

Charles University in Prague

Faculty of mathematics and physics

MASTER THESIS

Peter Irikovský

Graph algorithms in text retrieval

Department of Software Engineering

Supervisor: RNDr. Michal Kopecký, Ph.D.

Field of study: Computer Science

i

Hereby, I would like to thank my supervisor RNDr. Michal Kopecký, Ph.D. for his

willingness, professional advises and comments and for prompt answers to all my

questions. For me, it was a pleasant cooperation. I would also like to thank RNDr. Leo

Galamboš, PhD. for supplying the test collection and for valuable comments on the

implementation.

I declare that I wrote this thesis myself and with use of only the explicitly cited sources.

I agree with lending the thesis.

20th April 2007, Prague Peter Irikovský

ii

Název práce: Grafové algoritmy ve vyhledávání textových dokument�

Autor: Peter Irikovský

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Michal Kopecký, Ph.D.

e-mail vedoucího: michal.kopecky@mff.cuni.cz

Abstrakt: Tato diplomová práce zkoumá možnosti využití grafových algoritm� v
oblasti information retrieval (vyhledávání informací). Na za�átku je poskytnut p�ehled
základních pojm� z oblasti dokumentografických informa�ních systém� a základ�
teorie graf�. Zbytek práce se pak zabývá pr�nikem t�chto dvou oblastí. Mezi p�íklady z
tohoto pr�niku pat�í nap�íklad klastrování a kategorizace dokument�, �i hledání
komunit. Nejvíc pozornosti je však soust�ed�no na algoritmy hodnotící d�ležitost
dokument� s pomocí využití graf�. Tyto algoritmy vylepšují nejd�ležit�jší vlastnost
informa�ních systém�, jejich p�esnost. Práce poskytuje p�ehled r�zných hodnotících
algoritm� založených na grafech a uvádí komentá�e k jejich prakti�nosti, �asovým a
pam��ovým nárok�m. V práci je taky detailn� popsaná implementace algoritm� na
po�ítaní PageRanku stránek navržená pro využití ve vyhledáva�i Egothor. Popis také
obsahuje výsledky m��ení �asové a pam��ové náro�nosti a uvádí návrhy na další
zlepšení.

Klí�ová slova: grafové algoritmy, vyhledávání dokument�, PageRank

Title: Graph algorithms in text retrieval

Author: Peter Irikovský

Department: Department of software engineering

Supervisor: RNDr. Michal Kopecký, Ph.D.

Supervisor's e-mail address: michal.kopecky@mff.cuni.cz

Abstract: This thesis surveys use of graph theory and algorithms in information
retrieval. It provides an introduction to graph and information retrieval theories and an
overview of the overlap between these disciplines. We show application of the graph
theory in clustering, document classification, finding communities etc. The most stress
is, however, put on ranking algorithms as they aim to improve the most critical property
of the information retrieval systems, their precision. The paper presents different graph-
based ranking algorithms, provides comments to their time and memory requirements
and to realistic usage of these rankings. It also contains a description and test results of
our implementation of algorithms for computing the PageRank distribution designed for
the Egothor search engine.

Keywords: graph-based retrieval, information retrieval, graph algorithms, PageRank

iii

Content

1. Introduction... 1

2. Information retrieval ... 4

2.1 Information retrieval systems ... 4

2.2 Architecture of IR systems ... 5

2.2.1 Indexation ... 5

2.2.2 Vector Model .. 6

2.2.2.1 Vector model with the term similarity matrix 7

2.3 Web IR systems .. 8

2.4 Main drawbacks and issues of the current IR systems 8

3. Graphs theory and algorithms... 9

3.1 Graphs – general terms ... 9

3.2 Graph representation... 10

3.3 Graph algorithms .. 11

3.4 Complexity.. 11

3.5 Graph traversal.. 13

3.6 Shortest path finding... 13

3.6.1 BFS based approach.. 13

3.6.2 Dijkstra.. 14

3.6.3 Other shortest path algorithms.. 15

3.7 Network flow .. 15

3.7.1 Network flow problem definition ... 16

3.7.2 Ford – Fulkerson... 17

3.7.3 Pre-flow push (Push re-label) algorithm... 17

3.8 Minimum s-t cut.. 18

4. Graphs and graph theory in information retrieval .. 20

5. Ranking Algorithms.. 21

5.1 Query independent ranking – PageRank .. 21

5.1.1 Intuitive Background .. 22

5.1.2 Existence of PageRank distribution.. 23

5.1.3 Computation of PageRank .. 24

5.1.4 PageRank I/O optimisation... 26

5.1.4.1 File structure definition... 27

5.1.4.2 Memory non-critical scenario ... 27

iv

5.1.4.3 Memory critical scenarios... 28

5.1.4.4 Haveliwala's algorithm ... 29

5.1.4.5 Use of the web graph structure ... 30

5.1.4.6 Compression techniques ... 31

5.1.4.7 Improvements summary ... 32

5.1.4.8 Split-Accumulate algorithm.. 32

5.1.4.9 I/O efficient approaches summary.. 34

5.1.5 Other approaches to PageRank optimisation .. 34

5.1.5.1 PageRank approximation via Graph Aggregation 36

5.1.5.2 BlockRank algorithm.. 37

5.1.5.3 Other site based algorithms... 38

5.1.6 PageRank extensions .. 38

5.1.6.1 Topic sensitive PageRank... 39

5.1.6.2 Topical PageRank ... 39

5.1.6.3 Personalized PageRank... 43

5.2 Our implementation .. 44

5.2.1 File and Pack7 formats ... 44

5.2.2 Program principles .. 45

5.2.3 M version .. 46

5.2.4 D versions ... 46

5.2.5 Time consumption .. 48

5.2.6 Memory requirements... 50

5.2.7 Results of the PageRank computation .. 52

5.2.8 Our implementation – summary ... 53

5.3 Query dependent web-graph based rankings .. 54

5.3.1 HITS.. 54

5.3.2 Flow based Rank... 56

5.3.3 Re-ranking pages using user supplied feedback 56

5.4 Other query dependant rankings ... 57

5.4.1 FlowRank - Collaborative Ranking .. 57

5.4.2 Ranking retrieved pages using Affinity Graph 58

5.4.3 Conceptual graph .. 62

5.4.4 HITS and PageRank without hyperlinks .. 62

6. Finding communities .. 63

v

6.1 Flake's max-flow based algorithm .. 63

6.2 Improvements ... 65

6.3 Summary... 66

7. Other examples of graph theory in IR .. 68

7.1 Other uses of Web-graph Analysis ... 68

7.1.1 Web Crawling ... 68

7.1.2 Mirrored hosts... 68

7.1.3 Web sampling ... 69

7.1.4 Geographical scope... 69

7.2 Other graphs in IR... 69

7.2.1 Clustering.. 69

7.2.2 Graphs in document classification.. 70

8. Conclusion .. 72

9. References... 73

vi

List of pictures

Picture 1 Indexation .. 6

Picture 2 Graph examples ... 10

Picture 3 Example of a network and a flow in this network.. 17

Picture 4 PageRank intuition .. 23

Picture 5 Bow tie structure of the web.. 30

Picture 6 Affinity Ranking Framework .. 59

Picture 7 Example of G' constructed for finding communities....................................... 64

Picture 8 Ignored link problem illustration... 65

vii

List of tables

Table 1 Examples of network flow utilizations .. 16

Table 2 Example of link file partitioning in Haveliwala's algorithm 29

Table 3 Example of link file partitioning in the Split-Accumulate algorithm................ 33

Table 4 URL Terminology ... 35

Table 5 Normal and Pack7 representation of number 517 ... 44

Table 6 Time comparison of procedures of different program versions 49

Table 7 Memory consuption comparison ... 50

Table 8 PageRank distribution.. 53

1

1. Introduction

Graph theory is a very well studied science discipline. So is the field of

information retrieval (IR). These two disciplines are often perceived as being totally

different, but as we show in this paper, there is a large overlap between them.

In the last century, graph theory and graph algorithms have enjoyed a great deal

of attention. Many new graph-based techniques have been proposed and utilized in

various sectors. One of the best known theoretical results from the mid 20th century is

the max-flow min-cut theorem which was proved by Ford and Fulkerson in 1956 [1].

The consequences of this theorem have helped researchers in multiple fields. Even now,

more than 50 years after proving the theorem, new applications for it are being

discovered. As we show in this paper, algorithms for computing maximum flow and

their modifications are now starting to be used also in the field of information retrieval.

We show two interesting applications of this group of algorithms. In one case it helps us

to discover communities (web pages relevant to a given topic). In the other case a

modification of maximum flow algorithm is utilized to obtain a relevance ranking of

web pages to a given query.

In this paper we show that network flow algorithms are not the only part of

graph theory that is or can be used in the process of information retrieval. Graphs are

now base elements of many information retrieval applications.

In contrast to the graph theory, the history of information retrieval is much

shorter. It relates to the amount of information that needed to be stored. As the amount

of information that was being stored boosted, new techniques for storing information

were needed. People first started to use paper for storing information. Soon they had

many papers and books, but when they needed to find some information quickly, they

ran into trouble. Hence, they started to develop structures for organizing documents that

would help them to find the right information faster. This time point is considered as the

birth time of information (text) retrieval systems. As the evolution has continued, data

storage techniques have been improved. Data are now mostly stored on hard drives, CD

and DVD discs, and also on magnetic tapes etc. However, the amount of data that we

keep at disposition is enormous and surpasses one's imagination. This presents the same

problem people had many years ago and that is: How can we find what we want

quickly?

2

Currently, the most popular source of information is the World Wide Web

(WWW or the Internet). It comprises several billion web pages containing information

about almost everything we can imagine. To find information without a search engine

might be an extremely difficult quest. That is why people started to develop search

engines for the web. It probably started out as research aimed at helping people to find

what they want, but it turned out to be a great business. Today companies like Google

[2] and Yahoo! [3] are known around the world not only as very useful tools for

searching the web, but also as companies traded on the stock exchange markets. The

outstanding, and for many people unbelievable performance of these systems in the

process of information retrieval got people thinking these companies would achieve

similar performance in business, so we now see people paying enormous sums of

money for their shares. To better explain this we can use the following example. If you

bought the entire Google Company at the current share price at the beginning of the

year 2006 times the number of shares issued (i.e. the market capitalization) and the

company performed the same way it did then for the next 100 years, the profit for the

100 years would roughly equal the price you paid for the company. That is, if Google

was not a publicly traded company and you invested money into it, you would get it

back after 100 years and only then you would start to make money. Therefore, the

return of such an investment would be about 1% per annual while the average is more

than 5 times higher.

