g,um
H⟩ΓN + ⟨f,um

H⟩.
(4.43)

Summing up the equations in (4.43), we get

(G(Tn),Tn) + ε(∥(E um
H )

d∥qq + ∥div um
H∥ss) = ⟨g,um

H⟩ΓN + ⟨f,um
H⟩+ (E û,Tn). (4.44)

Combining (4.44) and (4.22), we have that

C1(∥(Tn)d∥q
′

q′ +∥G(Tn)d∥qq+∥trTn∥s′s′ +∥trG(Tn)∥ss)+ε(∥(E um
H )

d∥qq+∥div um
H∥ss)

≤ ⟨g,um
H⟩ΓN + ⟨f,um

H⟩+ (E û,Tn) + C2|Ω|. (4.45)

Applying the estimates (4.30), (4.31), (4.33), (4.38) and (4.39) to the formula (4.45),
we deduce that there exists a positive constant C (Ω, ε, f, g, û) such that

∥(Tn)d∥q
′

q′ + ∥G(Tn)d∥qq + ∥trTn∥s′s′ + ∥trG(Tn)∥ss + ∥(E um
H )

d∥qq + ∥div um
H∥ss

≤ C (Ω, ε, f, g, û). (4.46)

Note that the constant C (Ω, ε, f, g, û) is independent of a particular (n,m) ∈ N2.
We may improve the estimate (4.46) by noting that (E um

H )
d ∈ Lq(Ω)n×n

sym and div um
H ∈

Ls(Ω) are bounded functions in respective spaces and⏐⏐(E um
H )

d
⏐⏐q−2

(E um
H )

d ∈ Lq
′
(Ω)n×n

sym , |div um
H |

s−2 div um
H ∈ Ls

′
(Ω). (4.47)

Using that q′ = q/(q − 1), norms of the functions (4.47) can be rewritten to the
form

∥
⏐⏐(E um

H )
d
⏐⏐q−2

(E um
H )

d∥q
′

q′ = ∥(E um
H )

d∥qq, ∥|div um
H |

s−2 div um
H∥s

′

s′ = ∥div um
H∥ss ,

therefore (4.46) yields an upper bound on the functions (4.47) in the form

∥
⏐⏐(E um

H )
d
⏐⏐q−2

(E um
H )

d∥q
′

q′ + ∥|div um
H |

s−2 div um
H∥s

′

s′ ≤ C (Ω, ε, f, g, û). (4.48)

Step 4 - Limit passage in T and u
So far, for each (n,m) ∈ N2 we have established the existence of the discrete

solution (Tn,um
H ) ∈ Zn,m ⊆ L(q

′,s′)(Ω)⊕W
1,(p,q,s)
ΓD

(Ω) that solves the system (4.27) for
any pair of test functions (S,χ) ∈ Zn,m. Now we define a sequence {(Tk ,uk

H), k ∈
N} in L(q

′,s′)(Ω) ⊕W
1,(p,q,s)
ΓD

(Ω) such that for (k , k) ∈ N2, the pair (Tk ,uk
H) is the
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discrete solution to the system (4.27), where n = k and m = k . Therefore the pair
(Tk ,uk

H) solves the system

∀(S,χ) ∈ Zk,k

{
(E û,S) + (E uk

H ,S) = (G(Tk),S),

εH(uk
H ,χ) + (Tk , E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩.

(4.49)

Applying Eberlein–Šmulian theorem on apriori estimates (4.46) and (4.48), there
exist functions T ∈ L(q

′,s′)(Ω), Y ∈ L(q,s)(Ω), uH ∈ W
1,(p,q,s)
ΓD

(Ω), v ∈ Lq
′
(Ω)n×n

sym ,
e ∈ Ls

′
(Ω) and a subsequence {ki , i ∈ N} such that for i → ∞,

Tki ⇀ T in L(q
′,s′)(Ω),

G(Tki ) ⇀ Y in L(q,s)(Ω),

uki
H ⇀ uH in W

1,(p,q,s)
ΓD

(Ω),

(E uki
H)

d ⇀ (E uH)
d in Lq(Ω)n×n

sym ,

div uki
H ⇀ div uH in Ls(Ω),⏐⏐⏐(E uki

H)
d
⏐⏐⏐q−2

(E uki
H)

d ⇀ v in Lq
′
(Ω)n×n

sym ,⏐⏐⏐div uki
H

⏐⏐⏐s−2

div uki
H ⇀ e in Ls

′
(Ω).

(4.50)

Consider the operator O : L(q
′,s′)(Ω)⊕W

1,(p,q,s)
ΓD

(Ω) → (L(q
′,s′)(Ω)⊕W

1,(p,q,s)
ΓD

(Ω))∗

such that for (T̄, ūH) ∈ L(q
′,s′)(Ω)⊕W

1,(p,q,s)
ΓD

(Ω), (S,χ) ∈ L(q
′,s′)(Ω)⊕W

1,(p,q,s)
ΓD

(Ω)

⟨O((T̄, ūH)), (S,χ)⟩ = (G(T̄),S) + εH(ūH ,χ),

which can be expanded into the form

⟨O((T̄, ūH)), (S,χ)⟩ = (G(T̄),S) + ε(|div ūH |s−2 div ūH , divχ)

+ ε(
⏐⏐(E ūH)

d
⏐⏐q−2

(E ūH)
d , (E χ)d).

The operator O contains the nonlinear terms from (4.49). It is clear that O is radially
continuous and monotone because it is a sum of two radially continuous monotone
operators G and εH. Therefore, for all (S,χ) ∈ L(q

′,s′)(Ω) ⊕W
1,(p,q,s)
ΓD

(Ω) we have
that

lim
i→∞

⟨O((Tki ,uki
H))−O((S,χ)), (Tki ,uki

H)− (S,χ)⟩ ≥ 0. (4.51)

Before we can apply Lemma A.92, (p. 139) on the equation (4.51), we need to evaluate
this limit. We begin by evaluating the expression

lim
i→∞

⟨O((Tki ,uki
H)), (T

ki ,uki
H)⟩ = lim

i→∞
(G(Tki ),Tki ) + ε(∥(E uki

H)
d∥qq + ∥div uki

H∥
s
s).

We substitute the pair (Tki ,uki
H) ∈ Zki ,ki into the system (4.49), and sum up the

results to obtain

(G(Tki ),Tki )+ε(∥(E uki
H)

d∥qq+∥div uki
H∥

s
s) = ⟨g,uki

H⟩ΓN +⟨f,uki
H⟩+(E û,Tki ). (4.52)

Let for a moment fix a particular test function (S,χ) ∈ Z∞,∞ in (4.49). According
to (4.26), there exists i0 ∈ N, such that (S,χ) ∈ Zki ,ki for all i > i0. Thus we can let
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i → ∞ in the system (4.49), where k = ki , and use the convergence results (4.50)
to conclude that

(E û,S) + (E uH ,S) = (Y,S),

ε(e, divχ) + ε(v, (E χ)d) + (T, E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩.
(4.53)

As we have chosen an arbitrary (S,χ) ∈ Z∞,∞, the (4.53) is true for every pair
(S,χ) ∈ Z∞,∞. Moreover, since Z∞,∞ is dense in L(q

′,s′)(Ω) ⊕ W
1,(p,q,s)
ΓD

(Ω), the
(4.53) remains valid for every pair (S,χ) ∈ L(q

′,s′)(Ω) ⊕ W
1,(p,q,s)
ΓD

(Ω). Using that
fact, we substitute (S,χ) = (T,uH) into (4.53) and sum the results up to get the
expression

(Y,T) + ε(e, div uH) + ε(v, (E uH)
d) = ⟨g,uH⟩ΓN + ⟨f,uH⟩+ (E û,T). (4.54)

For i → ∞, the right-hand sides of (4.54) and (4.52) coincide, and therefore we have
shown that

lim
i→∞

⟨O((Tki ,uki
H)), (T

ki ,uki
H)⟩ = (Y,T) + ε(e, div uH) + ε(v, (E uH)

d). (4.55)

Let (S,χ) ∈ L(q
′,s′)(Ω) ⊕ W

1,(p,q,s)
ΓD

(Ω). We use the convergence results (4.50) to
show that

lim
i→∞

⟨O((Tki ,uki
H)), (S,χ)⟩ = (Y,S) + ε(e, divχ) + ε(v, (E χ)d), (4.56)

and also that

lim
i→∞

⟨O((S,χ)), (Tki ,uki
H)⟩ = (G(S),T) + ε |divχ|s−2 (divχ, div uH)

+ ε
⏐⏐(E χ)d

⏐⏐q−2
((E χ)d , (E uH)

d). (4.57)

For all (S,χ) ∈ L(q
′,s′)(Ω) ⊕ W

1,(p,q,s)
ΓD

(Ω), we combine (4.55), (4.56) and (4.57) to
rewrite the limit (4.51) into the form

(Y − G(S),T− S) + ε(e − |divχ|s−2 divχ, div (uH − χ))

+ ε(v −
⏐⏐(E χ)d

⏐⏐q−2
(E χ)d , (E(uH − χ))d) ≥ 0.

Lemma A.92, (p. 139) yields

(G(T),S) + ε(|div u|s−2 div u, divχ) + ε(
⏐⏐(E u)d

⏐⏐q−2
(E u)d , (E χ)d)

= (Y,S) + ε(e, divχ) + ε(v, (E χ)d). (4.58)

From (4.58) we conclude, by gradually taking χ = 0 and S arbitrary, S = 0 and χ
arbitrary with (E χ)d = 0, and finally S = 0 and χ arbitrary with divχ = 0, that

G(T) = Y, |div uH |s−2 div uH = e,
⏐⏐(E uH)

d
⏐⏐q−2

(E uH)
d = v. (4.59)

By substituting (4.59) into (4.53), we obtain the weak formulation of the problem.
Now, it is easy to show that the pair (uH + û,T) ∈ (W 1,(p,q,s)(Ω), L(q

′,s′)(Ω)) is a
solution the the ε regularized weak problem, which proves the theorem. For n = 3,
b = q, p = q we have the solution in W 1,(q,s)(Ω). From the embedding (4.3) we
have that div u ∈ Lq(Ω).
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For each ε > 0, we have proved the existence of the solution to the ε regularized
weak Problem (P), see Definition 4.20. It remains to show that as ε → 0, the
sequence of the solutions to the regularized problem converges to the weak solution
of the original problem. This is the objective of the following result.

Theorem 4.25 (Existence of a weak solution to the Problem (P)). Under the hypothe-
ses of Theorem 4.24, there exists a solution to the weak Problem (P) in the sense of
Definition 4.20.

Proof. We proceed with the proof in the following steps:

• Finding a sequence of approximate solutions

• Deriving apriori estimates

• Passing to the limit

Step 1 - Finding a sequence of approximate solutions
We apply the Theorem 4.24 on ε = 1/k , k ∈ N. Therefore, for each k ∈ N,

there exists a pair (uk
H ,T

k) ∈ (W
1,(p,q,s)
ΓD

(Ω), L(q
′,s′)(Ω)) such that (uk

H + û,Tk) ∈
(W 1,(p,q,s)(Ω), L(q

′,s′)(Ω)) is a 1/k-regularized weak solution. We have that

∀S ∈ L(q
′,s′)(Ω) (E û,S) + (E uk

H ,S) = (G(Tk),S), (4.60a)

∀χ ∈ W
1,(p,q,s)
ΓD

(Ω) εkH(uk
H ,χ) + (Tk , E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩, (4.60b)

Step 2 - Deriving apriori estimates
For each k , we can substitute the pair (χ,S) = (uk

H ,T
k) into (4.60) as test

functions. Summing up the results, we have that

1

k
H(uk

H ,u
k
H) + (G(Tk),Tk) = (E û,Tk) + ⟨g,uk

H⟩ΓN + ⟨f,uk
H⟩. (4.61)

Combining (4.61) with (4.22) yields

1

k
(∥(E uk

H)
d∥qq + ∥div uk

H∥ss)

+ C1(∥(Tk)d∥q
′

q′ + ∥G(Tk)d∥qq + ∥trTk∥s′s′ + ∥trG(Tk)∥ss)
≤ (E û,Tk) + ⟨g,uk

H⟩ΓN + ⟨f,uk
H⟩+ C2|Ω|. (4.62)

Analogously to deriving the estimates (4.46) and (4.48) in Theorem 4.24, we show
the existence of a constant C (Ω, k , f, g, û) that depends on the data and k such
that

∥(Tk)d∥q
′

q′ + ∥G(Tk)d∥qq + ∥trTk∥s′s′ + ∥trG(Tk)∥ss + ∥(E uk
H)

d∥qq + ∥div uk
H∥ss

≤ C (Ω, k , f, g, û) (4.63)

and that

∥
⏐⏐(E uk

H)
d
⏐⏐q−2

(E uk
H)

d∥q
′

q′ + ∥
⏐⏐div uk

H

⏐⏐s−2
div uk

H∥s
′

s′ ≤ C (Ω, k , f, g, û). (4.64)
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According to (4.64), for the functions

Sk
1 =

⏐⏐(E uk
H)

d
⏐⏐q−2

(E uk
H)

d , Sk
2 =

⏐⏐div uk
H

⏐⏐s−2
div uk

HI (4.65)

it holds that Sk
1 ∈ L(q

′,s′)(Ω) and Sk
2 ∈ L(q

′,s′)(Ω). Therefore, they are suitable test
functions in (4.60a) for every k ∈ N. Testing by them in (4.60a) yields

∥(E uk
H)

d∥qq = (G(Tk)d ,Sk
1)− ((E û)d ,Sk

1),

∥div uk
H∥ss = (G(Tk),Sk

2)− (E û,Sk
2).

(4.66)

Now, we estimate (4.66) using the Hölder inequality to obtain

∥(E uk
H)

d∥qq ≤ ∥G(Tk)d∥q∥(E uk
H)

d∥q−1
q + ∥(E û)d∥q∥(E uk

H)
d∥q−1

q ,

∥div uk
H∥ss ≤ ∥trG(Tk)∥s∥div uk

H∥s−1
s + ∥div û∥s∥div uk

H∥s−1
s .

(4.67)

We can combine the two inequalities in (4.67) to conclude that

∥(E uk
H)

d∥q +∥div uk
H∥s ≤ ∥G(Tk)d∥q +∥(E û)d∥q +∥trG(Tk)∥s +∥div û∥s . (4.68)

Rewriting (4.62) to a reduced form, where first two terms are excluded, we have that

C1(∥(Tk)d∥q
′

q′ + ∥G(Tk)d∥qq + ∥trTk∥s′s′ + ∥trG(Tk)∥ss)
≤ (E û,Tk) + ⟨g,uk

H⟩ΓN + ⟨f,uk
H⟩+ C2|Ω|. (4.69)

We use the improved estimate (4.68) to formulate estimates analogous to (4.30),
(4.31), (4.33), (4.34) and (4.36) from Theorem 4.24 that doesn’t depend on k . By this
procedure, we show the existence of a positive constant C (Ω, f, g, û) that does not
depend on k such that

∥(Tk)d∥q
′

q′ + ∥G(Tk)d∥qq + ∥trTk∥s′s′ + ∥trG(Tk)∥ss
+ ∥(E uk

H)
d∥qq + ∥div uk

H∥ss + ∥u∥q(q,s) ≤ C (Ω, f, g, û), (4.70)

and hence also

∥
⏐⏐(E uk

H)
d
⏐⏐q−2

(E uk
H)

d∥q
′

q′ + ∥
⏐⏐div uk

H

⏐⏐s−2
div uk

H∥s
′

s′ ≤ C (Ω, f, g, û). (4.71)

Step 3 - Passing to the limit
By application of the Eberlein–Šmulian theorem to (4.70) and (4.71), we conclude

that there exist functions T ∈ L(q
′,s′)(Ω), Y ∈ L(q,s)(Ω), uH ∈ W

1,(p,q,s)
ΓD

(Ω), v ∈
Lq

′
(Ω)n×n

sym , e ∈ Ls
′
(Ω) and a subsequence {ki , i ∈ N} such that, for i → ∞,

Tki ⇀ T in L(q
′,s′)(Ω),

G(Tki ) ⇀ Y in L(q,s)(Ω),

uki
H ⇀ uH in W

1,(p,q,s)
ΓD

(Ω),

(E uki
H)

d ⇀ (E uH)
d in Lq(Ω)n×n

sym ,

div uki
H ⇀ div uH in Ls(Ω),⏐⏐⏐(E uki

H)
d
⏐⏐⏐q−2

(E uki
H)

d ⇀ v in Lq
′
(Ω)n×n

sym ,⏐⏐⏐div uki
H

⏐⏐⏐s−2

div uki
H ⇀ e in Ls

′
(Ω).

(4.72)
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Substituting the pair of test functions (uki
H ,T

ki ) ∈ (W
1,(p,q,s)
ΓD

(Ω), L(q
′,s′)(Ω)) into the

system (4.60), where k = ki , and summing up the results yields

(G(Tki ),Tki ) = − 1

ki
H(uki

H ,u
ki
H) + (E û,Tki ) + ⟨g,uki

H⟩ΓN + ⟨f,uki
H⟩, (4.73)

where it is easy to check using (4.70) that the limit of the first term on the right in
(4.73) is zero

lim
i→∞

1

ki
H(uki

H ,u
ki
H) =

1

ki
(∥(E uki

H)
d∥qq + ∥div uki

H∥
s
s) = 0.

Now, let substitute test functions (uH ,T) ∈ (W
1,(p,q,s)
ΓD

(Ω), L(q
′,s′)(Ω)) into (4.60),

where k = ki , and pass to the limit i → ∞. From (4.72), we have that

(Y,T) = − lim
i→∞

1

ki
H(uki

H ,uH) + (E û,T) + ⟨g,uH⟩ΓN + ⟨f,uH⟩. (4.74)

By (4.71), it is easy to check that

lim
i→∞

1

ki
H(uli

H ,uH) = 0.

Comparing (4.73) with (4.74), we obtain

lim
i→∞

(G(Tki ),Tki ) = (Y,T). (4.75)

Using the same reasoning as when showing (4.59) in Theorem 4.24, we have that

G(T) = Y. (4.76)

These results enable us to pass to the limit ki → ∞ in the system (4.60) to show
that

∀S ∈ L(q
′,s′)(Ω), (E û,S) + (E uH ,S) = (G(T),S),

∀χ ∈ W
1,(p,q,s)
ΓD

(Ω), (T, E χ) = ⟨g,χ⟩ΓN + ⟨f,χ⟩

The pair (uH + û,T) ∈ (W 1,(p,q,s)(Ω), L(q
′,s′)(Ω)) is a solution of the weak Problem

(P) in the sense of Definition 4.20, which completes the proof.

4.4 Existence of solutions for power-law models
To show that Theorem 4.25 guarantees the existence of a solution for a particular
constitutive function G, we have to show that assumptions of Theorem 4.25 about
G are met. For s, q ∈ (1,∞), it is sufficient to show that the constitutive function
G : Rn×n

sym → Rn×n
sym in (1.1b), see Definition 1.1, (p. 7), is continuous, monotone and

has the following property. There exist constants C1 > 0, C2 > 0 such that for all
X ∈ Rn×n

sym , the following is true

G(X)d : Xd ≥ C1(|Xd |q′ + |G(X)d |q)− C2

2
,

trG(X) · trX ≥ 3C1(| trX|s
′
+ | trG(X)|s)− 3

C2

2
.

(4.77)
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It is easy to check that when G satisfies (4.77), then the related operator G :
L(q

′,s′)(Ω) → L(q,s)(Ω) in the sense of Observation A.94, (p. 139) fulfils the coer-
civity condition (4.22) imposed by Definition 4.23. In this section, we show that
the power-law model (2.20), see Definition 2.11, (p. 24), satisfies (4.77). Therefore
according to Theorem 4.25, there exists the weak solution to the Problem (P) with
power-law response.