The success of these companies on the stock exchange market has brought these

companies a considerable amount of money that is invested in research. This is

probably one of the main reasons why so many top-class scientists are concentrating

their research on IR. Thanks to this, there are numerous papers about the latest research

in IR. The amount of available papers on IR would be even greater if most of the

research done by these commercial companies was not confidential. There are two main

reasons why companies such as Google or Microsoft do not publicize the results of their

latest research nor the exact principles of their search engines. The obvious one is the

competitors' battle between these companies. The second more important one is that

many people are commercially interested in increasing the ranking of their web pages

for certain queries. Uncovering the exact manner in which these engines work would

make it easier to find out new tricks how to manipulate the ranking.

In this thesis we first provide an introduction to the fields of information

retrieval and graph theory and then provide an overview of approaches that use the

3

knowledge from the graph theory to improve some properties of the IR systems. We

will also present our implementation of a program for computing the PageRank

distribution, by our thoughts the most important utilization of the graph theory in

information retrieval.

The rest of this paper is organized as follows. Chapter 2 provides an introduction

to information retrieval, presents the common structure of the IR systems and points out

the most critical issues of the current IR systems. Chapter 3 contains insights to graph

and complexity theories and describes algorithms for solving graph problems that are

applicable in the field of information retrieval. A more detailed introduction to the use

of graphs and graph theory in information retrieval is provided in chapter 4 which also

premises the content of the following chapters. Chapter 5 then provides a detailed

description of graph-based ranking algorithms provides different perspectives to the

ranking process and reviews the results and applicability of different approaches. This

chapter also contains a description of our implementation of the PageRank algorithm

and provides comments, to the run-time and memory efficiency of different versions of

this algorithm. An overview of approaches to finding communities – sets of web pages

characterized by page content similarity and cohesive link structure is present in chapter

6. In chapter 7 we briefly describe several other applications of the graph theory in

information retrieval. We conclude with chapter 8,

4

2. Information retrieval

With the increasing amount of documents available in electronic form the need

for efficient storing and searching these documents arose. For this purpose information

retrieval systems were developed.

Text documents are generally stored in text databases and the IR systems

provide a framework that enables searching for documents. A problem is that users

mostly do not have extensive knowledge of these systems nor about the documents

stored. Consequently most of user queries are vague and users often get either a lot of

irrelevant documents or no documents as a result of their queries. However, the

relevancy of a document to a query is very difficult to generalize. Different people

expect different documents containing different information as a result of a single query

([4]). This is the main difference between information retrieval and database retrieval,

where the relevance of a record in the database to a query is explicit.

In this chapter we provide an introduction to information retrieval and to the

most common structure of the IR systems. We also point out most common issues of the

current systems. Chapters 4 and 7 then present graph-based approaches to resolving

some of these issues.

2.1 Information retrieval systems

The IR systems store some information about a set of documents and compare

this information with user queries. Choosing the right information about the documents

to store is a common issue in IR and is handled in a process called indexation.

However, the main goal of IR systems is to find relevant documents to a given

user request (query). There are two main forms of search – listing a directory and

formulating a query. In this thesis we concentrate on the latter.

In response to a given query, IR system outputs a list of documents. Generally,

these are sorted by estimated relevancy in descending order. Since users often only take

a look at the first 10-50 documents (the maximum criteria), the systems aim to place the

most relevant documents at the top of the list. Documents actually relevant for the user

are called hits.

In order to compare the quality of the information retrieval systems, we define

two basic measures - the precision and the recall of a system. Both of these measures

assume binary relevancy. A document is either relevant, or is completely irrelevant.

5

Precision (P) states the proportion of retrieved and relevant documents to all

documents retrieved.

{ } { }|
|{ } |

rr

r

relevant documents retrieved documentsN
P

N retrieved documents

∩
= =

Recall (R) indicates the proportion of retrieved and relevant documents to all the

relevant documents available.

| { } { } |
|{ } |

rr

re

N relevant documents retrieved documents
R

N relevant documents
∩= =

Where Nrr = number of retrieved relevant documents

Nr = number of retrieved documents

Nre = number of relevant documents

In an ideal IR system both of these metrics are equal to one. However in the real

world, we can observe a reciprocal proportion between these two metrics. It is also

important to note that the relevancy of a document depends on an individual opinion.

The retrieved documents depend on the quality of the IR system, but also on the user-

formulated query.

Many systems also provide a query tuning functionality. This can be either

handled by simply allowing users to reformulate their queries or by allowing users to

input some kind of feedback and using this information to re-rank the results.

2.2 Architecture of IR systems

Generally, the IR systems have two basic functions – inserting (indexing)

documents and the searching function. Each of these functions can be broken down into

modules. The indexation units usually have modules for lexical analysis,

lemmatization, thesauri usage and term weighting. The search unit usually has user

interface, lexical and syntactic analyzer and search engine modules.

2.2.1 Indexation

The main goal of the indexation unit is to create a structure that properly

characterizes documents so that they can be efficiently retrieved when they match a

query. This structure can contain information about billions of documents (e.g. web), so

it has to be space (memory) efficient, but also quick to work with. In this structure each

document is represented by a record that contains a formal description of the document.

The record should be composed of properly specified attributes and well chosen (key)

6

terms. The procedure of choosing terms that characterize the document is called

document indexation. Documents can be indexed automatically, semi-automatically or

manually.

Primary
record

interface
Lexical
analysis Lemmatization Term

weighting

Indexation

Index

D
ocum

ents

Picture 1 Indexation

The first phase of indexation in general IR systems is the lexical analysis. In this

phase the elimination of improper (not influential) terms takes place. The list of such

terms is commonly called stop-list.

In the lemmatization phase, the morphological forms of words are eliminated to

avoid excessive size increase of the index.

The term weighting phase depends on the model of IR system. It the basic –

Boolean model no term weighting is done and the index only contains the information

about terms present in a document.

2.2.2 Vector Model

In the vector model ([5]), we assume using n various terms t1,..,tn for the

indexation of all documents in the set. Then each document from the collection is

represented by a vector

1 2(, ,...,)i i i ind w w w=

where wij∈<0,1> expresses the importance of term tj for the identification of document

di, where higher values of wij represent higher importance. In the vector model the

document collection is represented by a matrix M=(wi,j) with size m x n where the i-th

row represents the i-th document and the j-th column represents the j-th term.

The query is in the vector model represented by an n dimensional vector:

1 2(, ,...,)nq q q q=

where qj∈<0,1> or optionally qj∈<-1,1>. The similarity coefficient between the query

and each document can be thought of as the distance between the vector of the

document and the query vector and can be calculated as:

.

1

(,)
n

i k ik
k

Sim q d q w
=

=�

To ensure good precision of the system, the weights of terms in matrix M have

to be set properly. Most of the automated indexation methods are based on the

7

observation that the importance of terms for the indexation is in direct proportion with

the frequency of term occurrence in the document. The basic weight setting is the term

frequency that is defined as:

,i j
ij

i

m
TF

m
=

As the TF values are usually very low, the normalized term frequency NTF

measure that ignores very low values is used more often.

,
,

,

0 if ,

1 1
otherwise

2 2 max()

i j
i j

i k

TFi j
NTF TF

TF

ε
�
�
�
��
�
�
�
�
��

≤
=

+

The terms that occur in most of the documents are not very good key terms for

the indexation process. Because of this we also incorporate a measure that characterizes

the terms depending on the document collection. One such measure is the inverse term

frequency that can be calculated as:

)log(/j kITF m O=

where Ok is the number of document where term k occurs. The elements wij of matrix M

can be calculated as:

.ij ij jw NTF ITF=

To achieve uniform size of the document vectors, the term weights of a document are

usually normalized to one.

2.2.2.1 Vector model with the term similarity matrix

As the basic vector model does not consider the substitutability of key terms, the

results of the query significantly depend on choosing the right terms in both index and

the query. This problem can be partly solved by using the thesauri, by lemmatization or

by using a term similarity matrix.

The term similarity matrix is a square matrix S, where Sij∈<0,1> represents the

substitutability of term ti by term tj. This matrix can then be used to process the user

query by incorporating the term similarity as:

' .q q S=

This transformation ensures that terms that are similar to the query terms but are

not part of the query are also considered in the result. The matrix S is usually symmetric

and is computed by statistical methods.

8

2.3 Web IR systems

Before the expansion of web, IR systems were typically installed in libraries and

were mostly used by the skilled librarians. The retrieval algorithms of these systems

were usually based exclusively on word analysis.

The web changed all this. Users have now access to various search engines

whose algorithms consider many more factors when computing the results of the query.

The major difference between the traditional and the web IR systems is that the web IR

systems have to solve one additional issue – obtaining the document collection. The

process of collecting web pages is called crawling and is described in chapter 7.1.1.

In addition the web IR systems also have to face the issue ([6]) that the web

lacks any imperative structure as e.g. centralized obligatory structure of the documents;

control of reliability of information; information categorization; standard terminology;

or separation of advertisement from other documents, etc.

As we show in chapters 5 to 7 a lot of these issues can be partly resolved using

the hyper-link analysis. However, all of these issues still present open problems.

2.4 Main drawbacks and issues of the current IR systems

Although current web IR systems use more and more sophisticated and complex

methods, users of these systems still face several issues. The results provided by these

systems often contain a lot of irrelevant documents and the documents actually

matching user's needs are stashed in the rest of the results.

This is mainly caused by the subjectivity of human understanding. The user

queries are often vague and the notion of what should actually be returned as relevant

results is very indefinite.

To improve this condition, different approaches to ranking the results were

proposed. In this paper we describe different graph-based rankings that try to

incorporate available information to provide the current users with better results.

9

3. Graphs theory and algorithms

In this chapter we would like to introduce you to graph theory and graph

algorithms and briefly describe algorithms that we use later on in the process of

information retrieval. We will describe general terms and explain principles of

algorithms that we show have application in IR systems. As graph theory is very broad,

we only define terms that we use further on. In this thesis we would use the terminology

used in the largest free web encyclopedia – Wikipedia [7].

3.1 Graphs – general terms

In mathematics and computer science graph theory is the study of mathematical

structures called graphs. Graphs are used to model pairwise relations between objects

from a collection. In this context a graph G = (V, E) usually means a set V of vertices

and a set E of pairs of vertices called edges. Edges connect two vertices. We say a graph

is undirected if there is no distinction between the two vertices associated with each

edge. If all edges of a graph are directed from one vertex to another, the graph is

directed. Each edge can also have parameter called weight (w: E � R) associated with

it. In that case we say the graph is weighted, otherwise it is unweighted. (Pictures 2 and

3 present examples of an unweighted and undirected graph and a weighted and directed

graph respectively).