In order to easily test that a particular constitutive function G is monotone, we
formulate a few auxiliary lemmas.

Auxiliary lemmas

Let G1,G2,G3 : Rn×n
sym → Rn×n

sym be tensor-valued functions with the structure

G1(T) = Iσ1(trT) trT,

G2(T) = σ2(|T|)T,
G3(T) = σ3(

⏐⏐Td
⏐⏐)Td ,

(4.78)

where σi are scalar functions, σi : R → R.
Next three lemmas show that when σi are monotone scalar functions, then the

corresponding Gi(T) are also monotone tensor-valued functions.

Lemma 4.26 (Monotonicity of tensor-valued functions 1). Let G : Rn×n
sym → Rn×n

sym

be a tensor-valued function of the form G(T) = Iσ1(trT) trT, where σ1 : R → R.
Then the scalar function g(t) = σ1(t)t is nondecreasing if and only if G is a monotone
tensor-valued function.

Proof. It is sufficient to show that for all T1,T2 ∈ Rn×n
sym , the following equalities are

true

(Iσ1(trT1) trT1 − Iσ1(trT2) trT2) : (T1 − T2)

= (g(trT1)− g(trT2))I : (T1 − T2)

= (g(trT1)− g(trT2))(trT1 − trT2).

Lemma 4.27 (Monotonicity of tensor-valued functions 2). Let G : Rn×n
sym → Rn×n

sym

be a tensor-valued function of the form G(T) = σ2(|T|)T, where σ2 : R+
0 → R+

0 .
The function g(t) = σ2(|t|)t is nondecreasing if and only if the G is a monotone
tensor-valued function.

Proof. Assumption of g being nondecreasing function can be rephrased as that for
any t1, t2 ∈ R, we have the inequality

(σ2(|t1|)t1 − σ2(|t2|)t2)(t1 − t2) ≥ 0, (4.79)

which is the same as

σ2(|t1|)t21 + σ2(|t2|)t22 − σ2(|t1|)t1t2 − σ2(|t2|)t1t2 ≥ 0. (4.80)

G being monotone means that

∀T1,T2 ∈ Rn×n
sym , (σ2(|T1|)T1 − σ2(|T2|)T2) : (T1 − T2) ≥ 0. (4.81)
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Expanding the formula above, we get

σ2(|T1|) |T1|2 + σ2(|T2|) |T2|2 − σ2(|T1|)T1 : T2 − σ2(|T2|)T1 : T2 ≥ 0. (4.82)

Applying the Cauchy-Schwartz inequality in the form

−A : B ≥ − |A| |B| , ∀A,B ∈ Rn×n
sym

to the left-hand side of (4.82) yields

(σ2(|T1|)T1 − σ2(|T2|)T2) : (T1 − T2) ≥
σ2(|T1|) |T1|2 + σ2(|T2|) |T2|2 − σ2(|T1|) |T1| |T2| − σ2(|T2|) |T1| |T2| . (4.83)

When g is nondecreasing, we combine (4.83) with (4.80), where t1 = |T1| and
t2 = |T2| for any T1,T2 ∈ Rn×n

sym , which yields (4.81). In other words G is monotone.
Let’s prove the opposite implication. We set

T1 = t1e1 ⊗ e1, T2 = t2e1 ⊗ e1, T1,T2 ∈ Rn×n
sym . (4.84)

If G is monotone, then setting (4.84) in (4.81) yields (4.79), which means that g(t) is
nondecreasing.

Lemma 4.28 (Monotonicity of tensor-valued functions 3). Let G : Rn×n
sym → Rn×n

sym be
a tensor-valued function of the form G(T) = σ3(

⏐⏐Td
⏐⏐)Td , where Td is the deviatoric

part of the tensor T and σ3 : R+
0 → R+

0 . The function g(t) = σ3(|t|)t is nondecreasing
if and only if G is a monotone tensor-valued function.

Proof. If G is a monotone tensor-valued function, then

(σ3(
⏐⏐Td

1

⏐⏐)Td
1 − σ3(

⏐⏐Td
2

⏐⏐)Td
2 ) : (T1 − T2) ≥ 0, ∀T1,T2 ∈ Rn×n

sym . (4.85)

We use the decomposition

T1 = Td
1 +

trT1

3
I and T2 = Td

2 +
trT2

3
I

and the fact that Y : I = 0 for any traceless tensor Y, in particular for Td . Using
these manipulations, the condition (4.85) can be rewritten as

(σ3(
⏐⏐Td

1

⏐⏐)Td
1 − σ3(

⏐⏐Td
2

⏐⏐)Td
2 ) : (T

d
1 − Td

2 ) ≥ 0, ∀T1,T2 ∈ Rn×n
sym . (4.86)

If g is nondecreasing, then G is monotone by Lemma 4.27.
The opposite implication can be proven by constructing tracefree matrices

T1 =
t1√
2
(e1⊗e2+e2⊗e1), T2 =

t2√
2
(e1⊗e2+e2⊗e1), T1,T2 ∈ Rn×n

sym . (4.87)

If G is monotone, then setting (4.87) in (4.86) yields

(σ3(t1)t1 − σ3(t2)t2)(t1 − t2) ≥ 0, ∀t1, t2 ∈ R,

which means that g(t) is nondecreasing.
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Lemma 4.26, Lemma 4.27 and Lemma 4.28 reduce the problem whether the
given tensor-valued function with the structure (4.78) is monotone, to the problem
whether the scalar function σ is monotone. Note that the structure (4.78) is typical
for most constitutive responses studied in this thesis. Conditions for monotonicity
of the scalar functions related to the power-law models from Definition 2.11, (p. 24)
are established in the following lemma.

Lemma 4.29 (Monotonicity of a scalar power-law function). Let c , γ,κ, a, q > 0 be
parameters of function g : R → R such that

g(t) = c (γ + κ|t| a)
q−2
a t. (4.88)

If q ≥ 1, then g is monotone for every set of parameters c , γ,κ, a > 0.

Proof. Taking the derivative of g with respect to t , we have that

g ′(t) = cκ(q − 2) (γ + κ|t| a)
q−2
a

−1 |t|a + c (γ + κ|t| a)
q−2
a

= c (γ + κ|t| a)
q−2
a

(
κ(q − 2)|t|a

γ + κ|t|a
+ 1

)
= c (γ + κ|t| a)

q−2
a

(
γ + κ(q − 1)|t|a

γ + κ|t|a

)
,

where for q ≥ 1, there is g ′(t) > 0, so the function g(t) is strictly monotone.

Observation 4.30 (Radial continuity of constitutive relation). If functions σ1, σ2 and
σ3 from (4.78) are continuous, then related operators G1, G2, G3, in the sense of
Observation A.94, (p. 139) are radially continuous.

Existence of solutions for power-law models

We are now prepared to show that the power-law response (2.20) from Definition 2.11,
(p. 24) fulfils the assumptions of Theorem 4.25 for the existence of the solutions to
the weak problem. For simpler algebraic manipulations, we show that these assump-
tions hold for G of the reduced form where some material moduli are normalized.
Let s ′ ∈ (1,∞) and q′ ∈ (1,∞). We define the normalized form of power-law
response G, where G is split to the mean normal part and the deviatoric part by

trG(T) =
(
1 + | trT| 2

) s′−2
2 trT, (4.89a)

G(T)d =
(
1 + |Td | 2

) q′−2
2 Td . (4.89b)

Theorem 4.31. Let s ′ ∈ (1,∞) and q′ ∈ (1,∞). Function G : Rn×n
sym → Rn×n

sym of
the form (4.89) fulfils the requirements of Theorem 4.25 on the existence of the weak
solutions. In other words, G is a monotone, radially continuous operator in the sense
of Observation A.94, (p. 139), and there exist constants C1 > 0,C2 ≥ 0 such that the
condition (4.22) is fulfilled.

Proof. The proof of the theorem can be split into three steps. First is to show that
G is a radially continuous operator, second is that G is monotone and in the third
step we show that G satisfies (4.22).
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The function G can be reformulated as being a sum of functions of the type
(4.78) such that

G(T) = G1(T) + G3(T), G1(T) = Iσ1(trT) trT, G3(T) = σ3(
⏐⏐Td
⏐⏐)Td ,

where
σ1(t) =

1

3

(
1 + t 2

) s′−2
2 , σ3 =

(
1 + t 2

) q′−2
2 . (4.90)

We may also understand G as being an operator G : L(q
′,s′)(Ω) → L(q,s)(Ω) such

that

⟨G(T),W⟩ = (σ1(trT) trT, trW) + (σ3(
⏐⏐Td
⏐⏐)Td ,Wd), for T,W ∈ L(q

′,s′)(Ω).
(4.91)

Since σ1 and σ3 in (4.90) are continuous functions, it is straightforward that G
of the form (4.91) is a radially continuous operator.

To show monotonicity of the operator G, we first show the conditions for mono-
tonicity of the functions σ1(t)t and σ3(|t|)t . According to Lemma 4.29, func-
tion σ1(t)t is monotone for s ′ ∈ [1,∞), and function σ3(|t|)t is monotone for
q′ ∈ [1,∞). Using Lemma 4.26 and Lemma 4.28, we conclude that functions G1

and G3 are monotone tensor-valued functions. It is a simple matter to show that
monotonicity, in the sense of tensors, implies monotonicity in the sense of opera-
tors, and that the sum of two monotone operators is again a monotone operator.
Therefore, we have established monotonicity of the operator G.

The last step of the proof is showing that the operator G satisfies (4.22). It is
easy to check that (4.77) is a stronger form of the condition (4.22), which works with
tensor-valued functions instead of operators. We proceed to show that G fulfils the
condition (4.77). The proof falls naturally into two parts of showing the coercivity
condition (4.77) for the deviatoric part and showing it for traces.

We begin with showing the coercivity of G for the deviatoric part. It suffices to
show that there exist constants c1, c2, c3 such that

G(T)d : Td ≥ c1|Td |q′ − c3, ∀T ∈ Rn×n
sym ,

G(T)d : Td ≥ c2|G(T)d |q − c3, ∀T ∈ Rn×n
sym .

(4.92)

Combining (4.92) and the particular form of G given by (4.90), we have that(
1 + t 2

) q′−2
2 t2 ≥ c1|t|q

′ − c3, ∀t ∈ R, (4.93a)(
1 + t 2

) q′−2
2 t2 ≥ c2

⏐⏐⏐⏐(1 + t 2
) q′−2

2 t

⏐⏐⏐⏐q − c3, ∀t ∈ R. (4.93b)

Let us see that the problem of showing coercivity of G was reduced to showing
the algebraic property of (4.93) for a general q′ ∈ (1,∞). We can easily show the
property (4.93a) from the inequality(

1 + t 2
) q′−2

2 ≥ |t|q′−2.

Now, we prove the property (4.93b). Using q = q′/(q′− 1), we rewrite the first term
on the right side of (4.93b) into the form⏐⏐⏐⏐(1 + t 2

) q′−2
2 t

⏐⏐⏐⏐q =
(
1 + |t| 2

) q′−2
2 |t|2

(
1 + |t| 2

) q′−2
2(q′−1) |t|

2−q′
q′−1 . (4.94)
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We split the further estimation of (4.94) into two cases. When

q′ − 2

2(q′ − 1)
≤ 0 ⇔ q′ < 2,

then the inequality (
1 + |t| 2

) q′−2
2(q′−1) ≤ |t|

q′−2
(q′−1) (4.95)

holds. Substitution of (4.95) into (4.94) yields (4.93b) with c2 = 1, c3 = 0. Let
consider the case

q′ − 2

2(q′ − 1)
> 0 ⇔ q′ > 2.

We investigate its two subcases. First, when |t| > 1, we have that(
1 + |t| 2

) q′−2
2(q′−1) ≤ (

√
2|t|)

q′−2
(q′−1) . (4.96)

Second, when |t| ≤ 1, we construct the estimate

(
1 + |t|2

) q′−2
2(q′−1) ≤

√
2

q′−2
(q′−1) ≤

√
2

q′−2
(q′−1)2

q′−2
2

(1 + |t|2)
q′−2

2 |t|2|t|
2−q′
q′−1

. (4.97)

Combining the estimates (4.96) and (4.97), we deduce the estimate

(
1 + |t|2

) q′−2
2(q′−1) ≤ (

√
2|t|)

q′−2
(q′−1) +

√
2

q′(q′−2)

q′−1

(1 + |t|2)
q′−2

2 |t|
q′

q′−1

, (4.98)

which holds for all t ∈ R. By inserting (4.98) into (4.94), we obtain⏐⏐⏐⏐(1 + t 2
) q′−2

2 t

⏐⏐⏐⏐q ≤ 2
q′−2

2(q′−1)
(
1 + |t|2

) q′−2
2 |t|2 + 2

q′(q′−2)

2(q′−1) . (4.99)

From (4.99), we deduce that the estimate (4.93b) holds with parameters

c2 = 2
2−q′

2(q′−1) , c3 = 2
(q′−1)(q′−2)

2(q′−1) .

Proving that the second equation in (4.77) holds, reduces to showing the property
(4.93b), which has already been proven. Concluding that the operator G fulfils the
coercivity condition (4.22) completes the proof.

It is a simple matter to see that the constitutive equation (2.20) of the power-law
solid from Definition 2.11, (p. 24) is of the same form as the reduced relation (4.89).
Using the full relation (2.20) would obscure the proof of Theorem 4.31 by additional
constants that could be, however, handled with some care.

We shall also comment on proving the existence of solutions to the Problem (P)
with the constitutive equation of the form

G(T) =
(
1 + |T| 2

) q′−2
2 T, (4.100)

where q′ ∈ (1,∞). The equation (4.100) comes without separation of the mean
normal term from the deviatoric part of the constitutive relation. Simple modifi-
cations to the ideas provided in this chapter would establish the existence of a
weak solution to (4.100). Since this is an easier task than showing the existence for
a separated system with different power-law exponents, we are not including the
corresponding analysis here.
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5. Computer simulations
In Chapter 3, we identified the parameters of the power-law model (2.20), see Defi-
nition 2.11, (p. 24), for four different beta phase titanium alloys. Using these models,
we perform computer simulations to study the shearing behavior of titanium alloys.
We use anti-plane stress, which is a geometrical setting of stress, strain and dis-
placement of the body, where all quantities depend only on plane coordinates (x1
and x2) and the only nonzero components of the stress tensor are T13 and T23. A
material that is subject to the anti-plane stress setting can be loaded only at the
anti-plane direction perpendicular to the (x1, x2) plane, see Figure 5.11. These as-
sumptions allow us to rephrase the Problem (P) (1.1), see Definition 1.1, (p. 7), as a
variational problem on a discrete space of finite elements to find an unknown Airy’s
stress function, which plays the role of a potential.

B

ν

g

g

x1

x2

x3

T23

T13

Figure 5.1: Anti-plane stress setting. The only nonzero components of the stress
tensor are T13 and T23.

We are interested in the behavior of studied materials in a geometry of a square
plate with a V-shaped notch. According to the asymptotic analysis, there is a sin-
gularity of stress and strain at the tip of the notch. Therefore we study how the
presence of the singularity affects the stability of numeric solutions with respect
to the opening angle of the V-notch α. We further investigate the solutions in the
two geometries where the V-notch tip is smoothened by an arc or by an end hole
with a diameter rc . By solving the problem on the set of 6 gradually refined meshes,
we achieve a very good stability of the solutions even in the areas of high stress
concentration.

The software implementation for solving these problems in Python is a part of
this thesis and can be found in supplementary materials. Solver of the discretized
problem on the FEM space uses the damped Newton method and utilizes FEniCS
software library, see Logg et al. (2012).

1When visualising the anti-plane stress geometry, we use the right-handed coordinate system
and sign convention, where positive face is a face with a normal in the positive axis direction. The
shear stress acting in the positive axis direction on the positive face has a positive sign.
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In a separate paper, see Kulvait et al. (2013), the computational simulations for
the strain-limiting model can be found.

5.1 Boundary value problem
The geometry and the type of the deformation of anti-plane stress, see Figure 5.1,
allows us to assume that Ω = B×R, u = (0, 0, u(x1, x2)), ∂B = ΓN , g = (0, 0, g) and
f = 0. The stress tensor T has two nontrivial components and can be represented
by vector Tv = (T13,T23). The trace and the norm of the deviatoric part of the
stress tensor can be expressed as

tr(T) = 0, |Td | =
√
2|Tv |.

We apply the model (2.15), see Definition 2.8, (p. 23), into the anti-plane stress
setting. Then the strain tensor ε has also only two nontrivial components ε13 and
ε23 and can be represented by the vector εv = (ε13, ε23). Constitutive relation (2.15)
reduces to the form

εv = σ2(
√
2|Tv |)Tv ≡ σ(|Tv |)Tv ,

and Problem (P), see Definition 1.1, (p. 7), can be reformulated as:

Definition 5.1 (Problem (P) in anti-plane stress setting). Let Ω = B × R, where
B ⊂ R2 is an open, bounded, simply connected domain. Let σ : R → R represent
constitutive response of the material and let g : ∂B → R be a given function. We say
that a pair of functions (εv ,Tv ) is the solution of Problem (P) in the anti-plane stress
setting 2 when the following is true

−∂T13

∂x1
− ∂T23

∂x2
= 0 in B , (5.1a)

ε13 = σ(|Tv |)T13, ε23 = σ(|Tv |)T23 in B , (5.1b)
T13ν1 + T23ν2 = g on ∂B . (5.1c)

In the remainder of this chapter, we use the following particular forms of the
constitutive function σ. For the power-law model (2.20), see Definition 3.1, (p. 40),
we have the response

σ(|Tv |) =
1

2µ

(
τ 20 + 3 |Tv |2

τ 20

) q′−2
2

. (5.2)

The linear Hooke’s law is characterized by the response (5.2), where q′ = 2, that is

σ(|Tv |) =
1

2µL
. (5.3)

In the case of strain-limiting model (2.32), see Definition 2.15, (p. 26), which was used
in Kulvait et al. (2013) we have that

σ(|Tv |) =
τµ

2µl

(
τ a
µ + (

√
2 |Tv |) a

)1/a .
2Since we consider constitutive relations of the type (5.1b), the anti-plane stress state is equivalent

to the classical definition of anti-plane strain, see Rice (1967).
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5.1.1 Compatibility conditions

The Saint-Venant compatibility conditions for ε, see (A.17), are reduced to the two
nontrivial equations

∂2ε13
∂x1∂x2

− ∂2ε23
∂x1∂x1

= 0,
∂2ε23
∂x1∂x2

− ∂2ε13
∂x2∂x2

= 0, (5.4)

which implies the existence of a constant C such that

∂ε13
∂x2

− ∂ε23
∂x1

= C . (5.5)

Expressing (5.5) in terms of u, we obtain

∂2u1
∂x3∂x2

− ∂2u3
∂x1∂x2

− ∂2u2
∂x3∂x1

+
∂2u3
∂x2∂x1

= C . (5.6)

Since u = (0, 0, u(x1, x2)), we conclude that C = 0 and thus (5.4) leads to

∂ε13
∂x2

− ∂ε23
∂x1

= 0. (5.7)

The condition (5.7) is the necessary and sufficient condition for the existence of the
displacement u(x1, x2) fulfilling

ε13 =
1

2

∂u

∂x1
, ε23 =

1

2

∂u

∂x2
.