In an undirected graph, we say that v0 and v1 are adjacent if and only if there is

an edge (v0, v1)∈E. The edge is then incident on vertices v0 and v1. In a directed graph, v0

is adjacent to v1 and v1 is adjacent from v0 if there is an edge <v0, v1>∈E and the edge is

then incident on vertices v0 and v1.

Each vertex in a graph has its degree. The degree of a vertex is the number of

edges incident on that vertex. In directed graphs, we consider both the in-degree and the

out-degree of a vertex v meaning the number of edges adjacent from v and adjacent to v

respectively and denote them by ind(v) and outd(v) respectively.

Another commonly used term is a path. Existence of a path from v0 to vk is equal

to the existence of a sequence v0, v1, ... ,vk such that for every i ∈{1, ..., k}, vertices vi-1

and vi are adjacent. A path is called simple if no vertex is repeated in the sequence and is

called a cycle if it is a simple path except that v0 = vk. The shortest distance between two

vertices v0 and v1 in an unweighted graph is defined as the number of edges of the

shortest path between v0 and v1 in the graph and is denoted by dist(v0, v1). In a weighted

10

graph the dist(v0, v1) is defined as the sum of edge weights of a path between v0 and v1

such that sum is minimal among all paths connecting v0 and v1.

A graph is said to be connected if for any two vertices there exists a path that

connects them. A subgraph G' = (V', E') of graph G = (V, E) consists of a subset of

vertices V' ⊆ V and a subset of edges E' ⊆ E such that they form a graph. A connected

component of a graph is a maximal connected subgraph. I.e. a connected component is a

subgraph of a graph that can not be enlarged by any vertex or edge from the original

graph without losing the property of being connected. A directed graph is strongly

connected if for any two vertices there exist a directed path between them in both

directions. A graph is a called a tree when it is a connected graph without cycles and is

called a forest when it is a collection of trees. A graph is complete if all pairs of vertices

are connected by an edge.

G=(V, E)

V={1,2,..,7}

E={(1,2),(2,4),(2,3),

 (5,6),(5,7)}

G'=(V', E')

V={1,2,3,4}

E={(1,2),(2,3),(2,4)}

Picture 2 Graph examples

Notes: G is an undirected unweighted graph. G' is a subgraph of G. G' is also a

connected component of G and also a tree.

3.2 Graph representation

Graphs can be represented by geometrical means as shown above, but for

mathematical and computer science purposes we generally use other representations of

which most commonly used is the adjacency matrix. For a graph with n vertices the

adjacency matrix A has size n x n. The element ai,j in the i-th row and j-th column is

equal to 1 if there is an edge between vi and vj. In the case of an undirected graph, the

matrix is symmetric, i.e. ai,j = aj,i for each i and j. If the graph is weighted, then ai,j is

equal to the weight of edge (vi, vj). The degree of any vertex of an undirected and

unweighted graph represented by an adjacency matrix equals to the sum of the i-th line

(or row). In a directed graph the sum of the i-th line and the sum of the i-th column are

equal to the out-degree and the in-degree of vi respectively.

Another possible, commonly used representation is an adjacency list, where

each row of the adjacency matrix is represented as a list. This representation is more

1 2

3 4

5

6

7

1 2

3 4

11

suitable for sparse graphs because of its memory efficiency, but is more difficult to

work with and much slower when changes in graph are made.

There are lots of other representations that can be used for various purposes, but

those are not of much importance for this paper.

3.3 Graph algorithms

Graph algorithms are used to compute some properties of a given graph. If we

can imagine a map represented by a graph where towns are represented by vertices and

highways correspond to edges. Then we might want to know the distance between

certain cities. We might want to find out names of all the towns where we can get from

a given town just by using highways. We might be interested in which town is the most

central one in our map or in many others aspects. To answer these questions, one might

utilize an algorithm for solving the shortest-path problem and a graph-crawling

algorithm.

A different realistic scenario where graph algorithms may be used to solve a real

world problem is if we imagine a water pipe network. In such a network each pipe

(modeled by an edge) has a certain width and so can transport only a limited amount of

water in a given time unit. The junctions of these pipes (modeled by vertices) can be

considered not being able to hold any water; that is the amount of water that flows into

the junction equals the amount of water flowing out. Furthermore we can imagine we

have an inlet to this network called source and an outlet called sink. Intuitively the total

flow of this network is the rate at which the water comes out of the outlet.

If we model this network by a weighted directed graph, we can use a maximum

flow problem solving algorithm to find out the total flow of the network, or we use a

minimum cut algorithm to find out the least number of pipes that need to be blocked to

prevent the possibility of transporting any flow from the inlet to the outlet.

These examples illustrate some applications of graph algorithms. Further on in

this paper we show how these algorithms are used in IR systems.

3.4 Complexity

Before going any further in explaining various algorithms, we need to define

some measures to be able to compare them.

To describe the asymptotic behavior of a function, we use the big O notation.

The time complexity of graph-based algorithm can be asymptotically represented by a

12

function of two variables m, n meaning the number of edges and vertices respectively.

Thus, if we say an algorithm has asymptotic time complexity O(m + n) we are saying

that the time complexity can be bounded from above by a(m + n) for some constant a. A

similar definition holds for the space complexity. For a more detailed explanation of

asymptotical complexities see [8]. The asymptotic complexity is mostly used for worst

case complexity analysis. This means that if f(x) = O(g(x)), then for "big" x, f performs

better than or equal to a.g. However, this does not say anything about neither the

constant a nor the minimum size of x. They both can be small, but they also can be

enormous numbers.

As a result we also use other measures of algorithms. One of these measures is

the average complexity which attempts to measure the average performance of an

algorithm. Again it is a theoretical approach, but for practical use, it is much more

relevant than the worst-case asymptotical complexity. Probably the best example where

the worst-case asymptotic complexity is not a reasonable ranking is the case of sorting

algorithms. These algorithms get a list of numbers on input and their task is to sort these

numbers. The best achieved and proved to be best achievable worst-case asymptotic

result is O(n.log(n)) which is for example achieved by merge-sort. In practice, however,

the most used algorithm is quick-sort because it is simple to implement, but primarily

because of its performance. Empirical tests showed that the algorithm is faster than

other sorting algorithms and that the average asymptotic complexity is O(n.log(n)) with

a small constant. The main drawback of these theoretical approaches is that they treat all

basic operations (multiplying, square root etc.) as being equally time demanding, which

obviously is not true. However, they can provide a good heuristic for the real time

complexity.

Another important measure is counting the I/O (input / output) operations of a

given algorithm. This measure is generally important in algorithms on huge graphs that

can-not be loaded into the main memory (random access memory - RAM). This

measure only counts the number of I/O operations because they are much more

expensive (in terms of time) than other operations. Current disks are several orders of

magnitude slower (disk seek time) than the random access memories. Therefore if an

algorithm works with a graph that is not stored in the main memory, it is reasonable not

to choose an algorithm with the lowest asymptotical nor average complexity but rather

the one using the least I/O operations.

13

All of these heuristics help us to choose the right algorithm for given problem,

but the real time complexity may sometimes surprise us at the end. For example

different graph representations used by one algorithm can drastically change the

performance.

3.5 Graph traversal

The goal of graph traversal algorithms can either be to find out if a certain vertex

is reachable from a given start vertex, or to provide a list of all vertices connected (by a

path) to a given start vertex.

There are two commonly used approaches – the BFS and DFS. The basic idea of

breadth first search (BFS) is to start several paths at a time and advance in each one

step at a time. I.e. it starts from a given start vertex and in the i-th iteration it finds

vertices that are reachable from the start vertex by a path of length i. It terminates when

no previously undiscovered vertices are found in the iteration. On the other hand the

depth first search (DFS) propagates the idea of continuing the search until the end of the

path once a possible path is found. Both of these algorithms have their pros and cons

and both are widely used. Good examples of uses of these algorithms are web crawlers

– programs that browse the World Wide Web (WWW) in an automated predefined

manner.

3.6 Shortest path finding

The objective of the shortest path algorithms is either to find the shortest path

between two given vertices, or to find the minimum distance between a given vertex

and all other vertices.

3.6.1 BFS based approach

On unweighted graphs (we consider all edges having length 1) the problem can

be solved by a slight modification of the above-mentioned BFS algorithm. In the i-th

iteration the distance d[v] of the newly discovered vertices is set to i. After running the

algorithm all reachable vertices have been assigned a distance that is also the shortest

distance. The average and worst case time complexity of this algorithm is O(n+m)

because every vertex and every edge is only used once and then it is marked as

discovered and never used again.

14

3.6.2 Dijkstra

Dijkstra's algorithm is a greedy algorithm (more about greedy algorithm

technique can be found in [9]) that solves the shortest path problem for weighted

directed graphs with nonnegative edge weights. The algorithm works in iterations on

two sets S and Q. Initially S is empty and Q contains all vertices. For all vertices except

the start vertex s, distance d[v] of vertex v from vertex s is set to infinity. In each

iteration the algorithm extracts a vertex u with minimum d[u] from Q and relaxes all

edges (u,v). By relaxation we mean that we compare if d[v] > d[u] + w(u,v) (weight of

the edge (u,v)) and if the condition is fulfilled we set d[v] = d[u] + w(u,v). The vertex u

is then deleted from Q and added to S. The intuition behind this algorithm is that in each

iteration the distance of the vertex from Q with the minimum distance cannot be

improved any further and so we say it is the definite distance. After n iterations, all

vertices have the definite distance set.

The time complexity of this algorithm depends primarily on the data-structure

we use. The complexity can be described as n times Extract Min from Q + m times

Relax edge. For the simplest case – Q represented as an unsorted list the time

complexity is O(n2). If Q is represented as a binary heap (BH), the Extract Min and

Relax edge operations require O(1) and O(log(n)) respectively which implies time

complexity O((m+n).log(n)) which in the worst case (for dense graphs) means

O(n2log(n)). To lower the worst-case time complexity we can use the Fibonacci heap

(FH) (for description see [10]) where Extract Min and Relax edge operations require

O(log(n)) and O(1) respectively. So the time complexity is O(m + n.log(n)) implying

worst-case time complexity O(n2). For dense graphs the complexity of the simple and

FH implementations (O(n2)) outperform the binary-heap implementation (O(n2log(n)))

and for sparse graphs the heap implementations (O(n.log(n))) perform better than the

simple implementation (O(n2)).