5.1.2 Airy’s function

Airy’s stress function A is a scalar function, whose derivatives are components of
the vector Tv

T13 =
∂A

∂x2
, T23 = − ∂A

∂x1
. (5.8)

Every stress field of the type (5.8) fulfils the equilibrium equation (5.1a). From (5.8),
we have that |Tv | = |∇A|, and thus σ(|Tv |) = σ(|∇A|). Substituting the constitu-
tive relation (5.1b) into the compatibility condition (5.7) leads to

− ∂

∂x1

(
σ(|∇A|) ∂A

∂x1

)
− ∂

∂x2

(
σ(|∇A|) ∂A

∂x2

)
= 0 in B . (5.9)

Let denote t = (−ν2, ν1) the tangential vector to the boundary ∂B . Then the
boundary condition (5.1c) takes the form

∂A

∂x2
ν1 −

∂A

∂x1
ν2 =

∂A

∂x1
t1 +

∂A

∂x2
t2 = g on ∂B . (5.10)

We parametrize the boundary by the counterclockwise oriented closed curve ξ :
[0, h] → R2, ξ(0) = ξ(h), such that ξ([0, h]) = ∂B and

t1(ξ(b)) = ξ′1(b), t2(ξ(b)) = ξ′2(b). (5.11)
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Substituting (5.11) into (5.10) and using the chain rule, we conclude that g is equal to
the tangential derivative of A. We have that

g(ξ(b)) = ∇A.
dξ(b)

db
=

dA(ξ(b))

db
, b ∈ [0, h). (5.12)

Integrating (5.12) along the boundary, we obtain the Dirichlet boundary condition

Ag
0 (ξ(b)) = A(ξ(0)) +

∫ b

0

g(ξ(b)) db, b ∈ [0, h). (5.13)

Note that the value of the function Ag
0 does not depend (up to a constant) on the

parametrization of the boundary. By introducing Airy’s stress function via (5.8),
the boundary value problem, see Definition 5.1, takes the form summarized in the
following definition.

Definition 5.2 (Airy’s function solving Problem (P) in anti-plane stress setting). Let
the domain B ⊂ R2 and the functions (g ,σ) fulfil the assumptions of Definition 5.1.
We say that the function A is the Airy’s function solving Problem (P) in the anti-plane
stress setting if the following is true

− div (σ(|∇A|)∇A) = 0 in B ,

A(x) = Ag
0 (x) on ∂B ,

(5.14)

where Ag
0 is the function defined by (5.13).

5.2 Asymptotic solutions for notched domains
Let focus, for a moment, on the asymptotic behavior of solutions in notched do-
mains. As the geometry of the plate with a V-notch, see Figure 5.5, is closely related
to the problem of fracture, a lot of research has been done regarding computation of
asymptotic solutions in infinite domains. It has been observed that when studying
the Problem (P) in the anti-plane stress setting, see Definition 5.1, in the geometry of
the infinite plate with a V-notch, then the singularity of stress occurs for either the
linear (5.3) or the power-law constitutive equations (5.2), the singularity is present
at the tip C of the V-notch, see Neuber (1961); Rice (1967).

Asymptotic solutions can be understood as the first order estimate of the behav-
ior of solution and can also supplement numerical simulations in the close vicinity
of the V-notch tip, where the finite numerical solution is not able to capture the
singular behavior.

5.2.1 Cylindrical coordinate system

When studying the behavior of the solution around the V-notch tip C , it is useful
to introduce the cylindrical coordinate system (r ,φ) centered at C , see Figure 5.2.
Vectors εv and Tv can be transformed between Cartesian and polar coordinate
systems by means of the formula(

Trz

Tφz

)
=

(
cosφ sinφ
− sinφ cosφ

)(
T13

T23

)
.
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Figure 5.2: Cylindrical coordinate system.

5.2.2 Linear constitutive relation

Asymptotic solutions for the linear elastic model (5.3) in the anti-plane stress setting
for an infinite geometry with a V-notch with an end hole, see Figure 5.6, were derived
in Zappalorto – Lazzarin (2011). In polar coordinates centered at the center of the
end hole C , the leading term of the asymptotic solution takes the form

Trz =
K IF

√
2π

r kT sin (λLφ)

[
1−

( rc
r

)2λL

]
, Tφz =

K IF

√
2π

r kT cos (λLφ)

[
1 +

( rc
r

)2λL

]
,

(5.15)
where

λL =
π

2π − α
, kT =

α− π

2π − α
, (5.16)

the constant K IF is a stress intensity factor, α is the opening angle of the V-notch
and rc is the diameter of the end hole.

Asymptotic solution in the geometry of infinite plate with a V-notch, can be
obtained by setting rc = 0 in (5.15). We get that

Trz =
K IF

√
2π

r kT sin (λLφ), Tφz =
K IF

√
2π

r kT cos (λLφ), (5.17)

where λL and kT are of the form (5.16), K IF is a stress intensity factor and α is an
angle of the V-notch.

When α varies from 0 to π, the exponent of the singularity kT is changing from
−1/2 to 0. In Neuber (1961), it was noted that ’As the notch angle influence indeed
is insignificant, relation for α = 0 can be used approximately for any deformation law
and any notch angle’. This observation is utilized in computer simulations where we
use small V-notch angle α = 1° to approximate the solution for the crack geometry
where α = 0.

5.2.3 Power law materials

The power law solid with the constitutive equation of the type

σ(|Tv |) = |Tv |q
′−2 , (5.18)

which can be understood as a simplified relationship (5.2) for |Tv | → ∞, when
subject to the anti-plane strain setting3 in the infinite V-notch geometry, was first
studied in Neuber (1961). Derivation of asymptotic solutions involves using hodo-
graph transformation, see Atkinson – Champion (1984). This problem was studied

3Anti-plane strain setting is in this situation equal to the anti-plane stress setting.
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Figure 5.3: Dependence of the exponent kT on α.
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Figure 5.4: Dependence of the exponents kT and ke on q′ for α = 0.
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in a number of works including Ore – Durban (1988); Gross – Yu (1987); Shaorui –
Chao (1990). Asymptotic formulas in the polar coordinates centered at the V-notch
tip C , which include implicit functional relationships for φ, can be found in Bassani
(1984). Here we include the dependence of stress on the distance from the V-notch
tip, which is of the form

Tv ∼ r kT , kT =
−1

q′

2
+
[(

q′−2
2

)2
+ λ2(q′ − 1)

] 1
2

, λ =
π

π − α
. (5.19)

Figure 5.3 shows the dependence of the exponent of the singularity kT on α for
various q′. When considering the constitutive equation (5.18), the singularity of
strain is of the form

εv ∼ r ke , ke = (q′ − 1)kT . (5.20)

Upon setting q′ = 2, we obtain kT = ke and the exponent of singularity is the same
as for the linear model (5.16). Note that for q′ ̸= 2, the singularities of stress and
strain are not equal. For α = 0, the dependence of the exponents kT and ke on q′

is shown in Figure 5.4.

5.3 Setting of finite element simulations

In this section, we delineate the concrete setting that we follow when performing
computer simulations. First, we depict geometries of the computational domains
and describe boundary conditions that we use. Then, we define variational formula-
tion of the problem on finite dimensional spaces. Finally, we tabulate the parameters
of the models of the titanium alloys that we simulate.

5.3.1 Computational domains

We use three types of geometries of the computational domain B , each geometry
consists of the unit square with a notch on its left side, see Figures 5.5, 5.6 and 5.7.
We use SI units, therefore the edge length of the square is 1m.

V geometry

V geometry of a computational domain, see Figure 5.5, consists of the unit square
plate with a V shaped notch and the opening angle α, where 0 < α < π. When α <
π/2, the left part of the boundary consists of four segments Γ4 = ΓA4 ∪ΓB4 ∪ΓC4 ∪ΓD4
and the tip of the V notch is at point C = (0.5, 0.5). When π/2 ≤ α < π, the left
part of the boundary consists of two segments Γ4 = ΓA4 ∪ ΓB4 and the tip of the V
notch is at point

C =

(
0.5

tan(α
2
)
, 0.5

)
.

VO geometry

VO geometry of a computational domain, see Figure 5.6, is a modified V geometry
where a circle of radius rc < 0.5 centered at the tip of the V-notch C is subtracted
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Figure 5.5: V geometry of a computational domain. On the left, the domain is
depicted when α < π/2. On the right, when π/2 ≤ α < π.

from the domain. The geometry is parametrized by angle α and the radius of
circle rc . When α < π/2, the left part of the boundary consists of five parts
Γ4 = ΓA4 ∪ ΓB4 ∪ ΓC4 ∪ ΓD4 ∪ ΓE4 . When π/2 ≤ α < π, the left part of the boundary
consists of three parts Γ4 = ΓA4 ∪ ΓB4 ∪ ΓC4 .
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Figure 5.6: VO geometry of a computational domain. On the left, the domain is
depicted when α < π/2. On the right, when π/2 ≤ α < π.

VC geometry

VC geometry of a computational domain, see Figure 5.7, is a modified V geometry
such that the tip of the V notch is smoothened by the circle arc of radius rc that
is tangent to the V-notch. The geometry is parametrized by angle α and the radius
of arc rc . When α < π/2, then the left part of the boundary consists of five parts
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Γ4 = ΓA4 ∪ ΓB4 ∪ ΓC4 ∪ ΓD4 ∪ ΓE4 . There is a restriction that the arc fits inside the unit
square, which imposes a condition

0 < rc <
0.5 sin(α

2
)

cos2(α
2
)
.

The center of the arc is at point

C =

(
0.5− rc

sin(α
2
)
, 0.5

)
.

When π/2 ≤ α < π, the left part of the boundary consists of three parts Γ4 =
ΓA4 ∪ ΓB4 ∪ ΓC4 . The restriction that the arc fits into the unit square takes the form

0 < rc <
0.5

cos (α
2
)

and the center of the arc is at point

C =

(
0.5

tan(α
2
)
− rc

sin(α
2
)
, 0.5

)
.
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Figure 5.7: VC geometry of a computational domain. On the left, the domain is
depicted when α < π/2. On the right, when π/2 ≤ α < π.

5.3.2 Boundary conditions

We impose the same boundary conditions on all computational domains. The do-
main is loaded by the shearing force F = 100MPa that acts on the top and on the
bottom edge of the unit square. Therefore g = F on Γ3 (top), g = −F on Γ1 (down)
and g = 0 on the remaining parts of the boundary. The boundary condition (5.13)
takes the form

Ag
0 (x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Fx1 on Γ1,

−F on Γ2,

−Fx1 on Γ3,

0 on Γ4,
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where F = 1× 108 Pa.

5.3.3 Variational problem on the space of finite elements

Now we formulate the boundary value problem from Definition 5.2 as a variational
problem on the space of finite elements. To derive the weak formulation, we multiply
the first equation in (5.14) by a test function ϕ ∈ C∞

c (B), integrate over B and use
the integration by parts. For the power-law solid (5.2) where σ has the form

σ(|T|) ∼
(
1 + |T|2

) q′−2
2 ,

we seek the function A ∈ W 1,q′(B) that satisfies the formulation∫
B

σ(|∇A|)∇A.∇ϕ dx = 0 ∀ϕ ∈ C∞
c (B),

A = Ag
0 on ∂B ,

(5.21)

where Ag
0 is defined by (5.13). When the response is given by Hooke’s law (5.3), where

σ is a constant, we set q′ = 2 and seek Airy’s function in the space A ∈ W 1,2(B).
In Section A.2.6, (p. 141), important definitions and results from numerical analy-

sis are summarized. To find numerical solutions, we first construct triangulation Th

of the computational domain B . We employ a finite dimensional space Vh over Th

and its counterpart with zero trace

V 0
h = {u ∈ Vh, u|∂B = 0}.

Definition 5.3 (Airy’s solution to discrete Problem (P) in anti-plane stress setting).
Let B ⊂ R2 be a computational domain described in Figure 5.5, 5.6 or 5.7. Let Th be
a triangulation over B . Let the functions (σ, g ) represent the problem data. We say
that the function Ah ∈ Vh is Airy’s solution to the discrete Problem (P) in the anti-plane
stress setting, if ∑

T∈Th

∫
T

σ(|∇Ah|)∇Ah.∇ϕh dx = 0 ∀ϕh ∈ V 0
h ,

Ah = Ag
0 on ∂B ,

(5.22)

where Ag
0 is the function defined by (5.13).

As Vh we use the space of piece-wise continuous second order polynomials
Vh = X 2

h , where

X 2
h = {uh ⊂ C 0(B), uh|T ∈ P2(T ),∀T ∈ Th},

for details, see Definition A.108, (p. 142). We use Langrange elements of second
order, which form the space X 2

h and that are conforming. Lemma A.110, (p. 142)
yields X 2

h ⊆ W 1,q′(B) and therefore we might omit the sum over elements in (5.22).
For the problems of the type (5.22), the quasi-norm interpolation error estimates
were established, see Ebmeyer – Liu (2005).

For solving the problem computationally, we have developed software in Python
that utilize FEniCS library, see Alnæs et al. (2015). To find a solution for nonlinear
power-law problems, we use damped Newton method, where the convergence cri-
terion was based on the L2 norm of the residuum. Computationally intensive tasks
were performed using a cluster infrastructure supported by the Charles university,
see http://cluster.karlin.mff.cuni.cz/.
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5.3.4 Parameters of models for simulations of titanium alloys

We study the shear behavior of three different titanium alloys, namely Gum Metal,
Ti-30Nb-10Ta-5Zr alloy and Ti-24Nb-4Zr-7.9Sn alloy. For each alloy, we compare four
different models identified in Chapter 3. The model labelled NLB is the power law
model with parameters obtained as the best fit under highly nonlinear bulk response
condition (3.27). The model NLS is a model with parameters obtained under the
highly nonlinear shear response condition (3.28) and the model NLO is the model
obtained when maximizing the objective function (3.30). The model LIN is a linear
model (5.3), where the shear modulus is given by Voigt-Reuss-Hill approximation,
see Section 3.3.1. Original model (3.19) has the parameters (τ0, s

′,K , q′,µ). In the
anti-plane stress setting, the parameters s ′ and K do not enter the model (5.2),
and therefore we work with a reduced set of parameters (τ0, q

′,µ). Parameters of
computations are summarized in Table 5.1.

Material Model µL[GPa] τ0[GPa] q′ µ[GPa]

Gum Metal LIN1 23.5 - - -
Gum Metal NLO1 - 0.5 1.92 20.9
Gum Metal NLB1 - 0.5 2.23 20.2
Gum Metal NLS1 - 0.5 7.65 18 668
Ti-30Nb-10Ta-5Zr LIN2 21.75 - - -
Ti-30Nb-10Ta-5Zr NLO2 - 0.5 1.88 24.5
Ti-30Nb-10Ta-5Zr NLB2 - 0.5 2.49 22.3
Ti-30Nb-10Ta-5Zr NLS2 - 0.5 9.15 1001
Ti-24Nb-4Zr-7.9Sn LIN3 22.05 - - -
Ti-24Nb-4Zr-7.9Sn NLO3 - 0.5 2.14 18.6
Ti-24Nb-4Zr-7.9Sn NLB3 - 0.5 2.99 16.5
Ti-24Nb-4Zr-7.9Sn NLS3 - 0.5 15.68 3378

Table 5.1: Parameters of computer simulations. Linear model LIN with the response
(5.3) is parametrized by the shear modulus µL, from Table 3.6. Power law models
NLB, NLS and NLO with the response (5.2) are parametrized by τ0, q′ and µ. Data
for model NLB are based on Table 3.9, data for model NLS are based on Table 3.11.
Data for model NLO are based on Table 3.13

5.4 Results

We have performed the following set of simulations. For each domain type, we
computed solutions for α ∈ {1°, 2°, ... 70°, 80° ... 180°}. For domains VO and VC
and for each angle α, we considered rc ∈ {0.05, 0.01, 0.005, 0.001}. In total, we
use 712 different geometries of the computational domain. For each geometry,
we generate one basic mesh and use its 5 adaptive refinements. In total, we use
4272 different meshes. Meshes were adaptively refined according to the local error
estimator for the linear problem, this process is illustrated in Figures 5.8, 5.9 and 5.10
for three different geometries. Mesh construction and refinement was performed
using COMSOL Multiphysics software, version 3.5a, see COMSOL AB (2008). On
each mesh, we performed computer simulations for 12 different model settings
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Figure 5.8: Visualization of the adaptive refinement of the mesh in 5 steps. In
upper left, there is the unrefined mesh and in lower right, there is the mesh after 5
refinemet steps. Visualisation for V geometry, α = 30◦.

described in Table 5.1, see Section 5.3.4. Therefore, in total we generated solutions
of 51 264 problems.

5.4.1 Global convergence of solutions

The primary goal of computer simulations is to study distributions of strains and
stresses for each model in each studied geometry and to find differences between
linear and nonlinear solutions and between solutions of problems NLO, NLB and NLS
that differ in the magnitude of the shear response exponent q′.

Prior to studying this, we investigate how accurate and reliable the solutions are.
In this section, we study the global stability of solutions with respect to a refinement
level. To measure the relative error of solution with respect to the reference solution,
we define the relative error norm.

Definition 5.4 (Relative error norm). Let Aref be a function (reference solution) on a
finite dimensional space Vh. Let A be a function (solution) on a finite dimensional space
Qh ⊆ Vh. Let ∥.∥ denote a norm on Vh. Then the relative error norm of A with respect
to Aref is defined through

∥A∥rel = ∥A− Aref ∥
∥Aref ∥

. (5.23)

For a sequence of adaptively refined meshes, the triangulation on one level is
a subset of triangulations on levels above. Let V i

h be a finite dimensional space
of solutions on the i-th refinement level, then V 0

h ⊆ V 1
h ... ⊆ V 5

h . When analysing
adaptively refined problems, we use a solution on the densest mesh, that is on the
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Figure 5.9: Visualization of the adaptive refinement of the mesh in 5 steps. In
upper left, there is the unrefined mesh and in lower right, there is the mesh after 5
refinemet steps. Visualisation for VO geometry, α = 1◦, rc = 0.05.

Figure 5.10: Visualization of the adaptive refinement of the mesh in 5 steps. In
upper left, there is the unrefined mesh and in lower right, there is the mesh after 5
refinemet steps. Visualisation for VC geometry, α = 100◦, rc = 0.05.
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5-th refinement level, as the reference solution. Then we compute the relative error
norm for the solutions computed on croaser meshes. Our spaces V i

h consists of
piece-wise continuous quadratic polynomials. Since V i

h ⊆ W 1,2(B) for i ∈ {0 ... 5},
we use the norm ∥.∥ = ∥.∥1,2 in (5.23) for all problems.

Tables of mesh properties and error norms

In Tables 5.2–5.10 we list some important parameters of computations with respect
to the mesh refinement. In particular, we list number of elements, number of
degrees of freedom, mesh size parameters hmin and hmax and relative error norms
for each problem listed in Table 5.1. For example, ∥ANLB2∥rel1,2 in a table row denotes
the error norms with respect to the mesh refinement for the solution of the problem
NLB2. In each table, the error norms for all linear problem are compressed to the
single row with a label ∥ALIN∥rel1,2, because for every mesh, the solution ALIN to a
linear problem does not depend on shear modulus µL. It means that all linear
problems have identical Airy’s functions and consequently error norms are identical
as well. We have that

∥ALIN∥rel1,2 = ∥ALIN1∥rel1,2 = ∥ALIN2∥rel1,2 = ∥ALIN3∥rel1,2. (5.24)

We have chosen the following illustrative set of geometries to include in tables. For
V geometry, we include data for α ∈ {1°, 90°, 170°}, see Tables 5.2–5.4. For VO
geometry, we include data for α = 2° and rc ∈ {0.001, 0.01, 0.05}, see Tables 5.5–
5.7. For VC geometry, we include data for α = 100° and rc ∈ {0.001, 0.01, 0.05},
see Tables 5.8–5.10.

Refinement 0 1 2 3 4 5

Elements 1982 4571 9767 20 550 43 181 88 777
DOFs 4105 9314 19 746 41 411 86 922 178 284
hmin 0.02 0.002 0.0006 0.0001 3× 10−5 2× 10−5

hmax 0.04 0.04 0.04 0.04 0.04 0.04
∥ALIN∥rel1,2 0.06 0.02 0.01 0.004 0.002 0.0
∥ANLB1∥rel1,2 0.05 0.02 0.007 0.003 0.001 0.0
∥ANLB2∥rel1,2 0.04 0.01 0.005 0.002 0.0009 0.0
∥ANLB3∥rel1,2 0.03 0.008 0.003 0.001 0.0005 0.0
∥ANLO1∥rel1,2 0.07 0.03 0.01 0.005 0.003 0.0
∥ANLO2∥rel1,2 0.07 0.03 0.01 0.006 0.003 0.0
∥ANLO3∥rel1,2 0.05 0.02 0.008 0.003 0.002 0.0
∥ANLS1∥rel1,2 0.01 0.003 0.0008 0.0002 0.0001 0.0
∥ANLS2∥rel1,2 0.01 0.002 0.0007 0.0002 0.000 09 0.0
∥ANLS3∥rel1,2 0.01 0.002 0.0006 0.0002 0.0001 0.0

Table 5.2: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain V with α = 1°. For detailed description
of row labels, see Section 5.4.1 and Table 5.1.
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Refinement 0 1 2 3 4 5

Elements 1510 3709 8221 17 243 35 404 73 569
DOFs 3145 7564 16 644 34 820 71 325 147 826
hmin 0.02 0.002 0.0006 0.0001 6× 10−5 2× 10−5

hmax 0.04 0.04 0.04 0.04 0.04 0.04
∥ALIN∥rel1,2 0.02 0.005 0.002 0.0008 0.0003 0.0
∥ANLB1∥rel1,2 0.02 0.004 0.001 0.0006 0.0002 0.0
∥ANLB2∥rel1,2 0.02 0.003 0.001 0.0004 0.0002 0.0
∥ANLB3∥rel1,2 0.01 0.002 0.0007 0.0003 0.0001 0.0
∥ANLO1∥rel1,2 0.02 0.005 0.002 0.0009 0.0003 0.0
∥ANLO2∥rel1,2 0.02 0.005 0.002 0.0009 0.0004 0.0
∥ANLO3∥rel1,2 0.02 0.004 0.001 0.0006 0.0002 0.0
∥ANLS1∥rel1,2 0.007 0.001 0.0003 0.0002 0.000 06 0.0
∥ANLS2∥rel1,2 0.007 0.0009 0.0003 0.0001 0.000 06 0.0
∥ANLS3∥rel1,2 0.006 0.0008 0.0003 0.0002 0.000 09 0.0

Table 5.3: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain V with α = 90°. For detailed description
of row labels, see Section 5.4.1 and Table 5.1.

Refinement 0 1 2 3 4 5

Elements 1956 4491 9348 18 920 38 053 74 764
DOFs 4025 9128 18 909 38 163 76 588 150 153
hmin 0.02 0.002 0.001 0.0003 0.0002 8× 10−5

hmax 0.04 0.04 0.04 0.04 0.04 0.03
∥ALIN∥rel1,2 0.0007 0.0001 0.000 03 0.000 01 0.000 005 0.0
∥ANLB1∥rel1,2 0.0007 0.0001 0.000 03 0.000 01 0.000 005 0.0
∥ANLB2∥rel1,2 0.0007 0.0001 0.000 03 0.000 01 0.000 005 0.0
∥ANLB3∥rel1,2 0.0007 0.0001 0.000 03 0.000 01 0.000 005 0.0
∥ANLO1∥rel1,2 0.0007 0.0001 0.000 03 0.000 01 0.000 005 0.0
∥ANLO2∥rel1,2 0.0008 0.0001 0.000 03 0.000 01 0.000 005 0.0
∥ANLO3∥rel1,2 0.0007 0.0001 0.000 03 0.000 01 0.000 005 0.0
∥ANLS1∥rel1,2 0.0006 0.0001 0.000 02 0.000 01 0.000 004 0.0
∥ANLS2∥rel1,2 0.0005 0.000 07 0.000 02 0.000 009 0.000 004 0.0
∥ANLS3∥rel1,2 0.0005 0.000 07 0.000 02 0.000 009 0.000 004 0.0

Table 5.4: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain V with α = 170°. For detailed description
of row labels, see Section 5.4.1 and Table 5.1.
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Refinement 0 1 2 3 4 5

Elements 4303 11 738 26 091 54 303 116 802 251 434
DOFs 8858 23 749 52 620 109 212 234 445 504 129
hmin 0.0002 0.0002 0.0002 0.0001 6× 10−5 4× 10−5

hmax 0.04 0.04 0.04 0.04 0.04 0.02
∥ALIN∥rel1,2 0.001 0.0009 0.0008 0.0007 0.0004 0.0
∥ANLB1∥rel1,2 0.001 0.0007 0.0006 0.0006 0.0003 0.0
∥ANLB2∥rel1,2 0.001 0.0006 0.0005 0.0005 0.0002 0.0
∥ANLB3∥rel1,2 0.001 0.0005 0.0004 0.0003 0.0002 0.0
∥ANLO1∥rel1,2 0.001 0.001 0.0009 0.0008 0.0004 0.0
∥ANLO2∥rel1,2 0.001 0.001 0.001 0.0009 0.0005 0.0
∥ANLO3∥rel1,2 0.001 0.0008 0.0007 0.0006 0.0003 0.0
∥ANLS1∥rel1,2 0.001 0.0003 0.0002 0.0001 0.000 07 0.0
∥ANLS2∥rel1,2 0.001 0.0003 0.0002 0.0001 0.000 07 0.0
∥ANLS3∥rel1,2 0.001 0.0003 0.0002 0.0001 0.000 07 0.0

Table 5.5: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain VO with α = 2° and rc = 0.001. For
detailed description of row labels, see Section 5.4.1 and Table 5.1.

Refinement 0 1 2 3 4 5

Elements 2786 6410 13 116 27 252 56 041 119 673
DOFs 5757 13 015 26 471 54 947 112 712 240 248
hmin 0.002 0.002 0.001 0.0007 0.0005 0.0003
hmax 0.04 0.04 0.04 0.04 0.04 0.04
∥ALIN∥rel1,2 0.003 0.003 0.002 0.0008 0.0003 0.0
∥ANLB1∥rel1,2 0.002 0.002 0.002 0.0007 0.0003 0.0
∥ANLB2∥rel1,2 0.002 0.002 0.002 0.0006 0.0002 0.0
∥ANLB3∥rel1,2 0.002 0.002 0.001 0.0005 0.0002 0.0
∥ANLO1∥rel1,2 0.003 0.003 0.002 0.0009 0.0003 0.0
∥ANLO2∥rel1,2 0.003 0.003 0.002 0.0009 0.0003 0.0
∥ANLO3∥rel1,2 0.003 0.002 0.002 0.0008 0.0003 0.0
∥ANLS1∥rel1,2 0.001 0.001 0.0008 0.0003 0.0001 0.0
∥ANLS2∥rel1,2 0.001 0.0009 0.0008 0.0003 0.0001 0.0
∥ANLS3∥rel1,2 0.001 0.0008 0.0007 0.0003 0.0001 0.0

Table 5.6: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain VO with α = 2° and rc = 0.01. For
detailed description of row labels, see Section 5.4.1 and Table 5.1.
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Refinement 0 1 2 3 4 5

Elements 2300 6008 12 644 25 906 53 252 111 118
DOFs 4771 12 213 25 549 52 231 107 097 223 117
hmin 0.01 0.003 0.002 0.001 0.001 0.0007
hmax 0.04 0.04 0.04 0.04 0.04 0.04
∥ALIN∥rel1,2 0.006 0.003 0.001 0.0007 0.0006 0.0
∥ANLB1∥rel1,2 0.006 0.003 0.001 0.0006 0.0005 0.0
∥ANLB2∥rel1,2 0.005 0.003 0.0009 0.0006 0.0005 0.0
∥ANLB3∥rel1,2 0.005 0.003 0.0009 0.0006 0.0005 0.0
∥ANLO1∥rel1,2 0.006 0.003 0.001 0.0007 0.0006 0.0
∥ANLO2∥rel1,2 0.006 0.003 0.001 0.0007 0.0006 0.0
∥ANLO3∥rel1,2 0.006 0.003 0.001 0.0007 0.0006 0.0
∥ANLS1∥rel1,2 0.003 0.002 0.0007 0.0004 0.0003 0.0
∥ANLS2∥rel1,2 0.003 0.002 0.0007 0.0004 0.0003 0.0
∥ANLS3∥rel1,2 0.003 0.002 0.0006 0.0004 0.0003 0.0

Table 5.7: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain VO with α = 2° and rc = 0.05. For
detailed description of row labels, see Section 5.4.1 and Table 5.1.

Refinement 0 1 2 3 4 5

Elements 2504 6231 13 442 28 305 58 294 127 106
DOFs 5169 12 644 27 159 57 066 117 185 255 155
hmin 0.0002 0.0002 0.0002 0.0002 8× 10−5 6× 10−5

hmax 0.04 0.04 0.04 0.04 0.03 0.02
∥ALIN∥rel1,2 0.0006 0.0003 0.0002 0.0002 0.0002 0.0
∥ANLB1∥rel1,2 0.0006 0.0003 0.0002 0.0002 0.0001 0.0
∥ANLB2∥rel1,2 0.0005 0.0003 0.0002 0.0002 0.0001 0.0
∥ANLB3∥rel1,2 0.0005 0.0002 0.0002 0.0001 0.0001 0.0
∥ANLO1∥rel1,2 0.0006 0.0003 0.0002 0.0002 0.0002 0.0
∥ANLO2∥rel1,2 0.0006 0.0003 0.0003 0.0002 0.0002 0.0
∥ANLO3∥rel1,2 0.0006 0.0003 0.0002 0.0002 0.0001 0.0
∥ANLS1∥rel1,2 0.0004 0.0002 0.0001 0.000 08 0.000 06 0.0
∥ANLS2∥rel1,2 0.0004 0.0002 0.0001 0.000 08 0.000 06 0.0
∥ANLS3∥rel1,2 0.0004 0.0002 0.0001 0.000 08 0.000 05 0.0

Table 5.8: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain VC with α = 100° and rc = 0.001. For
detailed description of row labels, see Section 5.4.1 and Table 5.1.
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Refinement 0 1 2 3 4 5

Elements 2028 4681 9667 20 025 40 747 87 058
DOFs 4197 9518 19 550 40 428 82 038 174 841
hmin 0.002 0.001 0.001 0.0006 0.0003 0.0002
hmax 0.04 0.04 0.04 0.04 0.04 0.02
∥ALIN∥rel1,2 0.001 0.001 0.0007 0.0003 0.0001 0.0
∥ANLB1∥rel1,2 0.001 0.0009 0.0006 0.0002 0.000 09 0.0
∥ANLB2∥rel1,2 0.001 0.0008 0.0006 0.0002 0.000 09 0.0
∥ANLB3∥rel1,2 0.0009 0.0007 0.0005 0.0002 0.000 08 0.0
∥ANLO1∥rel1,2 0.001 0.001 0.0007 0.0003 0.0001 0.0
∥ANLO2∥rel1,2 0.001 0.001 0.0007 0.0003 0.0001 0.0
∥ANLO3∥rel1,2 0.001 0.0009 0.0006 0.0002 0.0001 0.0
∥ANLS1∥rel1,2 0.0007 0.0005 0.0004 0.0001 0.000 05 0.0
∥ANLS2∥rel1,2 0.0006 0.0005 0.0003 0.0001 0.000 05 0.0
∥ANLS3∥rel1,2 0.0006 0.0005 0.0003 0.0001 0.000 05 0.0

Table 5.9: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain VC with α = 100° and rc = 0.01. For
detailed description of row labels, see Section 5.4.1 and Table 5.1.

Refinement 0 1 2 3 4 5

Elements 1758 4153 8481 17 287 34 819 70 086
DOFs 3645 8460 17 172 34 920 70 138 140 827
hmin 0.01 0.002 0.002 0.001 0.0008 0.0006
hmax 0.04 0.04 0.04 0.04 0.04 0.03
∥ALIN∥rel1,2 0.003 0.001 0.0004 0.0003 0.0002 0.0
∥ANLB1∥rel1,2 0.003 0.0009 0.0004 0.0003 0.0002 0.0
∥ANLB2∥rel1,2 0.003 0.0009 0.0003 0.0003 0.0002 0.0
∥ANLB3∥rel1,2 0.003 0.0008 0.0003 0.0003 0.0002 0.0
∥ANLO1∥rel1,2 0.003 0.001 0.0004 0.0003 0.0002 0.0
∥ANLO2∥rel1,2 0.003 0.001 0.0004 0.0003 0.0002 0.0
∥ANLO3∥rel1,2 0.003 0.0009 0.0004 0.0003 0.0002 0.0
∥ANLS1∥rel1,2 0.002 0.0006 0.0002 0.0002 0.0001 0.0
∥ANLS2∥rel1,2 0.002 0.0006 0.0002 0.0002 0.0001 0.0
∥ANLS3∥rel1,2 0.002 0.0006 0.0002 0.0002 0.0001 0.0

Table 5.10: Mesh properties and error norms of the solutions with respect to the
refinement level for computational domain VC with α = 100° and rc = 0.05. For
detailed description of row labels, see Section 5.4.1 and Table 5.1.
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Figure 5.11: Visualization of a local error measured as a difference between the
stress components of the solution on unrefined mesh and the solution on fully
refined mesh. Visualisation for V geometry, α = 1°, model NLB3. Grey areas are
above the visualized range, while black areas are below the visualized range.

5.4.2 Local convergence and asymptotic behavior of solutions
for V geometry

Let consider the problem of V geometry with α = 1°. For this setting, we demon-
strate how solutions converge to the reference solution with the mesh refinement
and how close solutions to the linearized problem are to the asymptotic solution.

The local error of a solution is measured as the difference of the norm of the
stress tensor, or its component, from its reference value on the finest mesh. As
expected, the highest local error is in the vicinity of the V-notch tip, see Figure 5.11.
With the mesh refinement, the local error is shrinking towards a small area around
the V-notch tip, see Figure 5.12. Note that Figures 5.11 and 5.12 were created with a
differences in stress ranging from −1MPa to 1MPa, while 1MPa is one hundredth
of the value T23 prescribed on the boundary.

To compare numerical solutions with asymptotic solutions, we have to determine
stress intensity factor K IF in (5.15). Stress intensity factor is a value of the stress
T23 in the far field, therefore we set K IF = 100MPa, which is the value of the stress
on the boundary. Comparison of the numeric solution for linearized problem with
the asymptotic formula (5.15) in terms of stress distribution is in Figure 5.13. We can
see that asymptotic solutions are a good predictors of the behavior of the numerical
solution of linear problems.

5.4.3 Comparison of solutions in V domains

In the following two sections, we compare behavior of numerical solutions for dif-
ferent models and geometries. For simplicity and consistency, we consider only the
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Figure 5.12: Decrease of a local error measured as a norm of difference between
the stress tensor of the solution on partially refined mesh and the solution on fully
refined mesh. Top left visualization describes difference with the solution on unre-
fined mesh while bottom right visualization describes difference with the solution
on four times refined mesh. Visualisation for V geometry, α = 1°, model NLB3. Grey
areas are above the visualized range.
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Figure 5.13: Comparison of the stress distribution for the first term of the linear
asymptotic solution (5.15) (up) with the numeric solution (down). Computation was
performed in V geometry with α = 1°, grey areas are above the visualized range,
while black areas are below the visualized range.
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models NLO2, NLB2 and NLS2 and LIN2, which describe behavior of Ti-30Nb-10Ta-5Zr
alloy, to perform all comparisons. We show how different exponents of the power-
law dependence affect the solution in terms of stress and strain distributions. If we
refer to numerical solutions, we refer to the solutions on the finest mesh, unless
stated otherwise. In figures, we use the coloring convention, such that grey areas
are above the visualized range and black areas are below the visualized range.

First, we consider V geometry with α = 1°. In terms of the stress distribution, the
size of effect is similar for all considered models, see Figure 5.14. The models NLO2
and NLB2 are close to each other and resemble the stress distribution for the linear
model, while the model NLS2, with q′ = 9.15, has notably different stress distribution
from the former two. In terms of the distribution of strain, see Figure 5.15, there
are clear differences between all studied models. Most prominent differences are
in the strain distribution of the model NLS2, which is completely different from
other two models. While the differences in the stress distribution can be entirely
attributed to the high power-law exponent, the differences in the strain distribution
are also due to the high shear modulus of the NLS2 model µ = 1001GPa. Therefore,
although there is a high singularity (5.20) of the strain in case of the model NLS3,
this singularity is concentrated in the close vicinity of the V-notch tip with a limited
effect to the whole domain. Values of stress and strain over the line from the V-
notch tip to the right, which is denoted φ = 0° and to the top, which is denoted
φ = 90° are depicted in Figure 5.16.

5.4.4 Comparison of solutions in VO and VC domains

Now, we focus on geometries VO and VC that are smoothened by a circle or an arc
of diameter rc . We consider α = 90° and compare the behavior of the models LIN2,
NLO2, NLB2 and NLS2.

In VO geometry, see Figure 5.7, we consider rc = 0.05. The stress distribution
is visualized in Figure 5.17. The distribution of strain is visualized in Figure 5.18. We
also created plots of stress and strain over the line from the center of the end hole
C to the right, which is denoted φ = 0° and to the top, which is denoted φ = 90°,
see Figure 5.19.

In VC geometry, see Figure 5.7, we consider rc = 0.01. Visualizations of the
stress and strain distributions are in Figure 5.20 and Figure 5.21 respectively. We
construct plots of stress and strain over the line from the smothened tip, that is in
case of VC geometry the point C +(rc , 0) to the right, which is denoted φ = 0° and
to the top, which is denoted φ = 90°, see Figure 5.22.

From stress and strain distributions for studied models, we confirm that there is
no singularity of stress and strain. However, with shrinking rc , there is still evident
that there is a stress and strain concentration around the end hole or the end arc.
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Figure 5.14: Comparison of the stress distributions in V geometry with α = 1° for
models NLO2, NLB2, NLS2.
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Figure 5.15: Comparison of the strain distributions in V geometry with α = 1° for
models NLO2, NLB2, NLS2.
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Figure 5.16: Asymptotic behavior of stress and strain for models LIN2, NLO2, NLB2
and NLS2 in V geometry with α = 1°. The plots are created over the line starting at
the V-notch tip and ending either at point (1, 0.5), which is denoted φ = 0°, or at
point (0.5, 1), which corresponds to φ = 90°.
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Figure 5.17: Comparison of stress distributions in VO geometry with α = 90° and
rc = 0.05 for models NLO2, NLB2, NLS2.
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Figure 5.18: Comparison of strain distributions in VO geometry with α = 90° and
rc = 0.05 for models NLO2, NLB2, NLS2.
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Figure 5.19: PLots of stress and strain for models LIN2, NLO2, NLB2 and NLS2 in VO
geometry with α = 90° and rc = 0.05. The plots are created over the line starting
at the point C of the geometry and ending either at point (1, 0.5), which is denoted
φ = 0°, or at point (0.5, 1), which corresponds to φ = 90°.
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Figure 5.20: Comparison of stress distributions in VC geometry with α = 90° and
rc = 0.01 for models NLO2, NLB2, NLS2.
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Figure 5.21: Comparison of strain distributions in VC geometry with α = 90° and
rc = 0.01 for models NLO2, NLB2, NLS2.
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Figure 5.22: PLots of stress and strain for models LIN2, NLO2, NLB2 and NLS2 in VO
geometry with α = 90° and rc = 0.01. The plots are created over the line starting
at the point C +(rc , 0) of the geometry and ending either at point (1, 0.5), which is
denoted φ = 0°, or at point C + (rc , 0.5), which corresponds to φ = 90°.
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5.4.5 Dependence on α and rc

So far, we have been comparing the solutions when the geometrical setting is fixed.
In this section, we study how solutions depend on the parameters of geometries.
We consider behavior of solutions when the diameter rc is decreasing and when the
opening angle α is increasing.