From what is stated above, one might very probably think, the Fibonacci heap

implementation of the Dijkstra algorithm would be generally the most efficient and

most commonly used. But as noticed from the tests done in [11] the Fibonacci heap

only rarely outperforms both other implementations. For dense and sparse graphs the

simple and the binary heap implementations performed the best respectively. The binary

heap implementation was generally the best performing, although it was seldom slightly

outperformed by the FH implementation on the dense graphs. The price this

15

implementation pays for achieving the best worst-case asymptotical complexity is too

high and does not pay off in the real world.

By this example we illustrated that a better worst-case or average complexity

does not guarantee, that the algorithms would also perform better in empirical tests.

3.6.3 Other shortest path algorithms

There are several other approaches to the shortest path problem. Another that is

worth mentioning is the Bellman-Ford algorithm that is very simple to implement and

works also on graphs with negative edge weights. Initially d[v] is set to infinity for all

vertices except the start one, which is set to zero. The algorithm then works in

iterations. In each iteration it relaxes all edges. By relaxation we mean that it checks if

d[v] > d[u] + w(u,v) and if the condition is fulfilled, then it sets d[v] = d[u] + w(u,v). It

repeats the iterations until no d[v] is changed in the last iteration. For graphs with

positive edge weights the time complexity is O(m.n) because in each iteration we

process all edges and after each iteration at least one vertex has its final distance value

set.

As already stated, the most commonly used algorithms for solving the shortest

path problem are the Dijkstra algorithm and the BFS-based algorithm. In this paper we

show an interesting utilization of the shortest path algorithm that helps us to re-rank

web pages to a given query using the user-supplied relevance feedback.

3.7 Network flow

Maximum s-t flow problem is defined on a weighted oriented graph G with two

special vertices: source (s) and sink (t). For illustration we may suppose that edges are

(oriented) pipes with a given diameter and vertices are the only places where edges can

cross. We can then ask how many liters of water can flow from the source to the sink in

a given time unit.

As we will demonstrate the network flow algorithms have a wide variety of

applications. In [12] the following examples are mentioned:

16

Examples of network flow utilization in real life

Network Vertices Edges Flow

hydraulic reservoirs, pumping

stations, lakes

pipelines fluid, oil

circuits gates, registers,

processors

wires byte flow

mechanical joints rods, beams, springs heat, energy

communication telephone exchanges,

computers, satellites

cables, fiber optics,

microwave relays

voice, video,

packets

financial stocks, currency transactions money

transportation airports, rail yards, street

intersections

highways, rail beds,

airway routes

freight vehicles,

passengers

chemical sites bonds energy

Table 1 Examples of network flow utilizations

In this paper we show two IR applications of the network flow computations. As

already mentioned it helps us to discover communities and it provides us with a

relevancy ranking to a given query.

3.7.1 Network flow problem definition

The input of the problem is of the following form G = (V, E, s, t, c) where (V, E)

is a directed graph, s (source) and t (sink) are two distinguished vertices, c(e) stands for

the capacity function c: E � R+.

In graph theory a network flow is an assignment of flow f to the edges of a

digraph that satisfies the following constraints:

- flow on each edge is less than or equal to the capacity of that edge (f(e) � c(e))

- for every vertex (except source and sink) the amount of flow into that vertex

equals to the amount of flow out of it (f+(v) = f--(v))

17

3

5

4

0

1

2

5

5

1

3

3

4

8 3

5

4

0

1

2

5/4

5/2

1/1

3/3

3/3

4/3

8/6

Capacity
Flow

Source ID = 0
Sink ID = 5

Picture 3 Example of a network and a flow in this network

3.7.2 Ford – Fulkerson

To explain this algorithm, we need a few more definitions. Suppose that we have

a correct flow f. Then the residual graph G[f] for graph G and flow f can be defined as:

G[f] = (V, E') where edge <x,y> ∈ E' if f(u,v) < c(u,v) or f(v,u) > 0, i.e. the residual

graph contains unsaturated edges and backwards oriented edges that contain a flow in

the original graph. An augmenting path is a path from source to sink in the residual

graph. The above definitions imply that f is a maximum flow if there is no augmenting

path between source and sink in the residual graph.

The basic idea of the algorithm is very straightforward. Iteration: find an

augmenting path and augment the flow along this path. Repeat iteration until there is no

augmenting path. It has been proved, that if we use the shortest (in terms of number of

edges used) augmenting path (Edmonds-Karp enhancement) in each iteration, the

algorithm converges to the maximum flow. As attachment 1 you can find illustration to

the steps of Ford-Fulkerson algorithm on network flow from Picture 3.

 The worst-case asymptotic time complexity of the Ford-Fulkerson algorithm is

not bounded. When using irrational edge capacities, the algorithm might never achieve

the exact solution. When using integer capacities, the run-time is bounded by O(m.ƒ)

where m means the number of edges and ƒ is the value of the maximum flow. The

modified version (Edmonds-Karp) of Ford-Fulkerson algorithm has asymptotic worst-

case time complexity O(m2.n).

3.7.3 Pre-flow push (Push re-label) algorithm

The pre-flow push algorithm uses a different approach than augmenting

algorithms as for example Ford-Fulkerson. Augmentation paradigm says: “start with

zero flow and augment, maintain a feasible flow and aim for optimality”. Pre-flow push

paradigm says: “start with super-optimality first, then aim for feasibility”

This means that we first try to push the flow through the network without

checking that for each vertex the conservation rule applies (conservation rule – for each

18

vertex other than source and sink, the inflow equals outflow). And in the second phase

we make the flow feasible.

In the pre-flow push algorithm we use two further definitions. We define: Excess

(pre-flow) of a vertex v as: e: V � R+
0 where e(v) = f+(v) - f--(v); Height of a vertex h:

V�N0

Initially we set the height of each vertex v as the shortest path distance (number

of edges on the path) between v and t (sink) and set the excess of source to infinity.

Then we iterate the following principle: Find a vertex with non-zero excess and try to

push the excess further. If we are not able to push the whole excess out of the vertex

(other then s), we increase its height. By "pushing" we mean moving the excess (or part

of it) from vertex u to its neighbours v such that h(u) = h(v) + 1 and there is an

unsaturated edge <u,v> or there is an edge <v,u> with a non-zero flow in the network.

The iterations converge because the biggest height a vertex can achieve is 2.n

because after that, the vertex is surely able to push the excess back to s, which can have

the maximum height of n-1. Thus the worst-case (and also average) time complexity is

O(n2). This is also the best-known theoretical result.

For a better illustration of the principles of the Pre-flow push algorithm see

attachment 2 that illustrates the steps of this algorithm on the graph from picture 3.

3.8 Minimum s-t cut

The goal of algorithms that solve the minimum s-t cut problem is to partition

vertices of a network into two sets A and B such that s∈A, t∈B and the sum of weights

of edges between A and B is minimized.

There are two ways how to compute it. The naive way is to try to partition V in

all possible ways and check the sum of edge weights between A and B. However, this

algorithm requires exponential time depending on the size of the graph.

A more useful way comes from the max-flow min-cut theorem proved by Ford

and Fulkerson in [1]. This theorem enables us to compute the maximum flow in the

network and find the minimum cut using the computed flow. The idea is very simple.

We start with a set A that contains only s and then run a breadth-first search and add all

vertices reachable from A through unsaturated edges or reversely oriented edges

containing a flow. When no vertices are reachable from A through such edges, we set B

= V \ A and the edges between A and B form the cut and the total weight of the cut is

equal to the value of the flow. For proof see [13].

19

As the minimum cut algorithms have application in various fields, multiple

studies have tried to improve the performance of these algorithms or proposed faster

approximate methods. In this paper we mostly use the method explained above and use

the Pre-flow push algorithm for the flow computation. For alternative approaches see

[13].

20

4. Graphs and graph theory in information retrieval

As already noted, graph theory has many applications in various fields. In the

following chapters we provide an overview of graph theory usage in the field of

information retrieval. We provide a detailed overview of graph-based ranking

algorithms, algorithms for finding communities and also provide a brief overview of

other interesting applications of graph theory in IR.

A significant part of the algorithms described bellow takes advantage of the

hyperlink-induced web-graph. In this graph, each web page is represented by a node and

each link is denoted by a directed edge. Even though the web has no obligatory

structure and every user can create and add pages with any content we show that the

web has a self-organizing structure. This structure is shown to contain valuable

information and can be utilized to help to solve various IR problems as e.g. relevancy

ranking or finding communities.

The most stress in this thesis is put on the ranking algorithms because these are

trying to improve the most critical property of the IR systems, the relevancy (see

chapter 2.1). We provide a very detailed description of the most important of these

rankings – the PageRank, and also present various perspectives to its optimisation and

improvements. We also provide a description of our implementation of the PageRank

algorithm designed and optimized for the Egothor 2.0 search engine developed by

RNDr. Leo Galambos from the Charles University [14].

In chapter 6 we describe several max-flow min-cut based approaches to finding

communities. These approaches provide an application of min-cut algorithms that is not

straightforward but is shown to be very effective.

In the last chapter we provide an overview of some other graph-based algorithms

that try to improve some other characteristics of the IR systems. Again some of these

algorithms take advantage of the web-graph, but we also present a few algorithms that

create and work with a totally different graph structure.

21

5. Ranking Algorithms

In this chapter we describe graph-based relevancy ranking algorithms, which can

be divided using several criteria. In this paper we describe three main categories. We

start with the query independent web-graph based ranking – PageRank, then we

describe some query dependent web-graph based ranking as e.g. HITS and in the last

subchapter we describe some graph-based approaches that do not use web-graph

structure at all.

The query independent rankings provide a general ranking of documents based

on some inter-document structure. One such ranking is citation ranking that assigns

each document a ranking directly proportional to the number of documents that cite this

document. In this paper we provide a detailed description of query independent web-

graph based page ranking algorithm - PageRank. We also describe our implementation

of PageRank algorithm designed and optimized for the current version of the Egothor

search engine.

In the following subchapter we describe some web-graph based query dependent

ranking algorithms, point out their major pros and cons and give comments to realistic

usage of these algorithms. As we show, the most critical property of the query

dependent ranking is the time consumption in the query time.

The last subchapter describes some other graph-based rankings. In this chapter

we show that the web-graph is not the only graph used by ranking algorithms.

5.1 Query independent ranking – PageRank

In the last several years, The World Wide Web (WWW) has witnessed an

exponential growth in size. The number of pages on the web has grown from a few

thousand in 1993 ([15]) to more than 25 billion ([16]) in 2006. Due to this boom, search

engines are becoming ever more important tools for locating relevant information. The

amount of available information on most topics has given rise to the importance of not

only finding documents relevant to a given query, but also sorting them in descending

order by estimated relevancy. The relevancy is influenced by many factors, some of

which have been mentioned earlier. In the WWW there is one more instrument that

helps us to better estimate the relevancy - the hyperlink structure.