In Figure 5.23, we plot dependence of the highest value of T23 and ε23 in the
whole computational domain for V geometries with respect to α for all studied
models. Corresponding plots for the domains VO and VC are for LIN2 model in
Figure 5.24, for NLO2 model in Figure 5.25, for NLB2 model in Figure 5.26 and for
NLS2 model in Figure 5.27.

Stresses and strains are very high in the vicinity of the notch tip and with a
distance they decrease, see Figures 5.22, 5.19 and 5.16. Distributions of T23 and
ε23 over the line from the tip to the right, which is denoted φ = 0°, are monotone.
It is therefore natural to ask how far from the tip stress or strain decreases to a
particular value. Next we define the distance from the notch tip to the point, where
T23 or ε23 acquires a particular value.

Definition 5.5 (Functions dstT and dste ). Let (r ,φ) be the cylindrical coordinate
system, see Figure 5.2 centered at point C for V geometry and VO geometry or at point
C + (rc , 0) for VC geometry. We define the functions dstT : [0, 2π) × R → R+

0 and
dste : [0, 2π)× R → R+

0 as follows

dstT (φ,T ) =

⎧⎪⎨⎪⎩
∞ if ∀r ≥ 0 : T < T23(r ,φ),

−∞ if ∀r ≥ 0 : T > T23(r ,φ),

min{r ≥ 0,T23(r ,φ) = T} otherwise.

dste(φ, e) =

⎧⎪⎨⎪⎩
∞ if ∀r ≥ 0 : e < ε23(r ,φ),

−∞ if ∀r ≥ 0 : e > ε23(r ,φ),

min{r ≥ 0, ε23(r ,φ) = e} otherwise.

For visualizations, we define the three following distances called DT2, DT3 and
DE1 such that

DT2 = dstT (0, 200MPa),

DT3 = dstT (0, 300MPa),

DE1 = dste(0, 0.01).

(5.25)

In V geometry, these distances are visualized for all considered models with
respect to α in Figure 5.28. In VO and VC geometries, these distances are visualized
for model LIN2 in Figure 5.29, for model NLO2 in Figure 5.30, for model NLB2 in
Figure 5.31 and for model NLS2 in Figure 5.32.
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Figure 5.23: Maximal T23 and ε23 in V geometry with respect to α.
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Figure 5.24: Maximal T23 and ε23 in VO geometry (top) and VC geometry (bottom)
with respect to α for model LIN2.
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Figure 5.25: Maximal T23 and ε23 in VO geometry (top) and VC geometry (bottom)
with respect to α for model NLO2.
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Figure 5.26: Maximal T23 and ε23 in VO geometry (top) and VC geometry (bottom)
with respect to α for model NLB2.
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Figure 5.27: Maximal T23 and ε23 in VO geometry (top) and VC geometry (bottom)
with respect to α for model NLS2.
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Figure 5.28: Distances DT2, DT3 and DE1, see (5.25), in V geometry with respect to
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Figure 5.29: Distances DT2, DT3 and DE1, see (5.25), in VO and VC geometries with
respect to α for model LIN2.

121



●

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
α

D
T

2
Model

●

●

●

●

0.001

0.005

0.01

0.05

VO geometry

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

0.00

0.03

0.06

0.09

0.12

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
α

D
T

3

Model
●

●

●

●

0.001

0.005

0.01

0.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.02

0.04

0.06

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
α

D
E

1

Model
●

●

●

●

0.001

0.005

0.01

0.05

●

●
●
●

●

●
●
●●

●
●

●

●
●
●

●

●
●●

●

●
●
●

●

●●
●

●

●
●
●

●

●●
●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●
●
●

●

●●●

●

●●●
●

●●●

●

●

●
●●●●
●●●●●●●

●●●●
●●●●

●
●●●

●
●●●

●
●●●

●

●●●

●

●●
●

●

●

●

●

●●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●

●

●
●
●

●

●
●

●

●
●
●

●
●
●

●

●
●
●

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
α

D
T

2

Model
●

●

●

●

0.001

0.005

0.01

0.05

VC geometry

●

●●●

●

●

●
●

●●
●

●

●

●
●

●●
●

●

●

●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

0.000

0.025

0.050

0.075

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
α

D
T

3

Model
●

●

●

●

0.001

0.005

0.01

0.05

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.005

0.010

0.015

0.020

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
α

D
E

1

Model
●

●

●

●

0.001

0.005

0.01

0.05

Figure 5.30: Distances DT2, DT3 and DE1, see (5.25), in VO and VC geometries with
respect to α for model NLO2.
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Figure 5.31: Distances DT2, DT3 and DE1, see (5.25), in VO and VC geometries with
respect to α for model NLB2.

123



●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
α

D
T

2
Model

●

●

●

●

0.001

0.005

0.01

0.05

VO geometry

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.005

0.010

0.015

0.020

0.025

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
α

D
T

3

Model
●

●

●

●

0.001

0.005

0.01

0.05

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●

0.0020

0.0024

0.0028

0.0032

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
α

D
E

1

Model
●

●

●

●

0.001

0.005

0.01

0.05

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●
●

●

●
●●

●

●

●
●

●
●●

●

●
●●

●

●
●●

●

●●
●

●

●●
●

●

●●
●

●

●●
●

●

●●
●

●

●●●

●

●●●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●
●
●●●
●
●●●
●
●●●
●
●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●
●
●●●
●
●●●

●

●

●

●
●●●

●

●

●

●

●●●

●

●

●

●

●
●●

0.00

0.05

0.10

0.15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
α

D
T

2

Model
●

●

●

●

0.001

0.005

0.01

0.05

VC geometry

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●
●
●●●
●●

●

●

●●●●●●●●●●●●
●●
●
●●
●
●●
●

●●
●

●
●
●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

0.005

0.010

0.015

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
α

D
T

3

Model
●

●

●

●

0.001

0.005

0.01

0.05

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●
0.0015

0.0020

0.0025

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
α

D
E

1

Model
●

●

●

●

0.001

0.005

0.01

0.05

Figure 5.32: Distances DT2, DT3 and DE1, see (5.25), in VO and VC geometries with
respect to α for model NLS2.

124



5.5 Discussion

We formulated Problem (P) as a variational problem on finite element spaces in a
geometry of anti-plane stress. We simulated the response of three titanium al-
loys, described by the power-law models (5.2), with the material moduli identified in
Chapter 3, see Table 5.1. Numerical simulations were performed on adaptively re-
fined triangular meshes in a three basic geometries of a square plate with a V-notch,
which are specified in the Section 5.3.1.

We have verified that the computed variational solutions are stable. In Tables
5.2–5.10, we list relative error norms (5.23) with respect to the refinement level for
all studied problems in different geometries. The differences between computed
solutions on the two most refined meshes are typically of order lower than 10−4.
The global stability measured by the error norms is for the power-law problems
comparable to or even better than the global stability for a linear problem. The
best results were obtained in the domains of types VO and VC where, despite the
presence of stress concentration, there is no, expected or observed, singularity of
stress and strain, see Figure 5.19 and Figure 5.22. For these geometries, we see
that the error norms between the solution on once or twice refined mesh and the
solution on the fully refined mesh are smaller than in case of V geometry. However,
with a further refinements we can see a very limited improvement in the error
norms. Thus, we can hypothesize that we converge to the close vicinity of the
analytical solution.

For all geometries, it is evident that with increasing angle α, the solution is be-
coming even more stable due to the decrease of the magnitude of singularity or the
severity of the stress concentration in case of smoothened domains. We observe
that the solutions are more stable for higher values of the power law exponents
q′. Namely the error norms for the model NLS2 with the highest q′ are consistently
smaller than the error norms for the NLO2 model with the lowest q′.

We measure the local error of computed solutions with respect to the refinement
by the norm of the difference in the stress. In the V geometry, from Figures 5.11 and
5.12, we can see that the local error is the highest in the vicinity of the V-notch tip.
With the mesh refinement, stress distributions converge to each other, and the local
error shrinks towards negligible area around the V-notch tip, see Figure 5.12. Note
that in Figures 5.11 and 5.12, the maximal visualised difference can be 1MPa, which
is hundred times less than the value of stress in the far field 100MPa. Despite that,
the error is very small after a few refinement steps.

When studying the behavior of the solutions with respect to parameters of ge-
ometries, see Figures 5.23–5.32, we see that there is substantial stability of the
solution properties when comparing them across completely different meshes. We
can clearly identify patterns in Figures 5.23–5.32 that arise with respect to the notch
opening angle α. Even the properties such as the maximal value of the stress com-
ponent T23 for V geometry, where the singularity is predicted, form interestingly
stable patterns across discretizations, see Figure 5.23. As being expected, the most
stability is present when comparing properties that lie in some distance from the
notch tip, see Figures 5.28–5.32.

Let us further discuss the maximal values of T23 and ε23 in Figures 5.23–5.27. In
V geometry, from Figure 5.23 we can see that the maximal values max(T23) for con-
sidered models are ordered so that max(TNLO2

23 ) > max(T LIN2
23 ) > max(TNLB2

23 ) >
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max(TNLS2
23 ), while the order of the maximal values of ε23 is reversed. We have

that max(εNLO2
23 ) < max(εLIN2

23 ) < max(εNLB2
23 ) < max(εNLS223 ). This behavior corre-

sponds very well to the predicted sizes of the singularities for asymptotic solutions.
For our models, we have the order of the power law exponents q′

NLO2 < q′
LIN2 <

q′
NLB2 < q′

NLS2. Therefore, from equation (5.19) we get the following order of the
sizes of stress singularities |kT

NLO2| > |kT
LIN2| > |kT

NLB2| > |kT
NLS2|. At the same time

from equation (5.20) we have the reversed order of the singularities of the strain
|ke

NLO2| < |ke
LIN2| < |ke

NLB2| < |ke
NLS2|. Figures 5.23–5.27 thus suggests that the

size of the highest value of T23 and ε23 in computed solution correlates with the
predicted magnitude of the singularity in the asymptotic solution, which is given by
(5.19) and (5.20).

Another interesting aspect of our treatment of differences between solutions
is the dependence of solutions on the diameter of smoothing circle rc of the V-
notch tip in the case of VO and VC geometries. We can see that maximal values of
stress and strain grow with decreasing parameter rc , see Figures 5.24–5.27. There
is no singularity, but noticeably for rc = 0.001, we have a high stress concentration
around the smothened tip of the notch so that maximal values of strain clearly
exceed the small strain range.

Finally, we can see very satisfactory stability results regarding the solution in
the range of small strains. The values DT2, DT3 and DE1 were defined by (5.25) as
distances from the (smothened) tip of the V-notch to the point, where the stress
component T23 achieves the value of 200MPa or 300MPa or the strain component
ε23 achieves the value 0.01 respectively. The dependence of these distances on the
opening angle α is very smooth and stable, see Figures 5.28–5.32. In particular, the
magnitude of component ε23 = 0.01 can be considered the elastic limit for most of
studied materials. We can conclude that we achieved very good stability of solutions
not only with respect to the mesh refinement but also across discretizations.
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A. Review of the theory
In this chapter, we set the theoretical background of the thesis and introduce no-
tation. First, we outline results and define notation from the field of calculus, linear
algebra and tensor algebra. Then we review important results from functional anal-
ysis and analysis of PDE’s. Afterwards, we review important parts of the theory of
solid mechanics and elastostatics.

A.1 Vector spaces, tensor algebra and notation
In this section, we briefly review basic definitions from the field of vector spaces and
calculus with second order tensors. We also set up basic notations used throughout
the thesis. For the review of results from Real analysis, see Carothers (2000). For
the review of the results from linear algebra and tensor manipulation, see Roman
(2007); Itskov (2009).

Vector spaces

Definition A.1 (Real and natural numbers). We denote the set of real numbers by R,
the set of positive real numbers by R+ and the set of positive real numbers including
0 by R+

0 . We denote the set of natural numbers (positive integers) by N and the set of
natural numbers including 0 by N0.

Definition A.2 (Vector space (over R)). Vector space X is a set with operations ad-
dition (+), scalar multiplication and zero vector 0 ∈ X such that ∀x1, x2, x3 ∈ X and
∀α, β ∈ R, the following is true: x1+x2 ∈ X, αx1 ∈ X, (x1+x2)+x3 = x1+(x2+x3),
x1 + x2 = x2 + x1, x1 + 0 = x1, ∃(−x1) ∈ X : (−x1) + x1 = 0, α(βx1) = (αβ)x1,
1x1 = x1, αx1 + αx2 = α(x1 + x2), (α + β)x1 = αx1 + βx1

Definition A.3 (Basis of vector space X). The basis of vector space B ⊂ X is a set
B = {vi , i ∈ I} that is linearly independent and generates X. That means 1

• For all n ∈ N, n ≤ |I |,∀J ⊆ I , |J | = n let {vJ(1), ... , vJ(n)} = {vj , j ∈ J} then
from α1vJ(1) + ... + αnvJ(n) = 0 it follows that α1 = ...αn = 0.

• For all v ∈ X ∃n ∈ N, ∃J ⊆ I , |J | = n and α1, ...αn ∈ R such that if
{vJ(1), ... , vJ(n)} = {vj , j ∈ J} then v = α1vJ(1) + ... + αnvJ(n).

Definition A.4 (Linear span). Let P represent an ordered set of vectors from the
vector space X. P could be finite or countable. We define the linear span of P as a
set

span (P) = {
k∑

i=1

αivi |k ∈ N, vi ∈ P ,αi ∈ R}.

Definition A.5 (Finite dimensional vector space and its dimension). A vector space
X is of finite dimension, if there exists its basis B, which contains finite number of
vectors. The dimension of X is a number of elements of B2.

1By |I | we mean cardinality of the set I , see (Carothers, 2000, p. 18). If the set I has a finite
number of elements, then the cardinality is equal to the number of elements of I .

2All bases of the finite dimensional vector space have the same size, see (Itskov, 2009, p. 4).
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Definition A.6 (Norm of vector space X). The norm ∥.∥ : X → R is a mapping, such
that for all x, y ∈ X the following holds:

• ∥x∥ ≥ 0, ∥x∥ = 0 ⇔ x = 0,

• ∥αx∥ = |α|∥x∥, for α ∈ R,

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Definition A.7 (Normed vector space). Vector space X with norm ∥.∥ denoted by
(X, ∥.∥) is called a normed vector space.

Definition A.8 (Equivalent norms). Two norms ∥.∥1 and ∥.∥2 on vector space X are
equivalent if there exists two constants C1,C2 > 0, such that

∀x ∈ X C1∥x∥1 ≤ ∥x∥2 ≤ C2∥x∥1.

Theorem A.9. Any two norms on a finite dimensional vector space are equivalent.

Proof. See (Carothers, 2000, p. 124).

Definition A.10 (Direct sum of vector spaces). Let U and V be vector spaces, the
direct sum W = U⊕V is a vector space of pairs (u, v), where u ∈ U and v ∈ V. The
addition and the scalar multiplication are defined as follows

• (u1, v1) + (u2, v2) = (u1 + u2, v1 + v2),

• α(u, v) = (αu,αv), α ∈ R.

Observation A.11. If W = U ⊕ V and if ∥.∥U is a norm on U and if ∥.∥V is a norm
on V, then ∥(u, v)∥ = ∥u∥U + ∥v∥V is a norm on W.

Observation A.12. If W = U⊕ V and if U has dimension n and if V has dimension
m, then W has dimension n +m.

We will discuss important examples of the normed vector spaces with a basis
of finite dimension, which are Euclidean spaces.

Definition A.13 (Euclidean space Rn). Euclidean space of dimension n ∈ N is a set
of n-tuples v = (v1, v2, ... , vn) such that v1, v2, ... , vn ∈ R equipped with the following
operations:

• for v1, v2 ∈ Rn: v1 + v2 = (v 1
1 + v 2

1 , v
1
2 + v 2

2 , ... , v
1
n + v 2

n ),

• for α ∈ R , v ∈ Rn: αv = (αv1,αv2, ... ,αvn),

• 0 ∈ Rn : 0 = (0, 0, ... , 0).

Definition A.14 (Euclidean base). The space Rn has a natural orthonormal basis con-
sisting of vectors e1, ... en ∈ Rn, of the form

(ei)j = 1 i = j

(ei)j = 0 i ̸= j
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Matrix algebra and tensor algebra

Definition A.15 (Space of real matrices Rn×m). Space of real matrices n×m, where
n ∈ N, m ∈ N can be defined analogously to the Euclidean space as a space of
m-tuples A = (A1,A2, ... ,Am) such that A1,A2, ... ,Am ∈ Rn equipped with the
following operations:

• for A1,A2 ∈ Rn×m: A1 + A2 = (A1
1 + A2

1,A
1
2 + A2

2, ... ,A
1
m + A2

m),

• for α ∈ R , A ∈ Rn×m: αA = (αA1,αA2, ... ,αAm),

• 0 ∈ Rn×m : 0 = (0, 0, ... , 0).

Matrix from the space Rn×m is represented by its elements aij , i ∈ {1, ... , n}, j ∈
{1, ...m}.

Definition A.16 (p-norm of vector or matrix). Let p ≥ 1 and A ∈ Rn×m, then the
p-norm of A is

|A|p =

(
n∑

i=1

m∑
j=1

|aij |p
) 1

p

. (A.1)

By (A.1) the p-norm |v|p for vectors v ∈ Rn was also defined, since vectors
v ∈ Rn can be understood as matrices from Rn×1.

Definition A.17 (Euclidean norm of vector, Frobenius norm of matrix). Let A ∈ Rn×m,
v ∈ Rn, then the symbol |.| denotes 2-norm

|A| ≡ |A|2, |v| ≡ |v|2.

Euclidean spaces Rn and Rn×m are normed vector spaces with the norm |.|.

Observation A.18. Let n ∈ N. Let V be an n-dimensional vector space with a norm
∥.∥. Let B = {vi , i ∈ 1 ... n} be a basis of V. We can uniquely define y : V → Rn

such that

v =
n∑

i=0

y(v)ivi , v ∈ V. (A.2)

Using (A.2), we can show that the Euclidean norm |y(v)| is a norm on V. By
Theorem A.9 this norm is equivalent to ∥.∥. Thus, there exist C1,C2 ∈ R+ such
that C1|y(v)| ≤ ∥v∥ ≤ C2|y(v)|.

In the thesis, we reserve the symbol ∥.∥ to denote norms on, typically infinite
dimensional, functional spaces.

Definition A.19 (Inner product). Inner product of vector space X is a mapping (·, ·) :
X× X → R that for all x, y, z ∈ X fulfils

• (x, x) ≥ 0, (x, x) = 0 ⇔ x = 0,

• (αx, y) = α(x, y), for α ∈ R,

• (x, y) = (y, x)
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• (x+ y, z) = (x, z) + (y, z).

Definition A.20 (Natural norm). Let X be a vector space with inner product (·, ·).
Then the norm

∥x∥ =
√

(x, x), x ∈ X,

is called natural norm of space X relative to (·, ·).

Lemma A.21 (Cauchy-Schwarz inequality). Let X be a vector space with inner product
(·, ·). Let ∥.∥ be its natural norm. Then

∀x, y ∈ X, |(x, y)|2 ≤ (x, x)(y, y) = ∥x∥2∥y∥2.

Proof. See (Roman, 2007, p. 208).

Definition A.22 (Inner product on the Euclidean space Rn). Let v1, v2 ∈ Rn, then
the inner product (denoted by .) is a mapping Rn × Rn → R defined as

v1.v2 =
n∑

i=1

v 1
i v

2
i .

Definition A.23 (Inner product on the space of real matrices Rn×m). Let A1,A2 ∈
Rn×m, then the inner product (denoted by :) is a mapping Rn×m ×Rn×m → R defined
as

A1 : A2 =
n∑

i=1

m∑
j=1

a1ija
2
ij .