PageRank, probably the most important example of graph theory usage in web

IR systems, uses the information of the hyperlink structure of the web to rank web

22

pages. Hyperlinks are a useful instrument for simplifying navigation on the web

however the important information comes from the reason why authors create these

links. From existence of a hyperlink between pages p and q we can assume that author

of p thinks q is related to p.

The PageRank of a page is an estimation of general relevancy of that page. It is

calculated solely from the link structure of the web and its main power comes from the

fact that it uses the content of other pages to rank the current page. It was developed at

Stanford University by Larry Page and Sergey Brin as part of a research project held

between 1995 and 1998 that led to a functional prototype of Google [17]. The name

PageRank is usually explained either as web page ranking or as Larry Page's ranking.

According to [18] the latter is the right one. Even though PageRank is only one of

several factors that determine Google's relevancy ranking of documents to a given

query, it is one of the main reasons why Google became so popular. While nowadays

Google claims considering more than one hundred factors [19] when calculating the

results of a query, PageRank still provides the basis for it.

In this chapter we provide an introduction to the PageRank computation and

usage and also describe several approaches to improving the run-time and the precision

of this ranking. In the subchapter 5.2, we also describe our implementation of the

PageRank algorithm designed for the Egothor search engine.

5.1.1 Intuitive Background

PageRank can be intuitively explained as a model of user behavior. Imagine that

there is a random surfer who selects a random page as the start of a web journey and

then follows the links on the current page with uniform probability, but can eventually

get bored, and instead of following a link, moves (jumps) to a random page and then

continues the journey. The PageRank of a page is then the probability that the random

surfer visits the page. This intuition is often thought of as a random walk and can be

modeled by a Markov chain [20]. PageRank is then the stationary distribution of the

Markov Chain.

Another intuitive justification comes from the citation ranking, but refines it.

The citation ranking sets the number of citations of a document as its rank. This

ranking, however, does not work well on the web, because it is vulnerable to

manipulation as it is relatively easy to create lots of pages with no informative value

pointing to a given page and hence improving its ranking. PageRank uses the idea of

distributing the ranking through links, i.e. a page can have a high PageRank, if there are

23

a lot of pages pointing to it, or if important pages point to it. The idea is intuitively clear

because pages that are linked by many other pages and pages that are linked from pages

like Yahoo's homepage might be worth looking at. It is improbable that a low quality

page would be linked from a high quality page (e.g. Yahoo's homepage), or that lots of

pages with at least moderate quality would link to it.

Picture 4 PageRank intuition

5.1.2 Existence of PageRank distribution

In order to provide an explanation to existence of the PageRank distribution, we

first need to define several terms. We use the notation P(p) for PageRank of page p; D

for damping factor – probability that the random surfer continues his journey by

clicking on a link on the current page – usually set around 0.85; n for number of pages

in our collection; and d(p), ind(p) and outd(p) for total degree, in-degree and out-degree

of page p respectively. With these definitions, we can write the formula for computing a

PageRank of a page p as:

(,)

(1) ()
() .

()b a E

D P b
P a D

n outd b∈

−= + �

This formula shows that PageRank of a given page is derived from PageRank of

pages that point to it. The problem is that such an equation is created for every page, so

to compute PageRank of all pages in a collection, a huge set of linear equations needs to

be solved.

However there is also another important point – the question of whether, there

even is a solution to all of these equations. To be able to give a positive answer to this

question, we need to handle a few special cases and use some knowledge from linear

algebra.

24

We define the adjacency matrix H= [Hi,j] for i,j = 1 to n as:

{,

1 if (,)()
0 otherwise

i j
j

i j

a a Eoutd aH
∈

=

Notice that H has some special properties. All entries in H are nonnegative and sum of

each column is one unless the page is a sink (page with no links on it). To improve this,

we set all values in the i-th column to 1/n if pi is a sink. Now sum of each column of H

is 1 and all values are nonnegative, i.e. H is stochastic.

In this matrix representation the PageRank of all pages can be represented as a

vector P where Pi = P (pi) i.e. Pi is the page rank of i-th page in the collection. Now we

can express the equation for computing PageRank as:

.P H P=

I.e. P is the eigenvector of matrix H with the eigenvalue 1 or P is the stationary vector

of H. The existence of such a vector implies from the stochastic property of H (for proof

see [21] or [22]).

5.1.3 Computation of PageRank

When we know that PageRank assignment exists we might want to know how to

compute it. The "naive" way is to create an adjacency matrix H and compute its

stationary vector using standard eigenvector computation techniques. However,

computation on a matrix having n = 25 billion (which was the estimated size of web in

2006 [16]) rows and columns is prohibitively memory expensive. To store such a matrix

we would need 2.5 Zettabytes (Zetta = 1021) when using 32-bit floating-point numbers

for storing the value of its elements. This is far more than our current resources allow

and given the fact that web grows much faster than the computational capacities, future

use is also improbable.

A good improvement of the memory effectiveness comes from the observation

that (according to [23]) the average number of links on a page is 10 (in our mff.cuni.cz

collection it is 22). This means that in average in each column all but 10 entries are

zero. This fact motivates us to use another graph representation – the adjacency list,

mentioned in chapter 3. The adjacency list can in this case be thought of as an array of

size n where the i-th record consists of an integer number m, meaning the number of

links on page i and a list of IDs of pages linked from page i. For sinks, we only store

m=0. Given the average number of links contained on a page is 10 the memory needed

for storing this structure for n = 25 billion is 2.05 Terabytes (we need to use the 64-bit

25

integer numbers for storing page IDs (the range of 32-bit unsigned integer is 0 to

approximately 4.3 billions) and we need to store a 16-bit unsigned "short" integer – the

link count, for each page). This is a fairly better result however it is still quite over

current (top computers) possibilities. It is, however, the most widely used representation

structure of the web graph. It is also important to note that the web-graph is not the only

structure we need to store.

Having the web graph represented by the adjacency list structure we can use

another approach to computing the PageRank distribution – the power method. The

general power method can be thought of as an iterative algorithm, where in each

iteration we use the results of the foregoing iteration to get a new result that is closer to

the definite solution. In our PageRank computation, we use the power method in the

following way. We start with a vector P0
 (initial PageRank) of size n where each

element is equal to 1/n. In the i-th iteration (for i = 1, 2...), we initialize elements in Pi to

(1-D)/n and then we distribute rank from all elements of Pi-1 in the following way. If

page j contains m links, Pi
 values of pages linked to by j-th page are increased by D.(Pi-

1)j/m. If page j is a sink, all elements of Pi
 are increased by D.(Pi-1)j/n. I.e. in each

iteration each page distributes D % of its PageRank uniformly to all its neighbours and

in case the page is a sink, to all pages from the collection.
1(1)
()

i
i k
j

k j

D P
P D

n outd k

−

→

−= + �

It is proved (for proof see [23]) that when D ∈ (0,1) Pi
 converges to the

stationary vector. The dumping factor D is usually set to 0.85 and empirical tests (see

[24]) showed that in average after 20 – 50 iterations the relative ordering of pages is

close to the converged state. The power method and adjacency list structure are also

used in our implementation of PageRank computation.

26

Algorithm 1 PageRank computation

 // Initialization
 for i = 1 to n do
 NewP[i] = 1/n

 // Main iteration
 while (|NewP - OldP| > �) do
 begin
 OldP = NewP
 // Initialization of the the rank vector
 for i = 1 to n do
 NewP[i] = (1-D)/n

 for i = 1 to n do
 for all j such that page j is linked from page i do
 NewP[j] += D.OldP[i]/outd(i)

 end while

5.1.4 PageRank I/O optimisation

One of the main advantages of PageRank is that it is a query independent

measure, so it can be precomputed and then used for optimizing the structure of the

inverted index file. It is believed that Google re-computes the PageRank once in every

3-4 weeks. These facts might imply that the PageRank calculation is not that time

critical. However the slowness of Google in adding new pages into his index is one of

the main drawbacks that Google is upbraid for. It is also one of the main reasons why a

lot of people find Live search (from Microsoft) [25] more useful when searching for

more fresh information. According to [26] the Google's PageRank computation takes 2-

3 days, which results in impossibility to rank the newest pages. This information gives

us a notion about how long might it take for a non optimized version of PageRank

algorithm run on the whole web to converge.

Some people argue that the PageRank distribution does not change too much in

time and so if we use the last computed PageRank as the initial vector in the new

PageRank computation we can expect that the number of iterations till getting to

converged state decreases considerably. However this is not exactly true. There are two

main reasons contradicting this idea. First one is that the number of newly added pages

is still increasing. The second argument is that according to [27] the average half-life of

pages on the web is 10 days (in 10 days half of the pages on the web are gone; i.e. their

URL's are no longer valid). This brings us to a conclusion that using the last computed

PageRank when creating the initial vector might decrease the number of iterations

needed, but only slightly.

27

There are scenarios where the time needed for PageRank computation plays a

major role because it is computed multiple times. Extensions of PageRank like, topic-

biased or personalized PageRank (both to be described later) are good examples of such

scenarios. Thus a highly optimized PageRank computation is needed in order to make it

possible to use these extensions on the web scale.

There are several approaches to PageRank optimisation. Some studies try to

minimize the number of iterations needed, some try to speed up the time needed in each

iteration, some examine the possibility to approximate PageRank using various

heuristics etc.

In this paper we survey some of these approaches and give some comments on

realistic usage of some recent algorithms.

5.1.4.1 File structure definition

For further use we describe the structures needed for the computation in more

details. We assume the web graph is stored in an input file with the following structure.

The first record in the file has the meaning of number of pages indexed through the

crawl process. Then in the rest of the file, there is a record for each crawled page having

the structure: ID of the crawled page; Number of links on this page; and the list of IDs

these links link to, sorted by ID. As already stated, the average number of links on a

page is a small constant, so the sorting of the ID's would not present a time critical

issue.

The result of the algorithms is written to a file that is sorted by the PageRank

values in descending order and has the form: ID and the PageRank of this page.

5.1.4.2 Memory non-critical scenario

In a lot of realistic scenarios web search engines work on just a fragment of the

web, e.g. pages in the domain cuni.cz or mff.cuni.cz. In such cases the whole adjacency

list and also the vectors for computing PageRank can be fit into main memory. In this

case the easiest way how to compute PageRank of these pages is to load the input file

into an adjacency list in the memory, create two arrays (vectors) of size n for rank

computation and use the power method for the computation. A good time saving

improvement can be achieved in treating sinks in a smart way. Instead of distributing a

portion of PageRank to each page every time we process a sink, we can store the portion

of PageRank by which this page (sink) contributes to the new rank of all pages to a

28

variable. At the end of the iteration we just add the sink contribution to new rank of all

pages.