We can see that |.| is a natural norm on Rn and Rn×m relative to inner products
on these spaces.

Definition A.24 (Identity matrix, the Kronecker delta). We denote identity matrix by
I and the Kronecker delta by δij .

Definition A.25 (Square matrix, symmetric matrix, singular matrix, orthogonal vec-
tors, orthogonal matrices, eigenvalues, eigenvectors). For these definitions, see Abadir
– Magnus (2005).

• We denote the space of symmetric (square) matrices of the dimension n by Rn×n
sym .

• We denote the group of orthogonal (square) matrices of the dimension n (orthog-
onal group) by OG (n).

Definition A.26 (Matrix multiplication, Determinant of square matrix, Transposed
matrix, Inverse matrix, Trace of the matrix). These basic definitions can be found for
example in Abadir – Magnus (2005).

• For A ∈ Rn×m, B ∈ Rm×p , matrix multiplication is denoted by AB = C, where
C ∈ Rn×p .

• For A ∈ Rn×n, the determinant is denoted by detA.

• For A ∈ Rn×n, detA ̸= 0, the inverse matrix is denoted by A−1.

• For A ∈ Rn×m, the transposed matrix is denoted by A⊤.
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• For A ∈ Rn×n, the trace of A is denoted by trA.

Tensors are in general defined as multilinear maps acting on vector spaces and
their duals. In this thesis, we work primarily with second order tensors acting on
Rn, where n = 2 or n = 3. In this light, we identify square matrices A ∈ Rn×n with
bilinear mappings A : Rn × Rn → R defined by the equation

A(v,w) = (Aw)⊤ v. (A.3)

Conversely to (A.3), we also identify bilinear mappings A : Rn×Rn → R with square
matrices, by requiring that

Aij = A(ei, ej), i , j ∈ {1 ... n}. (A.4)

Definition A.27 (Second order tensor over Rn). Let n ∈ N. Second order tensor is a
bilinear mapping T : Rn × Rn → R, that is understood as a square matrix T ∈ Rn×n

in the sense of (A.4).

For an abstract treatment of Tensor algebra, see Yokonuma (1992).

Definition A.28 (Tensor product). Let v1, v2 ∈ Rn, then the tensor product (denoted
by ⊗) is a mapping Rn × Rn → Rn×n defined as

(v1 ⊗ v2)ij = v 1
i v

2
j , i , j ∈ {1 ... n}.

Definition A.29 (Ad - Deviatoric part of square matrix A). For a square matrix
A ∈ Rn×n we define its deviatoric part, by the formula

Ad = A− 1

3
(trA)I.

Theorem A.30 (Polar decomposition). For every matrix F ∈ Rn×n, detF ̸= 0, there
exist an orthogonal matrix R ∈ OG (n) and symmetric matrices U ∈ Rn×n

sym , V ∈ Rn×n
sym

with detU = detV = | detF| such that

F = RU = VR.

Proof. Proof can be found in (Abadir – Magnus, 2005, p. 226).

Definition A.31 (Characteristic polynomial of square matrix). Characteristic polyno-
mial of square matrix A ∈ Rn×n is a polynomial

P(λ) = det(λI− A)

Definition A.32 (Invariants of 3 dimensional matrix). Characteristic polynomial of
matrix A ∈ R3×3 has a form

P(λ) = λ3 − IAλ2 + IIAλ− IIIA.

Scalar coefficients IA, IIA, IIIA are called invariants of matrix A and are given by the
following identities

IA = trA,

IIA =
1

2

(
(trA)2 − tr(A2)

)
,

IIIA = detA.

(A.5)

In particular, when A = I, then (A.5) yields that

II = 3, III = 3, IIII = 1.
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Lemma A.33 (Derivatives of invariants). The derivatives of invariants take the fol-
lowing values

∂IA
∂Aij

= δij ,
∂IIA
∂Aij

= IAδij − Aji ,
∂IIIA
∂Aij

= AjkAki − IAAji + IIAδij . (A.6)

The values of the derivatives of invariants (A.6) evaluated at the identity matrix I are

∂IA
∂Aij

⏐⏐⏐⏐
I

= δij ,
∂IIA
∂Aij

⏐⏐⏐⏐
I

= 2δij ,
∂IIIA
∂Aij

⏐⏐⏐⏐
I

= δij .

Proof. See (Zienkiewicz – Taylor, 2013, p. 607).

Definition A.34 (Isotropic tensor function). Let G : Rn×n → Rn×n be a tensor-valued
function. G is called isotropic when for all A ∈ Rn×n and Q ∈ SO(n), it is true that

G(QAQ⊤) = QG(A)Q⊤.

Theorem A.35 (Rivlin Ericksen Representation Theorem). Let G be the function
G : R3×3

sym → R3×3
sym , then the following two statements are equivalent

• G is an isotropic function.

• Function G can be represented as

G(A) = a0(IA, IIA, IIIA)I+ a1(IA, IIA, IIIA)A+ a2(IA, IIA, IIIA)A2,

where a0, a1 and a2 are scalar functions of invariants of matrix A.

Proof. See Liu (2013).

A.2 Analysis of PDEs

In this section, we summarize the most important theoretical results regarding the
analysis of PDEs. For the review of the background from the theory of Topology, see
Armstrong (2010). For the review of the results from the Real analysis, see Carothers
(2000). For the review of the results from the Functional analysis, see Yosida (1995).
For textbooks on the analysis of PDEs, see Evans (2010) and Roubı́ček (2013).

A.2.1 Real analysis, Topology

Definition A.36 (Open ball of radius r ). Let (X, ∥.∥) be a normed vector space, x ∈ X,
r > 0, the ball of radius r is the set

Br (x) = {y ∈ X : ∥y − x∥ < r}.

Definition A.37 (Bounded set). Let X be a normed vector space. Set A ⊂ X is
bounded when there exists d > 0, such that A ⊂ Bd(0).

Definition A.38 (Open set). Let X be a normed vector space. Set A ⊂ X is open
when for each point x ∈ A there exists ε > 0, such that Bε(x) ⊂ A.
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Definition A.39 (Closed set). Let X be a normed vector space. Set A ⊂ X is closed
when its complement X \ A is an open set.

Definition A.40 (Closure of the set). Let X be a normed vector space. The closure
of the set A ⊂ X denoted by A is the intersection of all closed sets B ⊂ X, such that
A ⊂ B .

Definition A.41 (Compact subset of normed vector space). Let (X, ∥.∥) be a normed
vector space. We say that the subset K ⊂ X is compact when for every collection of
(possibly uncountable many) open sets

{Uα}α∈A,

such that
K =

⋃
α∈A

Uα,

there exists finite set I ⊂ A, such that

K =
⋃
α∈I

Uα.

Definition A.42 (Precompact subset of normed vector space). Let (X, ∥.∥) be a
normed vector space. We say that the subset P ⊂ X is precompact if the closure P is
compact subset of X.

Lemma A.43 (Compact subset of Rn). The set A ⊂ Rn is compact if and only if A is
closed and bounded set.

Proof. See Armstrong (2010).

For a broader discussion of the topological concepts, see Armstrong (2010). For
the review of the use of these in the context of real analysis, see (Carothers, 2000,
p.51-62).

Definition A.44 (Countable set). Set A is countable if there exists one to one and
onto function (bijection) f : A → B , where B ⊂ N.

Definition A.45 (Separable space). Let (X, ∥.∥) be a normed vector space. Space
(X, ∥.∥) is separable if there exists a countable set A ⊂ X, such that A = X.

Definition A.46 (Convergence of sequence in the norm). Let (X, ∥.∥) be a normed
vector space. Sequence (xn) ⊂ X converges in the norm ∥.∥ to the limit L ∈ X when

∀ε > 0,∃N ∈ N : ∀i > N xi ∈ Bε(L).

Convergence in the norm is denoted by

lim
i→∞

∥xi − L∥ = 0, or lim
i→∞

xi = L, or xi → L.

Definition A.47 (Cauchy sequence). Let (X, ∥.∥) be a normed vector space. Sequence
(xn) ⊂ X is called Cauchy sequence if

∀ε > 0, ∃N ∈ N : ∀i , j > N ∥xi − xj∥ < ε.
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Definition A.48 (Function). Let X, Y be normed spaces, Ω ⊂ X. Function f : Ω → Y
is a mapping that assigns one particular value y ∈ Y to each x ∈ Ω.

Definition A.49 (Bounded function). Let X, Y be normed spaces, Ω ⊂ X. Function
f : Ω → Y is bounded when f (Ω) is a bounded set in Y.

Definition A.50 (Support of function). Let X, Y be normed spaces, Ω ⊂ X. For
function f : Ω → Y, the support is a set

supp f = {x ∈ Ω, f (x) ̸= 0)}.

Definition A.51 (Continuous function). Let X, Y be normed spaces, Ω ⊂ X. Function
f : Ω → Y is continuous if for each open set A ⊂ Y, the set f −1(A) is open in X,
where f −1 is the preimage of f .

We work mainly with scalar valued Y = R, vector-valued Y = Rn or matrix
valued Y = Rn×m functions, where the domain Ω is an open and bounded subset
of the Euclidean space X = Rn. We state some important definitions and results
for scalar valued functions. Most of these can be applied to vector or matrix valued
functions.

Definition A.52 (Limit of function at point). Let f : R → R. We say that L is a limit
of f at a ∈ R if

∀ε > 0,∃δ > 0,∀x ∈ {Bδ(a) \ a} : f (x) ∈ Bε(L),

we write that
lim
x→a

f (x) = L.

Definition A.53 (Continuous function). Let Ω ⊂ Rn, the function f : Ω → R is
continuous if the following is true

∀ε > 0,∀x ∈ Ω,∃δ > 0,∀y ∈ Bδ(x) : f (y) ∈ Bε(f (x)).

More topological Definition A.51 and more analytical Definition A.53 of continuous
function coincide, see (Armstrong, 2010, p. 32).

Definition A.54 (Uniformly continuous function). Let Ω ⊂ Rn, the function f : Ω →
R is uniformly continuous, if

∀ε > 0,∃δ > 0,∀x ∈ Ω,∀y ∈ Bδ(x) : f (y) ∈ Bε(f (x)).

Definition A.55 (The Lipchitz continuous function). Let Ω ⊂ Rn, the function f :
Ω → R is the Lipschitz continuous if there exists a constant CL > 0, so that

∀x, y ∈ Ω, |f (x)− f (y)| ≤ CL |x− y| .

Definition A.56 (Partial derivative of function at point). Let f : Rn → R, we say that
P is i-th partial derivative of f at point a ∈ Rn with respect to xi , when is true that

lim
h→0

f (a1, ... , ai + h, ... , an)− f (a1, ... , ai , ... , an)

h
= P .

Partial derivative with respect to xi is denoted by

∂f

∂xi
(a) = P .
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Definition A.57 (Multiindex). Multiindex, that is used to index dimensions in Rn, is an
ordered n-tuple of form α = (α1, ... ,αn), where αi ∈ N0. The order of multiindex is a
number |α| =

∑n
i=1 αi .

Definition A.58 (Partial derivative with respect to multiindex). Let f be a function
f : Ω → R, we define the partial derivative of f with respect to multiindex α as

f α =
∂|α|f

∂xα1
1 ... ∂xαn

n
.

We define important classes of continuous functions.

Definition A.59 (C k(Ω), k ∈ N). Let Ω ⊂ Rn be an open, bounded set. Then

C (Ω) = {f : Ω → R|f continuous },
C k(Ω) = {f : Ω → R|f α ∈ C (Ω), |α| ≤ k},

C∞(Ω) =
⋂
k∈N

C k(Ω).

Definition A.60 (C k(Ω̄), k ∈ N). Let Ω ⊂ Rn be an open, bounded set. Then

C (Ω̄) = {f : Ω → R|f uniformly continuous, bounded },
C k(Ω̄) = {f : Ω → R|f α ∈ C (Ω̄), |α| ≤ k},

C∞(Ω̄) =
⋂
k∈N

C k(Ω̄).

Definition A.61 (C k
c (Ω̄), k ∈ N). Let Ω ⊂ Rn be an open, bounded set. Then

Cc(Ω) = {f ∈ C (Ω) | supp f is compact, supp f ⊂ Ω},
C k
c (Ω) = {f ∈ C k(Ω)| supp f is compact, supp f ⊂ Ω},

C∞
c (Ω) = {f ∈ C∞(Ω)| supp f is compact, supp f ⊂ Ω}.

Symmetric gradient operator

Definition A.62 (Symmetric gradient operator E ). Let u : Rn → Rn be a vector-
valued function, then

E u =
1

2

(
∇u+ (∇u)⊤

)
, (E u)ij =

1

2
(
∂ui
∂xj

+
∂uj
∂xi

).

Observation A.63. E is a linear operator, let f1, f2 : Rn → Rn be vector-valued
functions, then

E(f1 + αf2) = E f1 + α E f2, for all α ∈ R.

A.2.2 Functional analysis

Definition A.64 (Banach space). A normed vector space (X, ∥.∥) is called Banach
space (or complete normed vector space) if each Cauchy sequence (xn) ⊂ X converges
in the norm to some x ∈ X.
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Definition A.65 (Linear operator). Let (X, ∥.∥X ), (Y, ∥.∥Y ) be normed vector spaces.
Function A : X → Y is called a linear operator if

∀u, v ∈ X : α ∈ R, A(u+ αv) = A(u) + αA(v).

Definition A.66 (Bounded linear operator). Let (X, ∥.∥X ), (Y, ∥.∥Y ) be normed vec-
tor spaces. Let A : X → Y be a linear operator. A is bounded if

∃C > 0,∀u ∈ X : ∥Au∥Y ≤ C∥u∥X .

Lemma A.67. Let (X, ∥.∥X ), (Y, ∥.∥Y ) be normed vector spaces. Linear operators
A : X → Y are bounded if and only if they are continuous mappings.

Proof. See (Yosida, 1995, p. 42).

Definition A.68 (Space of bounded linear operators). Let (X, ∥.∥X ), (Y, ∥.∥Y ) be
normed vector spaces. By B(X,Y) we define the space of all bounded linear operators
A : X → Y, that is equipped with operator norm

∥A∥ = sup{∥Au∥Y : u ∈ X, ∥u∥X ≤ 1}.

Lemma A.69. Let (X, ∥.∥X ), (Y, ∥.∥Y ) be normed vector spaces. Space B(X,Y)
with the operator norm is a normed vector space. If the space (Y, ∥.∥Y ) is a Banach
space, then B(X,Y) is also a Banach space.

Proof. See (Yosida, 1995, p. 110).

Definition A.70 (Dual space). Let (X, ∥.∥) be a normed vector space. Banach space
X∗ = B(X,R) with operator norm is called dual space to X.

Definition A.71 (Duality pairing). Let (X, ∥.∥) be a normed vector space. For u ∈ X,
u∗ ∈ X∗, the duality pairing is denoted as

⟨u∗,u⟩ = u∗(u).

Definition A.72 (Compact operator). Let (X, ∥.∥X ), (Y, ∥.∥Y ) be a normed vector
spaces, K : X → Y is linear operator. K is compact if for every bounded A ⊂ X,
K (A) is precompact.

Definition A.73 (Reflexive space). Let (X, ∥.∥) be normed vector space. Space X is
reflexive if

∀u∗∗ ∈ X∗∗,∃u ∈ X,∀u∗ ∈ X∗ : ⟨u∗∗,u∗⟩ = ⟨u∗,u⟩.

Definition A.74 (Weak convergence). Let (X, ∥.∥) be a normed vector space. Se-
quence (xn) ⊂ X converges weekly to limit L ∈ X when

∀ϕ ∈ X ∗, lim
i→∞

⟨ϕ, xi⟩ = ⟨ϕ,L⟩.

Weak convergence is denoted by
xi ⇀ L.

Theorem A.75 (Eberlein–Šmulian). In the reflexive Banach space (X, ∥.∥), each se-
quence that is bounded in the norm ∥.∥ has a weakly convergent subsequence.
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Proof. See (Yosida, 1995, p.141-145).

Definition A.76 (Continuous embedding). Let (X, ∥.∥X ), (Y, ∥.∥Y ) be Banach spaces.
We say that the space X is continuously embedded into the space Y, when X ⊆ Y
and there exists a constant C such that

∀u ∈ X : ∥u∥Y ≤ C∥u∥X .

We denote continuous embedding by X ⊂ Y.

Definition A.77 (Equivalent spaces). We say that the two Banach spaces (X, ∥.∥X )
and (Y, ∥.∥Y ) are equivalent when X ⊂ Y and Y ⊂ X.

Definition A.78 (Compact embedding). Let (X, ∥.∥X ), (Y, ∥.∥Y ) be Banach spaces.
We say that the space X is compactly embedded into the space Y, when X ⊂ Y and
the identity mapping i : X → Y is a compact operator. We denote compact embedding
by X ⊂⊂ Y.

A.2.3 Lebesque spaces and Sobolev spaces

In the thesis, integral symbol,
∫

, is always used in the sense of the Lebesque inte-
gration. For the review of the theory of Lebesque integration, see (Carothers, 2000,
p.263-379).

Definition A.79 (Size of the set). Let Ω be a Lebesgue measurable set. Then we
denote its size (Lebesgue measure) by

|Ω| =
∫
Ω

1 dx .

Definition A.80 (Lp norm ∥.∥p). Let p ≥ 1. Lp norm ∥.∥p is a mapping on the space
of Lebesgue measurable functions f defined on Ω, given by

∥f ∥p =

(∫
Ω

|f |p dx
) 1

p

, p ̸= ∞

∥f ∥∞ = ess sup
Ω

|f |,

where ess supΩ denotes essential supremum. For definition, see Carothers (2000).

Definition A.81 (Lp space).

Lp(Ω) = {f : Ω → R|f is Lebesgue measurable, ∥f ∥p < ∞}

Definition A.82 (Lploc space).

Lploc(Ω) = {f : Ω → R|∀K ⊊ Ω,K compact : f (K ) ∈ Lp(K )}

Definition A.83 (Weak derivative). Let u, v ∈ L1loc(Ω), α is a multiindex. We say that
v is the weak derivative of u with respect to α, that is denoted by uα = v , when∫

Ω

uϕα dx = (−1)|α|
∫
Ω

vϕ dx , ∀ϕ ∈ C∞
c (Ω).

137



If the strong derivative exists, it coincides with the weak derivative, see (Evans,
2010, p 257). Thus we understand Definition A.83 as an extension of Definition
A.58. When working with Sobolev spaces, unless stated otherwise, we understand
derivatives in the weak sense.

Definition A.84 (Sobolev space). Let k ∈ N0, p ≥ 1, then we define Sobolev space

W k,p(Ω) = {f ∈ L1loc(Ω)|∀α, |α| ≤ k ∃f α, f α ∈ Lp(Ω)}.
Definition A.85 (W k,p norm ∥.∥k,p). Let k ∈ N0, p ≥ 1, f ∈ W k,p(Ω). The norm
∥.∥k,p is defined as

∥f ∥k,p =

⎛⎝∑
|α|≤k

∥f α∥pp

⎞⎠ 1
p

, p ̸= ∞,

∥f ∥k,∞ =
∑
|α|≤k

∥f α∥∞.

Definition A.86 (Sobolev space with zero trace). Let k ∈ N0, p ≥ 1, then we define

W k,p
0 (Ω) = closure of C∞

c (Ω) in ∥.∥k,p.
Theorem A.87. Let Ω ⊂ Rn be an open, bounded set. Let 1 < p < ∞ and k ∈ N.
The spaces (Lp(Ω), ∥.∥p), (W k,p(Ω), ∥.∥k,p) and (W k,p

0 (Ω), ∥.∥k,p) are then separable,
reflexive Banach spaces.

Proof. See for example (Adams – Fournier, 2003, p. 61).