In such scenarios no further optimisation is needed. The only I/O operations

performed are input file loading and saving the final PageRank file. The run time of our

implementation of the PageRank algorithm, run on a collection of about 1.4 million

pages crawled by the Egothor crawler, is approximately one minute.

5.1.4.3 Memory critical scenarios

In many common scenarios the size of the collection would, however, not allow

us to store the whole web graph and the PageRank vectors in the main memory.

However, if the graph is stored as proposed earlier, the only data we need to

store in the main memory (when using the above mentioned graph representation) to

ensure an acceptable speed of the computation is the currently computed PageRank

vector or at least a part of it. The reason for this is that in each step of the iteration any

element of the newly computed PageRank vector can be changed. To write this

information to disk every time would be prohibitively time expensive, because of the

disk seek time. We review the options of computation we have with decreasing ratio

between the size of main memory and the size of a given collection.

First we can imagine that we are able to store two PageRank vectors. One for the

current computation and the other one containing results from the previous iteration. In

this case the only change in the computation process is that instead of loading the input

file into the memory, we read the information directly from the disk in each iteration.

However if we store the graph in the above proposed way, we can read the whole file

sequentially. The rest of the algorithm stays the same.

In an even more memory critical scenario, we might not even have enough

memory for storing the two PageRank vectors. In this case we only keep the currently

computed vector in the main memory and in each iteration we read the vector from last

iteration and the graph from disk. Thus it would be beneficial to have the file containing

the graph sorted by ID, so that both files can be read sequentially. This idea is also used

in of the program versions implemented as a part of this thesis. Detailed description of

the implemented algorithm can be found in chapter 5.2.4.

29

5.1.4.4 Haveliwala's algorithm

There are scenarios, where the size the PageRank vector exceeds the size of the

main memory. A practical example of such a scenario is the PageRank computation for

the whole web. Even if we only assume that the size of the web is 25 billion pages we

would need more than 200 Gigabytes of main memory (when using a 64-bit floating

point number) to store the currently computed PageRank vector. In such cases we can

use an approach proposed by Haveliwala in [28]. The main idea of this approach is that

if we can not store the whole currently computed PageRank vector into the memory, we

only store a part of it that fits there leaving some space for other computations. We then

process the input file in a way that would enable us to only process pages from the

collection that contain links to pages in the currently stored part of the vector. To

achieve this, we would first estimate the size s that we would be able to fit in the main

memory and then we preprocess the input file in the following way. We create q = n/s

files. The i-th file contains information about all pages that have links (at least one) to

any page in the range i.s to (i+1).s (for illustration see Table 2).

Table 2 Example of link file partitioning in Haveliwala's algorithm

Having this structure of the input file we are able to compute the part of the

PageRank vector stored in the main memory without the need of many disk seek

operations. We then save this part of the vector for the use in the next iteration and free

the memory for the next part of the vector. Empirical tests showed that this algorithm

performs very well for moderate values of q. We present several improvements of the

algorithm that would enlarge the scope of its usage, but that can also be used in other

algorithms.

14, 249,29833

1, 2, 186, 313..144

4, 5, 6, 33, 98, 318,
355, 514..

142

Destination pages ID
(8 bytes each)

Out Degree
(2 bytes)

Source page
ID (8 bytes)

102, 109, 199, 212,
333, 568..

81

1, 2, 4, 66, 122, 146,
222, 223,387..

500

14, 249,29833

1, 2, 186, 313..144

4, 5, 6, 33, 98, 318,
355, 514..

142

Destination pages ID
(8 bytes each)

Out Degree
(2 bytes)

Source page
ID (8 bytes)

102, 109, 199, 212,
333, 568..

81

1, 2, 4, 66, 122, 146,
222, 223,387..

500

Original link file

Block of links: 0 -99

14133

4, 5, 6, 33, 985142

Destination
pages ID (8
bytes each)

Number of
links in block

(2 bytes)

Out
Degree

(2 bytes)

Source
page ID
(8 bytes)

1,2244

1,2,4, 664500

Block of links: 0 -99

14133

4, 5, 6, 33, 985142

Destination
pages ID (8
bytes each)

Number of
links in block

(2 bytes)

Out
Degree

(2 bytes)

Source
page ID
(8 bytes)

1,2244

1,2,4, 664500

186144

Block of links: 100-199

102,109,199381

122, 1462500

186144

Block of links: 100-199

102,109,199381

122, 1462500

249, 298133

Block of links: 200-299

212181

222,2232500

249, 298133

Block of links: 200-299

212181

222,2232500

Link file divided into blocks (q = 100)

30

5.1.4.5 Use of the web graph structure

First we can use the results of web graph structure studies as for example [29,

f30, f31]. These papers present a good overview of the web's organization. The study by

Broder et al. describes the web having the shape of something like a bow tie. That is,

about 28% of the pages form a strongly connected core (the center of the bow-tie).

About 22% of pages that can be reached from the core, but cannot reach it themselves,

form one of the tie's loops. The other loop consists of approximately 22% of the pages

that can reach the core, but cannot be reached from it. The remaining nodes (pages) can

neither be reached from the core nor reach it.

Picture 5 Bow tie structure of the web

Some papers (e.g. [32]) also present the idea of hyperlink locality. These studies

proved that if the ID file is sorted in a smart way then the most of the links on a page

link to pages with a close ID.

Results of these studies can be used to improve Haveliwala's algorithm by using

an intelligent crawler (e.g. [33]). Such crawlers can provide a structure that could be

processed to get an efficient block structure, i.e. majority of links on pages in a block

would link to pages in the same block. This would result in a very good improvement in

the run time of the algorithm, because it would minimize (or at least decrease) the

number of pages stored in each block of the input file.

31

5.1.4.6 Compression techniques

A further improvement of Haveliwala's algorithm (but also all the others) can be

achieved by using some kind of compression technique. A simple compression

technique that is also used in our implementation is the Pack7 number format. It tries to

avoid storing zero bytes in the memory by not using a uniform byte length for storing

numbers. I.e. in each byte, first seven bits contain the value information and the last bit

signalizes, if this is the end of the number, or if it continues in the next byte. This

technique is intended for use on integer numbers, but can easily be transformed for use

on the floating-point numbers, when we know an approximate range of these numbers.

More about the Pack7 compression technique can be found in chapter 5.2.

In this paper we do not concentrate too much on the compression techniques,

however for an illustration we present a concept of a compression technique that might

decrease the memory requirements for storing the PageRank vector by a factor of more

than 2.

Our compression technique is based on the following observations. As shown in

[34] the distribution of the logarithmically scaled PageRank follows a power law

distribution with exponent approximately 2.1. I.e. the portion nr of pages with rank r is

approximately c/(r.n)2.1 where c is a constant set so that the sum of nr for all r ∈ {0,..9}

is equal to 1. In this case the constant c is roughly equal to 1.6. This fact implies that

about 2/3 of pages have PageRank very close to minimum and that the highest rank of a

single page would mostly be close to 10-log(n)/2.

The second observation that lead to the concept of our compression technique

comes from the fact that some papers assume computing PageRank not in the scale

(0,1), but in the range (0, n). We assume that rounding (truncating) the floating-point

numbers for storing the PageRank values 4-th decimal places bellow the first non zero

number of the minimum rank would not have any major influence on neither the

number of iterations nor the final PageRank values.

If we summarize these facts we come to the conclusion that the range of

PageRank values we need to be able to store is approximately (10-4.0.15/n, 10-log(n)/2),

which is {0,..., 10log(n).5/2} in integer numbers. For n = 25 billion this is approximately

the range {0, .., 109} which is less than the range of a 32-bit unsigned integer which has

range {0,.. 4,294,967,295}.

32

It is now important to note that we actually know the minimum PageRank of all

pages. So instead of storing this number, we can only store the difference between the

PageRank of the current page and the minimum rank. This improvement causes that for

a lot of pages we would only store 0 as its page rank.

Realizing all these facts we can use the Pack7 format for storing the PageRank

value for all pages. Due to the power-law distribution of the PageRank values at least

2/3 of all pages would only need 1 byte for storing their rank and for more than half of

the rest of the pages 2 bytes are sufficient for storing the rank which results in

compression factor of more than 2 as presented earlier. It is also important to note that

the upper bound of the highest PageRank we need to store is not crucial, because it

would only be achieved by a few pages and so it would not change the final

compression factor considerably.

Even though this compression technique is only based on a few simple

observations, it can decrease the memory requirements for storing the PageRank vector

by more than half, which implies that better results should be achievable.

5.1.4.7 Improvements summary

To summarize this we can come to the following conclusion. If the size of the

web was currently 25 billion of pages and we used our simple compression technique

we would need approximately 50 Gigabyte of main memory for storing the PageRank

vector. This is achieved by using the observation about the range of PageRank values,

which enables us to use 32-bit unsigned integer numbers for storing the values and the

use of our compression technique.

This is already a size that might fit into the main memory of some top

computers. So we might not even need the Haveliwala's algorithm, but can use the one

of the algorithms mentioned earlier. However taking into account that it is highly

effective for moderate values of q this algorithm can be used to efficiently compute

PageRank for all pages on the web on computers with at least 20 GB of main memory.

However, if we take into account that most common main memory size of the present

computers is between 0.5 and 2 GB, further optimisation is deserved.

5.1.4.8 Split-Accumulate algorithm

Several other papers presented approaches that tried to minimize the number of

I/O operations needed to compute the PageRank distribution. One of the best

33

performing algorithms in this category is the Split-Accumulate algorithm presented by

Chen et al. in [15].

The main idea of this algorithm is derived from Haveliwala's algorithm, but uses

it reversely. This algorithm again splits the vector for PageRank computation into q

blocks Vi, such that each block fits into main memory leaving again some space for

further computations. These blocks however only exist in the main memory and are

written to disk only after the last iteration.

Further, this algorithm works with three sets of files Li, Pi, Oi each containing q

files. Li contains for each page all pages from the i-th block that contain a link to it and

also the number of such pages (see Table 3). Oi contains out-degree of each page from

the i-th block. Pi is defined as containing all packets of rank values with destination in Vi

in arbitrary order, i.e. Pi contains all rank values that influence PageRank of pages in the

i-the block. E.g. For the example from Table 3 P0 contains packets (0, (1-D)/8n+..), (1,

(1-D)/14n), etc. in the first iteration. The packet (0, (1-D)/8n +..) contains information,

that PageRank of page 0 should be increased by (1-D)/8n (initial rank divided by the

out-degree of page 1) + .. (initial PageRank divided by the out-degree of other pages in

this block that contain a link to page 0).