Definition A.88 (Boundary continuity and Lipschitz domains). Let Ω ⊂ Rn be open
and bounded, for every x ∈ ∂Ω let exist an open set Ux , x ∈ Ux and one to one and
onto mapping Ax : Q → Ux , where

Q = {x ∈ Rn : |xj | < 1, j = 1 ... n},
Q+ = {x ∈ Q : xn > 0},
Q0 = {x ∈ Q : xn = 0},

such that Ax(Q
+) = Ux ∩Ω, Ax(Q

0) = Ux ∩ ∂Ω. We say that Ω ∈ C k if Ax ∈ C k(Q)
and A−1

x ∈ C k(Ux) for all x ∈ Ω. We say that the boundary is Lipschitz Ω ∈ C 0,1 if
Ax and A−1

x are Lipschitz functions for all x ∈ Ω. For more details, see for example
(Dacorogna, 2009, p. 34).

Theorem A.89 (Rellich-Kondrachov Compactness Theorem). Let Ω ⊂ Rn be an
open, bounded domain, Ω ∈ C 0,1. Let 1 ≤ p < n. Then

for 1 ≤ q <
pn

n − p
, W 1,p(Ω) ⊂⊂ Lq(Ω).

Moreover when p ∈ [n,∞) it can be shown that

∀q ∈ [1,∞), W 1,p(Ω) ⊂⊂ Lq(Ω).

Proof. See (Evans, 2010, p. 286), Rellich (1930).

Definition A.90 (Spaces of vector and matrix valued functions). To work with vector
or matrix (tensor) valued functions, for k ∈ N0, p ≥ 1 and n ∈ N0 we denote spaces
of n dimensional vector-valued functions, by C k(Ω)n, Lp(Ω)n, W k,p(Ω)n, etc. Spaces
of n × n dimensional matrix valued functions are denoted by by C k(Ω)n×n, Lp(Ω)n×n,
W k,p(Ω)n×n, etc. Spaces of n × n dimensional symmetric matrix valued functions are
denoted by C k(Ω)n×n

sym , Lp(Ω)n×n
sym , W k,p(Ω)n×n

sym , etc.
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A.2.4 Monotone operators

In this section, the symbol X denotes separable, reflexive Banach space and X∗ is
its dual.

Definition A.91 (Radial continuity). Let F be an operator F : X → X∗. We say that F
is radially continuous if for all x, y ∈ X, the function fx,y : R → R defined by

fx,y(t) = ⟨F(x+ ty), y⟩

is a continuous function.

Lemma A.92 (Minty’s lemma). Let F be a radially continuous operator F : X → X∗.
Let a ∈ X, g ∈ X∗ be such that

∀y ∈ X, ⟨g − F(y), a− y⟩ ≥ 0. (A.7)

Then F(a) = g, see Minty (1963).

Proof. Let ε > 0, ϕ ∈ X, setting y = a+ εϕ in (A.7) yields

⟨g − F(a+ εϕ),−εϕ⟩ ≥ 0. (A.8)

We divide (A.8) by −ε and take the limit ε → 0. We have that

lim
ε→0

⟨g − F(a+ εϕ),ϕ⟩ = ⟨g − F(a),ϕ⟩ ≤ 0. (A.9)

As we have chosen ϕ ∈ X arbitrarily, the inequality holds also for −ϕ and by
multiplication by −1 we get the opposite inequality to (A.9). Therefore we obtain

⟨F(a),ϕ⟩ = ⟨g,ϕ⟩ ∀ϕ ∈ X,

which means F(a) = g.

There is an important class of operators for which we are able to establish the
inequality (A.7), these are monotone operators.

Definition A.93 (Monotone operator). Let F be an operator F : X → X∗. We say
that F is monotone if it satisfies

⟨F(x1)− F(x2), x1 − x2⟩ ≥ 0 for all x1, x2 ∈ X.

Observation A.94. To represent constitutive equation, we work with a tensor valued
functions of the type

G(T) : Rn×n
sym → Rn×n

sym . (A.10)

For q ∈ (1,∞), let X = Lq(Ω)n×n
sym and X∗ = Lq

′
(Ω)n×n

sym . We define operator G :

Lq(Ω)n×n
sym → Lq

′
(Ω)n×n

sym , which is related to the constitutive equation (A.10) by the
formula

∀T,W ∈ Lq(Ω)n×n
sym , ⟨G(T),W⟩ =

∫
Ω

G(T) : W dx . (A.11)

The representation of a tensor-valued function G(T) as an operator in the sense
of Observation A.94 is useful when G(T) is poitwise monotone.
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Definition A.95 (Monotone tensor-valued function). Let G(T) be a tensor-valued
function G : Rn×n

sym → Rn×n
sym . We say that G is monotone if it satisfies

∀T1,T2 ∈ Rn×n
sym , (G(T1)− G(T2)) : (T1 − T2) ≥ 0.

Observation A.96. Let G(T) be a monotone tensor-valued function. Then the oper-
ator G from (A.11) is a monotone operator.

Observation A.97. Let G1 and G2 be a monotone functions or operators with the
same signature. The sum G1 + G2 is then also a monotone function or operator.

A.2.5 Important inequalities

Definition A.98 (Hölder conjugates). Let q ∈ [1,∞], then we define the Hölder
conjungate q′ by

q′ =

⎧⎪⎨⎪⎩
q

q−1
, when q ∈ (1,∞),

1, when q = ∞,

∞, when q = 1.

Lemma A.99 (Young’s inequality). Let ε > 0, a, b > 0, p, q by the Hölder conjungates
p, q ∈ (1,∞), then the following is true

ab ≤ εap + C (ε)bq, C (ε) =
(εp)−q/p

q
.

Proof. See (Evans, 2010, page 706)

Lemma A.100 (Hölder inequality). Let q, q′ ∈ [1,∞] be the Hölder conjungates, u ∈
Lq(Ω) and v ∈ Lq

′
(Ω). Then we have the following inequality∫

Ω

uv dx ≤ ∥u∥q∥v∥q′ .

Proof. See (Evans, 2010, page 706)

Observation A.101. Let p ∈ [1,∞], u ∈ W 1,p(Ω)n, it holds that

∥E u∥p ≤ ∥∇u∥p.

Proof. By triangle inequality.

Theorem A.102 (Poincaré-Friedrichs inequality). Let Ω ⊂ Rn, Γ ⊂ ∂Ω, (n − 1)-
dimensional Hausdorff measure of Γ is positive and p ∈ [1,∞). Then there exists a
constant C > 0, such that for all u ∈ W 1,p(Ω) we have that

∥u∥p1,p ≤ C (∥∇u∥pp +
∫
Γ

|u|p dS).

Proof. See Poincaré (1890).
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Theorem A.103 (Interpolation inequality for Lebesque spaces). Let Ω ⊂ Rn be an
open, bounded set. Let 1 ≤ s ≤ r ≤ t ≤ ∞ and

1

r
=

θ

s
+

1− θ

t
.

Let u ∈ Ls(Ω) ∩ Lt(Ω). Then u ∈ Lr (Ω) and

∥u∥r ≤ ∥u∥θs∥u∥1−θ
t .

Proof. See (Evans, 2010, page 707)

Theorem A.104 (Trace theorem). Let Ω ∈ C 0,1 be an open, bounded set, let p ∈
[1,∞). Then there exists a bounded linear operator

Tr : W 1,p → Lp(∂Ω),

and a constant C > 0, which depends on Ω and p, so that

∀u ∈ W 1,p ∥Tr u∥p ≤ C∥u∥1,p,

and
∀u ∈ W 1,p ∩ C (Ω) Tr u = u|∂Ω.

Proof. See (Evans, 2010, page 772)

A.2.6 Finite element method

In this part, we outline some important definitions and results from the theory of the
finite element method. For a detailed overview, we refer to a classical book Ciarlet
(2002). For the mathematical theory of the finite element method, see Brenner –
Scott (2002). For the application oriented book, that comes free of charge, with a
focus on FEniCS software library, see Logg et al. (2012).

Definition A.105 (Subdivision of Ω). Let Ω ⊂ Rn be an open, bounded domain. A
subdivision of Ω is a finite collection of open sets Kh = {Ki , i = 1 ...N}, such that:

• Ki ∩ Kj = ∅ for i ̸= j ,

•
⋃N

i=1 Ki = Ω.

Definition A.106 (Triangulation of Ω). Let Ω ⊂ Rn be an open, bounded domain. The
subdivision Th = {Ti , i = 1 ...N} is a triangulation if Ti , i ∈ {1 ...N} are all triangles
and each two different triangles has either

• one common edge and two common vertices,

• no common edges and one common vertex,

• no common edges nor vertices.
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Definition A.107 (Space of polynomials up to degree k). Let Ω ⊂ Rn be an open,
bounded domain, k ∈ N. We denote Pk(Ω) the space of polynomials up to degree k
on Ω. Each element of Pk(Ω) has a form

p =
∑
|α|≤k

γαx
α, γα ∈ R,

where α is a multiindex and x to the power of α is defined as

xα = xα1
1 ... xαn

n .

Definition A.108 (Piece-wise polynomial space). Let Ω ⊂ Rn be an open, bounded
domain. Let Th be a triangulation of Ω. We define the following space of piece-wise
polynomials of degree k .

X k
h = {uh ⊂ C 0(Ω), uh|T ∈ Pk(T ),∀T ∈ Th}.

Theorem A.109. Let Ω ⊂ Rn be an open, bounded domain. Let Th be a triangulation
of Ω. Let q ∈ (1,∞). The function u : Ω → R belongs to W 1,q(Ω) if and only if the
following is true:

• u|T ∈ W 1,q(T ),∀T ∈ Th,

• For each common edge e of the two triangles e = Ti ∪ Tj , the traces of u in
W 1,q(Ti) and W 1,q(Tj) coincide on e . We have that u|eTi = u|eTj .

Proof. See (Kwak, 2014, Proposition 3.2.1.).

Lemma A.110 (Conformity of X k
h ). Let Ω ⊂ Rn be an open, bounded domain. Let Th

be a triangulation of Ω. For k ∈ N, the space X k
h ⊆ W 1,q(Ω).

Proof. We can easily see that u|T ∈ W 1,q(T ),∀T ∈ Th. Traces of polynomials are
well defined, since they are from the space C∞(T̄ ). Therefore using Theorem A.109
we get the claim.

Definition A.111 (Finite element). Finite element is a triple (K ,P ,N ), where

• K ⊂ Rn is a domain with piecewise smooth boundary.

• P is a finite-dimensional space of functions on K .

• N = {N1, ... ,Nk} is a basis of a P∗.

A.3 Solid mechanics

In this section, we review essential Solid mechanics principles and definitions. We
focus on small strain elastostatics. Further discussion of the concepts of Solid
mechanics including dynamic effects can be found in Liu (2013, 2006), Truesdell –
Noll (1969), Oden (2008), Sadd (2009).
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A.3.1 Kinematics

Let E represent a vector space that abstracts a physical space. E is two or three
dimensional Euclidean space E = R2 or E = R3. We project representations of the
body B at different points of time to E.

Definition A.112 (Configuration). The representation of a body at particular time t is
called its configuration and is mathematically represented by mapping

κt : B → E.

There is one important configuration called reference configuration κR . Refer-
ence configuration might not be connected with any time but in practice it usually
coincides with the configuration of the body κ0 at initial time t = 0. Current con-
figuration κt is a configuration of the body at time t . For evolutionary problems,
time is continuous, t ∈ [0,T ], and we have infinitely many current configurations
κt . For the static problems, time is discrete, t ∈ {0,∞}. By κ∞, we understand the
deformed steady state of the material after the application of forces to the body at
initial state. For the purpose of the thesis, we identify the reference configuration
κR with the initial state of the body κ0. The deformed configuration is κ∞.

Definition A.113 (Reference and deformed configuration). Let κR be the reference
configuration and κ∞ the deformed configuration. Point X ∈ κR(B) denotes the body
particle in the reference configuration and x ∈ κ∞(B) denotes the body particle at a
deformed configuration.

Deformation and strain

Definition A.114 (Deformation). Deformation described by the mapping χ,

χ : κR(B) → κ∞(B), χ(X) = κ∞(κ−1
R (X)).

Definition A.115 (Displacement). Body motion relative to the initial state of the body
is described by the displacement vector

u = χ(X)− X.

Definition A.116 (Deformation gradient and its determinant).

F = ∇X χ = I+∇X u, J = detF. (A.12)

We assume that mapping χ : κR(B) → κ∞(B) has differentiable inversion χ−1

and that detF > 0, which can be interpreted such that the body can not penetrate
itself. The deformation gradient F (Jacobian matrix of χ ) then exists. Inverse
function theorem, see (Corwin, 1982, p. 225), yields that the inverse mapping χ−1

has Jacobian matrix F−1.
From Theorem A.30, there is a polar decomposition of F of the form

F = RU = VR, (A.13)

where R ∈ OG (n), U ∈ Rn×n
sym , V ∈ Rn×n

sym with detU = detV = detF.
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Definition A.117 (Right and left stretch tensors, rotation tensor). We call R from
(A.13) a rotation tensor. The tensors U and V are right and left stretches.

Definition A.118 (Right and left Cauchy-Green strain tensors). The tensor C = U2 =
F⊤F is called the right Cauchy-Green strain tensor. The tensor B = V2 = FF⊤ is the
left Cauchy-Green strain tensor.

Definition A.119 (Small strain tensor). Small strain tensor ε is defined as a symmetric
gradient of the displacement vector

ε = E u =
1

2

(
∇u+ (∇u)⊤

)
.

Small displacement gradinet assumption

In the small displacement gradient range, the square of the norm of the displace-
ment gradient can be neglected in comparison to the norm of the displacement
gradient. In other words, it is possible to neglect quadratic terms that are present
in Cauchy-Green strain tensors. In case of left Cauchy-Green strain tensor B =
FF⊤ = (I +∇X u)(I +∇X u)⊤ = I +∇X u + (∇X u)⊤ +∇X u(∇X u)⊤, we neglect
the last term and approximate ∇X u ≈ ∇u.

Definition A.120 (Small displacement gradient assumption). In small strain theory
we work with materials in the regimen where | ∇X u| < δ ≪ 1.

The following proposition is important for the derivation of small strain approxi-
mations of constitutive relations in the theory of elasticity (small strain elasticity). It
is also utilized in the framework of Implicit constitutive theory, see Rajagopal (2003,
2007, 2011a), to derive constitutive relations in the small strain regimen.

Proposition A.121 (Small strain proposition). Under the Small displacement gradient
assumption, see Definition A.120, it is possible to approximate B− I ≈ 2ε.

Proof. In this proof, we follow Liu (2013). Using (A.12), we obtain

B− I = FF⊤ − I = ∇X u+ (∇X u)
⊤ + h(∇X u), where lim

|A|→0

|h(A)|
|A|

= 0. (A.14)

By the chain rule, we can write

∇X u = (∇u)F = ∇u(I+∇X u) ≈ ∇u. (A.15)

Last assumption holds since

lim
|∇X u|→0

|∇u∇X u|
| ∇X u|

≤ lim
|∇X u|→0

|(∇X u)F
−1| = 0. (A.16)

In (A.16), we use approximation F−1 ≈ I − ∇X u as F = I + ∇X u. Combining
equations (A.14) and (A.15), we finally obtain

B− I = FF⊤ − I = ∇u+ (∇u)⊤ + ĥ(∇X u), where lim
|A|→0

|ĥ(A)|
|A|

= 0,

which proves small strain proposition.
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Compatibility of small strain

For every sufficiently smooth function u, there exists its symmetric gradient E u.
The inverse problem is to find for a given symmetric tensor ε the function u, so
that ε = E u. The following theorem gives a necessary and sufficient condition to
solve this problem.

Definition A.122 (Saint-Venant’s compatibility tensor). For a symmetric second order
tensor E, the Saint-Venant’s compatibility tensor W(E) is the fourth order tensor of
the form

Wijkl(E) =
∂2Eij

∂xk∂xl
+

∂2Ekl

∂xi∂xj
− ∂2Eil

∂xj∂xk
− ∂2Ejk

∂xi∂xl
. (A.17)

Theorem A.123 (Saint-Venant’s theorem). For a given second order tensor ε defined
over simply connected domain Ω, there exists vector u such that ε = E u if and only
if W(ε) = 0 everywhere in Ω.

Proof. The theorem has been proven for the first time in Beltrami (1886). It can be
found also in Amrouche et al. (2006) or (Sadd, 2009, Chapter 2). For the proof of
Saint-Venant’s theorem in the weak sense, where only the Lebesgue integrability of
ε is required, see Ciarlet – Ciarlet (2005). For non-simply connected domains, there
is a result by Yavari (2013).

A.3.2 Cauchy stress and equations of equilibrium

In this section, we define the Cauchy stress tensor and recall equations of the static
equilibrium.

Surface traction t is defined as a force acting on an infinitesimal surface perpen-
dicular to a given unit vector ν at a point x ∈ κ∞(B) of the deformed configuration.

Definition A.124 (Surface traction). Let ∆A(ν) be a surface perpendicular to ν ,
x ∈ ∆A(ν). Let FA(x,∆A(ν)) be the force acting on that surface. Then the surface
traction is defined as

t = lim
|∆A(ν)|→0

FA(x,∆A(ν))

|∆A(ν)|
.

Definition A.125 (Cauchy postulate). Surface traction only depends on the position x
and the normal vector to the surface ν . It does not depend on a particular choice of
the surface.

t = t(x,ν)

Definition A.126 (Body force density per volume). Let x ∈ κ∞(B) and ∆V ⊂ κ∞(B)
be a volume element, so that x ∈ ∆V . Let F(∆V ) be the force acting on the volume
element ∆V . Then body force density per volume is defined as a limit

f(x) = lim
|∆V |→0

F(∆V )

|∆V |
.
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Equations of static equilibrium

The surface force, caused by the surface traction t(x,ν) and the body force caused
by the force density f must be in equilibrium on each part of the body B ⊂ κ∞(B).
That can be mathematically expressed by the following integral equation∫

∂B

t(x,ν) dx +

∫
B

f(x) dx = 0. (A.18)

Theorem A.127 (Cauchy theorem). Suppose that surface traction t(x,ν) and body
force density f(x) are Lebesque integrable functions in B ⊂ κ∞(B). Then there exists
stress tensor T(x) that is Lebesque integrable in B and fully describes stress at any
given point x ∈ B . It holds that

t(x,ν) = T(x)ν. (A.19)

Proof. For proof, see Gurtin et al. (1968).

Definition A.128 (Cauchy stress tensor). The Cauchy stress tensor T(x), that exists
by the Cauchy theorem, fully describes stress in the deformed configuration of the body
κ∞(B). Cauchy stress can be represented by matrix

T(x) = (t(x, e1), t(x, e2), t(x, e3)) ,

where ei are natural basis vectors of R3.

Using (A.19) and Divergence theorem, we can rewrite the equation (A.18) into the
form ∫

B

divT+ f dx = 0. (A.20)

As B ⊂ κ∞(B) was chosen arbitrarily, the integral in (A.20) must be zero in κ∞(B),
therefore the local form of the equations of equilibrium (A.20) is

divT+ f = 0.

Theorem A.129 (Symmetry of Cauchy stress tensor). The Cauchy stress tensor T is
a symmetric second order tensor.

Proof. This fact follows from the balance of angular momentum, the proof can be
found for example in Shabana (2011).

A.3.3 Constitutive theory

Constitutive relations between stress and deformation describe physical nature of
the material. The models, which are used in the thesis were already defined in
chapter 2. We always have to keep in mind the transformation properties that
these relations explicitly or implicitly assume as a consequences of the physical
principles of objectivity and frame indifference and material symmetries such as
isotropy. Therefore, in this thesis, we decided to define particular constitutive re-
lations together with their transformation properties. This approach brings clarity
when dealing with constitutive relations and their transformations in a mathemati-
cal manner. Here we briefly recall the meaning of objectivity, frame indiference and
isotropy.
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Objectivity

When two observers measure kinematic quantities or the Cauchy stress in dif-
ferent coordinate systems, measured quantities should be related in a particular
way. Assume that we transform coordinate systems from one coordinate system
(all quantities denoted without star) to another (all quantities are denoted with star).