Table 3 Example of link file partitioning in the Split-Accumulate algorithm

The algorithm works in iterations where each iteration has q phases. In each

phase we first initialize all values in vector Vi in the memory to (1-D)/n. Then we run a

scan through the file Pi (that contains all packets with destination in Vi) and add rank

from each packet to the appropriate entry in Vi. After finishing the scan through Pi we

load the file Oi (out-degrees) and divide each rank value in Vi by its out-degree. Then

0, 2, 2023201

0, 1, 2, 3, 4..51200

0, 2, 4, 20..12100

3, 4, 21..23101

0, 1, 5, 6, 33, 114..142

Destination pages ID
(8 bytes each)

Out Degree
(2 bytes)

Source page
ID (8 bytes)

0, 9, 199, 212, 568..81

1, 2, 4, 66, 122, 146..500

0, 2, 2023201

0, 1, 2, 3, 4..51200

0, 2, 4, 20..12100

3, 4, 21..23101

0, 1, 5, 6, 33, 114..142

Destination pages ID
(8 bytes each)

Out Degree
(2 bytes)

Source page
ID (8 bytes)

0, 9, 199, 212, 568..81

1, 2, 4, 66, 122, 146..500

Original Link file

0, 2, 4, 2141

Block of links 0: Source 0 -99

0, 4, 8732

Destination pages
ID (8 bytes each)

In-Degree
(2 bytes)

Destination
page (8 bytes)

1,244

1,2,4, 66, 77, 9860

0, 2, 4, 2141

Block of links 0: Source 0 -99

0, 4, 8732

Destination pages
ID (8 bytes each)

In-Degree
(2 bytes)

Destination
page (8 bytes)

1,244

1,2,4, 66, 77, 9860

Block of links 1: Source 100 -199

10113

100, 102, 104..142

100, 101, 10334

100, 102, 120, 122..400

Block of links 1: Source 100 -199

10113

100, 102, 104..142

100, 101, 10334

100, 102, 120, 122..400

20013

Block of links 2: Source 200 -299

200, 20122

200, 223, 228..141

200, 209, 212..44

200, 201, 203..500

20013

Block of links 2: Source 200 -299

200, 20122

200, 223, 228..141

200, 209, 212..44

200, 201, 203..500

Link files - Li

34

we run a scan through Li and for each record in Li that contains some (at least one)

sources in Vi and a destination in Vj we write one packet with this destination node and

the total amount of rank to be transmitted to it from these sources and output it into file

P'j (that is used as Pj in the next iteration).

The idea of this algorithm is not as straight forward as the one of the algorithm

proposed by Haveliwala. Empirical tests showed that for moderate values of q (number

of blocks the PageRank vector has to be divided to, so that the blocks fit into the main

memory) the Split-Accumulate algorithm performs similar to Haveliwala's algorithm.

However with increasing values of q the time consumption of the Split-Accumulate

approach if significantly lower than the one of Hawelivala's approach.

If well implemented, this algorithm already enables us to compute PageRank on

the web-scale on common home PC's without need for any significant compression. The

paper [15] also shows how this algorithm can be slightly modified to efficiently

compute the Topic-Sensitive PageRank. We return to this application later.

In this chapter we presented algorithms that allow us to compute PageRank even

for massive graphs without a need of the best high-tech hardware. The computation

would however take quite a long time and the potential of usage on common computers

is still limited.

5.1.4.9 I/O efficient approaches summary

In the previous subchapters we showed that there are several ways how to speed

up the power-method computation of the PageRank distribution. The Split-Accumulate

algorithm is shown to be able to efficiently compute the ranking even on computers

with common memory size. However we also noted that the computation on the web-

scale would take a few days even on above average computers, which is still very

limiting. These approaches only attempted to speed up the computation using various

ways how to distribute the data in a way that would minimize the number of I/O

operations needed. In the next subchapter we describe some approaches that use

alternative ideas.

5.1.5 Other approaches to PageRank optimisation

As we showed in the previous chapter, even though the size of the web is huge,

it is still possible to compute PageRank of all pages on it. However, the computation

takes a really long time even when using a highly (I/O) optimized approach. Hence,

people examined other approaches how to speed it up. One approach that can easily

35

come to our minds is not to compute the PageRank as it is defined, but to try to

approximate it in a way that would enable a quicker computation. This might be a

reasonable approach because PageRank already is an approximation of user behavior,

so a further approximation might still have the required property of providing a general

ranking of web pages while requiring less computation time.

A naive way of utilizing this idea would be to try to use a bigger (than usual)

epsilon in the convergence check in the basic PageRank computation. However this

approach reduces the run time only slightly and the trade off between the lost precision

and the saved run time is not reasonable.

Several papers (e.g. [35]) presented algorithms that try to approximate PageRank

computation using the sites (for simplicity mostly modeled by hostnames) as nodes of

the web graph and then distribute the rank to pages in the site using only the intra-site

links. These approaches take into account that a lot of documents (e.g. PowerPoint

documents) consist of multiple web pages and that pages on one site are often topically

related. So they consider the site level to be the right level of granularity for the

relevancy analysis. Further on we use the terminology illustrated by Table 4.

URL Terminology

Term Example: en.wikipedia.org/wiki/

top level domain org

domain wikipedia.org

hostname en

host en.wikipedia.org

path /wiki/

web page en.wikipedia.org/wiki/

Table 4 URL Terminology

Another fact that speaks for using the site approximation is that the amount of

web sites (hosts) is considerably smaller than the amount of web pages. According to

[36] there were less than 100 million of registered hosts and about 25 billions of web

pages in October 2006. Another important fact is that according to [37] more than 75%

of all hyperlinks on the web are intra-host links. These facts imply that the PageRank

computation on the host graph should be substantially more time efficient. The

following two subchapters show that this assumption actually holds.

36

5.1.5.1 PageRank approximation via Graph Aggregation

An algorithm utilizing this idea was proposed by Broder et al. in [35]. The main

idea of this algorithm is to compute PageRank of all sites and then to distribute this rank

to pages in each site. In their approach they were able to achieve a (Spearman) rank-

order correlation of 0.95 in respect to PageRank while requiring less than half of the

running time of a highly optimized PageRank implementation.

To be able to explain the principles of this algorithm, we need the following

definitions. Let the n nodes be partitioned into m classes H1,..,Hm by their hostnames.

Let P = [pi,j] denote the stochastic matrix (of size n x n) defining the web graph on the

page level. Then we define an alternative random walk T derived from P, whose

stationary distribution can be computed more efficiently. In T the random walk consists

of two basic steps. First we move to some node y ∈ Hi with respect to the distribution

�i, (where �i only depends on the class of y - Hi) then we perform a step from y

according to P.

The algorithm then works as follows:

We define (compute) an m x m stochastic matrix R = [ri,j] (for calculating the

stationary distribution of T) as follows:

, ,()i j

i j

iH H q p
q H p H

r q pπ
∈ ∈

= � �

Then we calculate the stationary vector of R, i.e. we compute a vector A satisfying AT =

A.

We then compute the vector P' of size n where for each page p, P'(p) would be

computed as follows (h(p) denotes the class (host) to which page p belongs):

() ()'() . ()h p h pP p A pπ=

The stationary distribution of T is then defined as the vector B = P'T.

The main advantage of this approach is that we only run the iterative power

method on a graph that is substantially smaller than the web page collection. As stated

above, the average number of web pages on a host is approximately 250. Compared to

other algorithms for computing PageRank, this might be a source of substantial time

saving.

It is also important to note that it is very difficult to describe how the differences

between PageRank and this approximation would influence the overall search quality of

37

search engines using it. It might even turn out that this might be a more appropriate

model.

5.1.5.2 BlockRank algorithm

Golub et al. in [32] proposed an algorithm very similar to the one described

above. Actually they use an algorithm very similar to the one mentioned above, to get

an initial ranking for all pages and then try to run standard PageRank algorithm

expecting only a few iterations needed till getting to the converged state.

In this algorithm they use the "naive" host graph. This graph structure uses hosts

as nodes and there is an edge between two hosts i, j if and only if there exists a page on i

that contains a link to a page on j (the weighted host graph has the same structure, but

allows multiple (or weighted) edges between hosts based on the real number of links

between pages on these hosts). They also described a simple method how to create this

structure. They propose sorting the link file (containing the url index) lexicographically,

but with reversed order of URL components before the first slash (e.g. the sort key for

www.ms.mff.cuni.cz/~kopecky/ would be cz.cuni.mff.ms.www/~kopecky/). Then each

host is assigned an ID and the adjacency list structure is created.

In the proposed algorithm they use this structure as input for a standard

PageRank algorithm, which assigns a rank to each of the hosts. This rank is then

distributed to the pages in each host using a local PageRank algorithm (standard

PageRank algorithm that computes PageRank on the graph of this host and then weights

it by the rank of the host). This part of algorithm results in a vector very similar to the

one computed by the algorithm proposed by Broder et al. in [35]. However in this

algorithm this vector is used as the initial vector for the standard PageRank computation

on the page-induced graph.

According to time measures provided in their paper, the last step takes more than

70% of the time computation. This time can probably be improved by using a weighted

host graph, which is believed to produce more precise host ranking.

Another improvement of this algorithm can be achieved by performing the Local

PageRank algorithm during the crawl process as soon as the whole host has been

crawled. The precomputed Local PageRank would then just be weighted by the rank of

its host. Also it is important to note that the Local PageRank computation is highly

parallelizable because the block PageRank values are completely independent.

38

The proposed algorithm is (again) described to be approximately two times

faster than the standard PageRank algorithm. However it is only slightly better when

compared to PageRank algorithm run on a graph with sorted URL list. This could be

improved by Local PageRank computation parallelization and using the weighted host

graph in the host rank computation.

The main advantages of this algorithm are that by using the block structure and

the sorted link structure the number of I/O operations is decreased significantly. Also

the Local PageRank computation converges quickly because the number of pages in a

site is mostly a small number (they showed that approximately 75% of the local rank

computations converge in less than 10 iterations). All these pros apply to both

approaches (Golub et al. and Broder et al.). However this algorithm has one more

significant advantage. It enables very quick (approximate) rank re-computation after

node update. This can be achieved by storing the sum-rank (sum of rank of all pages on

a host) of all hosts and after the node update only compute the Local PageRank of that

host and weight it by the sum rank of this host. This approach might help to keep the

index of web search engines more up-to-date.