Definition A.130 (Objective quantity). Let the change of coordinate system (from x
to x∗) be given by the transformation

x∗ = Q(x− x0) + a,

where Q ∈ OG (n), x0 ∈ Rn, a ∈ Rn are fixed. For scalar c , vector v and tensor T
(measured in non * coordinate system), we say that these quantities are objective if the
corresponding quantities c∗, v∗ and T∗ (measured in * coordinate system), are related
in the following way

c∗ = c

v∗ = Qv

T∗ = QTQ⊤.

It can be shown that the left stretch tensor V and the left Cauchy-Green strain
tensor B are objective. For details, see Liu (2013). The objectivity of the Cauchy
stress tensor is one of basic postulates of Continuum mechanics.

Postulate A.131 (Euclidean objectivity). The Cauchy stress tensor T is an objective
tensor quantity.

Frame indifference

Principle of frame indifference is a formalization of the idea that when we change co-
ordinate system, then the underlying physical system should behave independently
of that change. This principle is formalized by stating that constitutive relations that
relate objective quantities should behave in a specific way when subjected to the
orthogonal transformation, see Liu (2013).

Isotropy

Isotropy is a property of material that behaves in the same manner regardless of
its orientation. There is no directional preference in the constitutive relation.

For broader discussion of the concepts of objectivity, frame indifference and
isotropy and their consequences on the constitutive relations, see Liu (2013).

A.3.4 Linearized elasticity

Probably, the most widely used class of models in Solid mechanics are models with
a linear constitutive relation, Hooke’s law. Linearized elastic models are capable to
capture behavior of wide range of materials that have different underlying structure
(metal, rock, wood, bone, numerous alloys, . . . ) with reasonable accuracy using the
same basic approach.
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Definition A.132 (Linearized elastic solid). We define linearized elastic solid as a
generally anisotropic material with a constitutive relation of the type

T = Cε, (A.21)

where C is a fourth order tensor with the following properties

Cijkl = Cjikl = Cijlk , Cijkl = Cklij , i , j , k , l ∈ {1, 2, 3}. (A.22)

Linearized elastic solid is an approximation of the Cauchy elastic solid under the
Small displacement gradient assumption, see Definition A.120. For details of the
derivation, see (Liu, 2006, section 5.2). The equation (A.22) yields that the tensor C
has 21 independent values of elastic moduli. If we represent symmetric tensors T
and ε as

T = (T11,T22,T33,T12,T13,T23)
⊤, ε = (ε11, ε22, ε33, ε12, ε13, ε23)

⊤,

then we understand C as 6 × 6 symmetric matrix and the right hand side of the
constitutive equation (A.21) as a classical matrix multiplication.

Hooke’s law for isotropic solid

In this section, we derive Hooke’s law for isotropic solid under the Small displace-
ment gradient assumption, see Definition A.120, as an approximation of the con-
stitutive model for the Isotropic Cauchy elastic solid, see Definition 2.3, (p. 19). For
more details, see Liu (2006, 2013).

Proposition A.133. Under the Small displacement gradient assumption, see Defini-
tion A.120, we can approximate the response (2.6) of isotropic Cauchy elastic solid, see
Definition 2.3, (p. 19), by equation

T = λ(tr ε)I+ 2µε, (A.23)

where λ and µ are called Lamé constants. The linear equation (A.23) is called Hooke’s
law.

Proof. We can approximate the function (2.6) by the linear term of its Taylor series.
We have that

G̃ij(B) = G̃ij(I) +
∂G̃ij

∂Bkl

⏐⏐⏐⏐⏐
I

(Bkl − δkl) + Hij(B), (A.24)

where
lim
B→I

|H(B)|
|B− I|

= 0.

Under the small displacement gradient assumption the function H in (A.24) can
be neglected. From small strain proposition A.121, we have that B − I ≈ 2ε and
Definition 2.3, (p. 19) of isotropic Cauchy elastic solid assumes G̃(I) = 0. Therefore
we can approximate (A.24) as

G̃ij(B) = 2
∂G̃ij

∂Bkl

⏐⏐⏐⏐⏐
I

εkl . (A.25)

148



Since B is a objective, symmetric tensor, the Rivlin Ericksen Representation Theo-
rem A.35 yields

G̃(B) = α1(IB , IIB , IIIB)I+ α2(IB , IIB , IIIB)B+ α3(IB , IIB , IIIB)B2.

Let denote
ᾱ = α1 + α2 + α3.

Using formulas for derivatives of invariants, see Lemma A.33, we obtain

∂G̃ij

∂Bkl

⏐⏐⏐⏐⏐
I

=

(
∂ᾱ

∂IB

⏐⏐⏐⏐
(3,3,1)

δkl +
∂ᾱ

∂IIB

⏐⏐⏐⏐
(3,3,1)

2δkl +
∂ᾱ

∂IIIB

⏐⏐⏐⏐
(3,3,1)

δkl

)
δij+

α1(3, 3, 1)
∂δij
∂Bkl

⏐⏐⏐⏐
I

+ α2(3, 3, 1)
∂Bij

∂Bkl

⏐⏐⏐⏐
I

+ α3(3, 3, 1)
∂BinBnj

∂Bkl

⏐⏐⏐⏐
I

. (A.26)

Let define

λ = 2

(
∂ᾱ

∂IB

⏐⏐⏐⏐
(3,3,1)

+ 2
∂ᾱ

∂IIB

⏐⏐⏐⏐
(3,3,1)

+
∂ᾱ

∂IIIB

⏐⏐⏐⏐
(3,3,1)

)
, (A.27)

and
µ = α2(3, 3, 1) + 2α3(3, 3, 1). (A.28)

Inserting (A.27) and (A.28) into the equation (A.26), we get

2
∂G̃ij

∂Bkl

⏐⏐⏐⏐⏐
I

εkl = λ(tr ε)δij + 2µεij . (A.29)

Combining (2.6) with (A.25) and (A.29), we obtain

Tij = λ(tr ε)δij + 2µεij ,

which completes the proof.

Hooke’s law inversion

Hooke’s law (A.23) can be inverted into the form

ε = − λ trT

2µ(2µ+ 3λ)
I+

T

2µ
. (A.30)

Material moduli

It is sometimes convenient to express Hooke’s law in terms of other parameters
than Lamé constants λ and µ. For example, we can rewrite Hooke’s law (A.23) using
bulk and shear moduli K and µ into the form

T = K (tr ε)I+ 2µεd , where K =
3λ+ 2µ

3
,

or equivalently,

ε =
1

9K
(trT)I+

1

2µ
Td . (A.31)
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Parameters characterising linear material response such as λ, µ or K are called
elastic moduli. Typically, they have a particular physical meaning and each two of
them may be used to fully describe a linearized isotropic elastic solid. Here we list
important elastic moduli, which are first Lamé parameter λ, shear modulus µ, bulk
modulus K , Young’s modulus E and Poison’s ratio ν.

Definition A.134 (First Lamé parameter). First Lamé parameter λ is one of the two
moduli present in Hooke’s law (A.23). This modulus is hard to measure directly. Its SI
unit is Pascal [Pa].

Definition A.135 (Shear modulus). Shear modulus or modulus of rigidity is denoted
by µ, in some sources also by G . It is a ratio of the shear stress to the shear strain. Its
SI unit is Pascal [Pa].

From Hooke’s law (A.23), in a state of pure shear where ε12 = ε21 = γ, T12 = T21 =
σ and other components Tij = εij = 0, we can derive µ = σ/2γ. We assume that
the value of Shear modulus is strictly positive µ > 0 as the shearing stress produces
deformation in the direction of applied force.

Definition A.136 (Bulk modulus). Bulk modulus or modulus of compression is denoted
by K and it is a measure of resistance to compression. Its SI unit is Pascal [Pa].

Bulk modulus is defined as a negative proportion of hydrostatic pressure to the term
ε11 + ε22 + ε33, which is a first order estimate of the volume change of the specimen.
In a state of pure hydrostatic pressure, when T11 = T22 = T33 = σ, we derive from
Hooke’s law (A.23) that

K =
σ

ε11 + ε22 + ε33
=

3λ+ 2µ

3
. (A.32)

We assume that the value of Bulk modulus is strictly positive, K > 0, as the hydrostatic
pressure causes a decrease in volume.

Definition A.137 (Young’s modulus). Young’s modulus or Elastic modulus is denoted
by E . It is a ratio of tensile stress to tensile strain. Young’s modulus is easy to measure
and is often used in engineering. Its SI unit is Pascal [Pa].

In a simple tension, where T11 = σ and Tij = 0 otherwise, from Hooke’s law (A.30)
we have the formula

E =
σ

ε11
=

µ(3λ+ 2µ)

λ+ µ
.

We assume that the value of Young’s modulus is strictly positive, E > 0, as the tension
causes elongation.

Definition A.138 (Poison’s ratio). Poison’s ratio, denoted by ν, is a negative proportion
of transverse axial strain to longitudinal strain in a direction of applied force in a simple
tension. It is dimensionless.

In a simple tension, where T11 = σ and Tij = 0 otherwise, combining Hooke’s law
(A.30) with a formula for bulk modulus (A.32) yields that

ν = −ε22
ε11

=
λ

2λ+ 2µ
=

3K − 2µ

6K + 2µ
. (A.33)

From equation (A.33), when assuming K > 0, µ > 0, we have that ν > −1, ν < 0.5.

In Table A.1, transformation relations between important elastic moduli are out-
lined.
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λ µ K E ν

(λ,µ) - - 3λ+2µ
3

µ(3λ+2µ)
λ+µ

λ
2(λ+µ)

(λ,K ) - 3(K−λ)
2

- 9K(K−λ)
3K−λ

λ
3K−λ

(λ,E ) 3 - E−3λ+A
4

E+3λ+A
6

- 2λ
E+λ+A

(λ, ν) - λ(1−2ν)
2ν

λ(1+ν)
3ν

λ(1+ν)(1−2ν)
ν

-

(µ,K ) 3K−2µ
3

- - 9Kµ
3K+µ

3K−2µ
2(3K+µ)

(µ,E ) µ(E−2µ)
3µ−E

- Eµ
3(3µ−E)

- E−2µ
2µ

(µ, ν) 2µν
1−2ν

- 2µ(1+ν)
3(1−2ν)

2µ(1 + ν) -

(K ,E ) 3K(3K−E)
9K−E

3KE
9K−E

- - 3K−E
6K

(K , ν) 3Kν
1+ν

3K(1−2ν)
2(1+ν)

- 3K (1− 2ν) -

(E , ν) Eν
(1+ν)(1−2ν)

E
2(1+ν)

E
3(1−2ν)

- -

Table A.1: Conversion relationships between elastic moduli: first Lamé parameter λ,
shear modulus µ, bulk modulus K , Young’s modulus E and Poisson’s ratio ν.

Separating the bulk part from isochoric parts of deformation

Hooke’s law (A.30) can be rewritten into the form

tr ε =
1

3K
trT, εd =

1

2µ
Td . (A.34)

The decomposition (A.34) is in keeping with an idea in that the response is split into
a part that describes volume changes in a response to normal stress and a part that
represents the shear response. In the theory of the nonlinear isotropic compressible
hyperelasticity, such decomposition was first proposed by Flory (1961). Let define
a modified deformation gradient F and a modified left Cauchy-Green deformation
tensor B

F = J−1/3F, B = J−2/3B,

where F is a deformation gradient, J is the determinant of F and B is a left
Cauchy-Green deformation tensor. Modified deformation gradient F and modified
left Cauchy-Green deformation tensor B represent the volume preserving part of
the deformation with determinants detF = detB = 1. The stress strain relation
for a compressible Neo-Hokean model with parameters µ̂ and K̂ that correspond
to the shear and bulk moduli is of the form

T = K̂ (J − 1)I+ µ̂J−5/3Bd ,

see Holzapfel (2000). In the context of small strain theory, under the small displace-
ment gradient assumption, see Definition A.120, we approximate

J ≈ 1 + tr ε, J−5/3 ≈ 1, B ≈ I+ 2ε,

3Here we set A =
√
E 2 + 9λ2 + 2Eλ.
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and obtain
T = K̂ (tr ε)I+ 2µ̂εd .

Therefore the decomposition proposed by Flory (1961) is analogous to the decom-
position (A.34).
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B. Supplementary materials
Supplementary materials are organized by chapters and they can be found on DVD
attached to this thesis. These materials contain source code of the algorithms
described in the thesis and additional files described below.

If a chapter contains figures produced using MetaPost, see Hobby (2017), the
sources of these figures are put into the metapost subfolder. If there are figures
produced using R, see R Core Team (2016) or specifically using ggplot2 package, see
Wickham (2009), the sources of these figures are put into the rfigures subfolder
or ggplot2 subfolder.

Supplementary materials concern Chapter 1, Chapter 3 and Chapter 5 and thus
they are organized into the following directories.

/

01Introduction

03ModelingTitaniumAlloys

05ComputerSimulations

Chapter 1 - Introduction

Subfolder 01Introduction is organized as follows.
01Introduction

metapost

computationalDomain.mp ................................. Figure 1.1

Chapter 3 - Modeling of Gum Metal and other newly developed titanium alloys

Supplementary materials for Chapter 3 are in folder 03ModelingTitaniumAlloys.
In the subfolder tables, we enclose the tensile loading experimental data that were
used in the algorithm to find the best fit. The source codes for this algorithm are
included in the R subfolder. More precisely, the best fit can be computed using
functions findBestFit or findObjectiveFit from the file fittingAlgorithm.R. The
folder 03ModelingTitaniumAlloys is organized as follows.

03ModelingTitaniumAlloys

tables

saito2003.csv ........................................... Table 3.1.
sakaguch2004.csv........................................Table 3.2.
hao2005.csv.............................................Table 3.3.
hou2010.csv.............................................Table 3.4.

ggplot2

tensileLoadingExperiments.R.......................... Figure 3.2.
predictedResponses.R............................Figures 3.18–3.23.

rfigures

qualityOfFit.R....................................Figures 3.3–3.6.
bulkShear.R....................................... Figures 3.7–3.17.

R .............................R source codes for the best fit algorithm.
fittingAlgorithm.R ......Functions findBestFit and findObjectiveFit.
IO.R .................................... Input output management.
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Chapter 5 - Computer simulations

Supplementary materials for Chapter 5 are in the folder 05ComputerSimulations.
The subfolder generatemesh contains Matlab scripts1, which we use to cre-

ate adaptively refined triangular meshes on the geometries of computational do-
mains specified in Section 5.3.1. In particular, the file createMeshes.m can be
used to create structure, from which the triangulation data are exported. The file
ExportData.m is an actual implementation of the export of the triangulation data.
For each geometry and refinement level, it exports triangulation data into the two
files named *triangles.txt and *vertices.txt in a format that fully describes
a given triangulation.

The subfolder meshtoxml contains JAVA source code that performs conver-
sion of the triangulation data into the XML format, which can be consumed by
FEniCS component dolfin. More specifically, it takes files *triangles.txt and
*vertices.txt and creates a new output file *dolfin.xml.

Actual implementation of the solver for the problem described in Section 5.3 is in
the directory solver, which has two subdirectories. In the directory classes there
are core classes that implements the solver and the manipulations with the solu-
tions. In the directory scripts we put the programs that use aforementioned class-
es to solve particular problems described in this thesis. The main class to perform
numerical simulations using FEniCS library is in the file VNotchSolverPowerLaw.py.
It uses the class Damping.py, which is a implementation of damped Newton’s
method and the class BoundaryConditions.py, which encapsulates the boundary
conditions. There is also a class DirectoryVisitor.py, which is able to browse
the directory structure of the discretizations and call solver on yet unsolved prob-
lems. DirectoryWrapper.py is a class that manages solutions with respect to the
refinement level in a single directory. The class ErrorNorms.py performs compu-
tations of error norms (5.23). The class GeometryParams.py encapsulates different
geometries as they are defined in Section 5.3.1 and the class MaterialModel.py

encapsulates the material models from Table 5.1. In the directory classes/IO,
there are two classes for storing and loading solutions SolutionExporter.py and
SolutionImporter.py. In the directory solver/scripts, are the following files.
The scripts SolvePowerLaw.py and SolveBatch.py can be used to call the solver
using command line or for solving multiple problems non-interactively. The script
paraviewMeshImages.py can be used to create Figures 5.8–5.10, which visualize
the adaptive mesh refinement process. Scripts VCFigures.py, VFigures.py and
VOFigures.py can be used to create XDMF files that contain data regarding stress
and strain components of the solutions that can be visualized, see Figures 5.14–5.22.
The script GenerateErrorNorms.py can be used to generate Tables 5.2–5.10. And
finally the script TabulateMaxDist.py can be used to tabulate distances (5.25) and
in turn to generate the source file solutions.csv, which can be used to produce
Figures 5.23–5.32.

In the subfolder visualizations we enclose XDMF files exported using scripts
VCFigures.py, VFigures.py and VOFigures.py. Stress and strain distributions
that are included in these XDMF files can be visualized in ParaView, see Ayachit

1Triangular meshes are created using COMOL, see COMSOL AB (2008). We use the LIVELINK in-
terface to communicate with COMSOL from Matlab, see https://www.comsol.com/livelink-for-matlab.
It allows us to write scripts that automate the task of creating the meshes.
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(2016). The files contain solutions to the problems LIN2, NLO2, NLB2 and NLS2, see
Table 5.1 on the most refined mesh. We include the visualizations for V geometry
with α = 1°. For VO and VC geometries we include the visualizations for α = 90°
and rc ∈ {0.05, 0.01, 0.005, 0.001}. Note that these are exactly the solutions that
were used for visualizations in Figures 5.11–5.22.

We are including the described structure of the folder 05ComputerSimulations.
05ComputerSimulations

metapost

antiPlaneStress.mp.....................................Figure 5.1.
polarCoordinates.mp ................................... Figure 5.2.
createGeometryFigures.mp..................Figures 5.5, 5.6 and 5.7.

ggplot2

plotExponents.R................................Figures 5.3 and 5.4.
plotDependences.R...............................Figures 5.23–5.32.
solutions.csv........Precomputed source data for Figures 5.23–5.32.

generatemesh...................Matlab source files to generate meshes.
createMeshes.m...........Script to create adaptively refined meshes.
ExportData.m...............................Script for mesh export.

meshtoxml.............................XML format of triangulation data.
ComsolToXMLMeshFiles.java......................Format converter.

solver....................................Implementation of the solver.
classes

VNotchSolverPowerLaw.py .....................Power law solver.
BoundaryConditions.py ...................Boundary conditions.
Damping.py ..........................Damped Newton’s method.
DirectoryVisitor.py ............Browse the directory structure.
DirectoryWrapper.py ....Management of directory with solutions.
ErrorNorms.py ...........................Compute error norms.
GeometryParams.py ....................Encapsulates geometries.
MaterialModel.py ........................ Encapsulates models.
IO

SolutionExporter.py ................... Exporting solutions.
SolutionImporter.py ................... Importing solutions.

scripts

SolvePowerLaw.py ..........................Script to call solver.
SolveBatch.py .........................Solve multiple problems.
paraviewMeshImages.py ..............Visualize mesh refinement.
VCFigures.py ....................................XDMF export.
VFigures.py .....................................XDMF export.
VOFigures.py ....................................XDMF export.
GenerateErrorNorms.py .........Generate tables of error norms.
TabulateMaxDist.py ...................Tabulate distances (5.25).

visualizations ................Selected stress and strain distributions.
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