5.1.5.3 Other site-based algorithms

Recently several other papers proposed using the site (host) structure, although

we think that these brought only minor improvements or proposed a more appropriate

host rank calculation ([38]) that however requires much more time than the weighted

host graph computation and so it looses the required time saving property.

Though we think the host-based approach to PageRank computation has a lot of

advantages (e.g. time efficiency) and because of its simple idea we think it will very

probably become widely used. It is also probable that it is already utilized in various

search engines.

5.1.6 PageRank extensions

The major success of PageRank very much influenced the web search engines.

The idea of pre-computing some measures that would help better estimate the relevancy

to a given query is however much older. It is already the basis of indexation process.

The first indexes only stored key terms contained in the documents. Nowadays

however, they also try to store the importance of the term to identification of the

document. So the evolution of indexes tried to improve the information richness of the

stored data.

39

The same idea applied to PageRank resulted in two PageRank extensions. One

combines the topical distribution and the link structure and other one tries to personalize

the PageRank distribution.

5.1.6.1 Topic-sensitive PageRank

The topic-sensitive PageRank (proposed by Haveliwala in [39].) is a very simple

extension of the standard PageRank algorithm. It performs a separate PageRank

calculation, for each topic. In his approach Haveliwala chose the top class topics from

the ODP (Open Directory Project [40]) for the topic biasing.

The topic-sensitive PageRank for topic j and page i (TSPRj(i)) is then defined as

the standard PageRank random surfer model except that when the random surfer gets

bored instead of jumping to a random page, he randomly jumps to one of the tj (number

of pages within the j-th topic) pages within j. So the TSPR is defined as follows:

{
:

(1) / | |()
() .

() 0
j jj

j
jk k i

D t if i tTSPR k
TSPR i D

O k if i t→

− ∈= +
∉�

To rank the results for a particular query q we compute C(q,j), the relevancy of

the query q to topic j. Then for page i the query-sensitive importance ranking is

() (). (,)q j
j

S i TSPR i C q j=�

The algorithm based on this approach first computes PageRank for each topic

and then provides a query-time efficient document ranking. Its main advantage is its

simplicity and parallelization (PageRank for each topic can be computed separately).

The topic-biasing is however relatively weak and the PageRank for each topic is in fact

a basic PageRank just partly skewed towards pages contained in the page list for the

current topic in a human processed directory.

5.1.6.2 Topical PageRank

A much more complex approach to topic-biased PageRank was proposed by

Davison et al. in [41]. They proposed a ranking that can also be used in other link based

rankings such as HITS (described in chapter 5).

This approach tries to improve the ranking by incorporating the page content

into the ranking process. As the PageRank already is a very memory critical application

we need to use a memory efficient abstraction of the page content. For this purpose a set

of topics T is chosen (usually top-level topics of a directory like ODP [40] or Yahoo

40

directory [42]). A measure C(pi) meaning the relevancy of page p to topic i (in

percentage) is then stored for each document and each topic. The measure C(pi) has the

property that the sum through all topics is equal to one. It can be computed by textual

classifiers such as the one proposed in [43]

In this approach the topical random surfer model is used. This model is very

similar to the standard random surfer except that the topic sensitivity is added. In this

algorithm we assume that if the surfer is interested in topic k and is on page p then in the

next move he might do one of the following steps. He might either follow an outgoing

link on the current page with probability D or teleport to a random page with probability

(1-D). The only difference (comparing to classical PageRank) is that when following a

link, the surfer is with probability A likely to stay on the same topic (action - follow-stay

FS), however with a probability (1-A) he may jump to any topic i in the target page

(action - follow-jump Fj). Though, the topic bias is only present when the random surfer

follows a link. When he is taking the teleport (jump-jump Jj) action he is always

considered to take a random topic. The constant D is usually set the same way as in

standard PageRank algorithms, i.e. D = 0.85. The probabilities of taking certain action

when browsing page v while interested in topic k can be described as:

1
(| ,)

()
1

(| ,) ()
()

1
(| ,) . ()

i i S

i k iJ

i i iJ

P u v F
outd v

P u v F C v
outd v

P u v J C u
n

=

=

=

The probability to arrive at topic i in target page u by the defined actions is:

|

|

|

() .
() .(1)
() (1)

S k

kJ

kJ

P F v D A

P F v D A
P J v D

=
= −
= −

41

The probability that the surfer is on page u for topic i can in this model be

computed as:

:

:

:

:

() ((| ,) (|) ())

((| ,) (|) ())

((| ,) (|) ())

1
. ()

()
1

(1) () ()
()

(1)
() ()

() (

i i i i iS S
v v u

i k k kJ J
v v u k T

i k k kJ J
v G k T

i
v v u

i k
v v u k T

i k
v G k T

i

R u P u v F P F v R v

P u v F P F v R v

P u v J P J v R v

D A R v
outd v

D A C v R v
O v

D
C u R v

n
AR v

D

→

→ ∈

∈ ∈

→

→ ∈

∈ ∈

= +

+

= +

− +

−

+=

�

� �

��

�

� �

��

:

1) () () (1)
()

()
i

i
v v u

A C v R v D
C u

outd v n→

− −+�

These equations look very scary on the first sight. However, it is not difficult to

understand them with a few comments. The part between the first two equal signs can

be explained as follows: Each line contains a rank contribution of each action multiplied

by the probability of taking this action. So for example the first line (after the first

equals sign) indicates the sum of rank contribution of action FS to rank of page u to

topic i, i.e. it is the sum (through all vertices v containing link to u) of the probability of

moving from v to u when taking the action FS multiplied by the probability of choosing

action FS (i.e. probability that the random surfer follows the link between v and u while

keeping the same topic interest) multiplied by the rank of page v on topic i. The second

and third lines describe similar probabilities for the other two actions.

In the second part we only substitute the probabilities with actual constants using

the equations above. The last part (after the last equals sign) only substitutes the

following two sums by their equivalents and groups sums with identical ranges.

() ()

() 1

i
i T

v G

R v R v

R v
∈

∈

=

=

�

�

Such an equation is created for each page and each topic. However the definition

allows us to compute all of the ranks (for all topics) simultaneously. To compute the

solution of such a set of equations we can again use the power-method described earlier.

All the conditions essential for the distribution convergence (see chapter 4.2) hold if

A∈(0,1) so the power method usage is feasible.

42

The best results of this algorithm were achieved by not setting A constant, but

deriving it from the relevance of the current page to the current topic (Such use of A still

satisfies the power method convergence conditions.). This improvement does not

require any further computation, because we have to compute relevance of all pages to

all topics before the start of this algorithm. However, it turned out to deliver a good

improvement in precision. The intuition behind this idea is that when a topic-biased

browser gets to page p when interested in topic i and the relevance of a page to the topic

is low, he might be more likely reset his current topical interest.

After the computation converges, each component R(ui) of the vector Ru

represents the ranking of page u to topic i. R(u) is the overall PageRank of the given

page and it is identical to rank produced by standard PageRank algorithms. I.e. the

topical PageRank provides us with both, the PageRank for each topic as well as the

global PageRank for each page.

This algorithm provides a very complex approach to integrating topics into the

PageRank computation. However, the possibility of using it on the web-scale is a big

question. The main drawbacks of this approach are its very high memory and

computational requirements. In the standard approaches we only work with the

currently computed PageRank vector (or its part) stored in the main memory and with

the adjacency list and the last computed PageRank vector stored on the disk and we

already need to use sophisticated algorithms to be able to calculate the PageRank on the

web-scale in a reasonable time.

However, in order to compute the Topical PageRank, the stored structures have

to be enlarged. The main memory requirements are more than |T| times higher because

of the need to store |T| distinct PageRank values and the need to store the content vector

C for each processed page. The structures stored on the hard disk require more space

because of the need to store the topical rank vector (instead of the simple PageRank

vector) and the need to store the content vectors C of all pages. Hence, each

computational step is more complex compared to standard PageRank.

These facts imply that a highly sophisticated algorithm would need to be used,

when computing the Topical-PageRank on the web-scale. The best (time) performing

algorithms are considered those that utilize the host graph structure. The idea of

approximating multiple pages by hosts might also work for the Topical-PageRank. It is

very common that pages on a single host are highly topically related which implies that

the topical relevancy generalized to the site (host) level might provide a good

43

approximation. However, the topical relevancy generalization would have to be done

properly otherwise the following bad case could happen.

Imagine a host containing a lot of pages highly related to topic i also contains a

few related to topic j where the latter pages are highly relevant (highly rated) to this

topic. So it might happen that the topic relevancy vector of the site would only contain a

very little or no portion of relevancy to the j-th topic. This might result in requiring a lot

of iterations to get to the converged state after using the precomputed Topical-

PageRank as the initial vector. However this might not be a common case and given the

fact that amount of host is substantially smaller than the amount of web pages, we might

be able to use a very precise topic relevancy approximation at the site level, which

significantly decreases the risk of such cases.

As this approach is relatively fresh (publicized in August 2006) we might expect

various studies trying both to improve the run-time and the precision of this algorithm.

We think that this is a very perspective approach and it would be very interesting to

follow its evolution.

5.1.6.3 Personalized PageRank

In this subchapter we just provide a very brief introduction to the principles and

perspectives of Personalized PageRank.

The main idea of this PageRank extension is very similar to that used in topic

sensitive approaches. The personalization can again take place in various parts of the

computation. A simple approach might consider that the user has a certain set of

favorite pages F. The random surfer then prefers these pages when doing the jump

(teleport) action. Another approach might use the idea that the user has certain preferred

topics and when the random surfer chooses a link to follow, links leading to pages

related to topics of his interest are favored.

Such approaches might be very useful. It might not be reasonable to compute

personalized PageRank for each user, however it might make sense to create user

categories and after gathering some information about the user, to try to assign him to

one of these categories. The current search engines (e.g. Google) already try to gather a

lot of information about its users. They have access to details about queries submitted

by certain user and they can often incorporate it with a few important profile details got

from providing the user with a free-mail service and from the time zone and regional

settings of users browser etc.

44

This information may be extensive enough to enable us to well categorize the

users. It is believed that Google has been gathering such data for several years. It is

however questionable if this way of data gathering is ethical and how it can be utilized.

A utilization that might be convenient for the user is the personalization of query

results. However it is also believed that Google uses this information (mainly) for

improving the "accuracy" of its advertisements, which might not be in accordance with

user's desire. Multiple discussion about this topic are held on the Internet (see e.g. [44])

5.2 Our implementation

As part of this thesis, we have also implemented two versions of algorithm

computing the PageRank distribution in C++. The M (as memory non-critical) version is

derived from the concept presented in chapter 5.1.4.2 and the D (memory critical –

using disk) version implements the concept from chapter 5.1.4.3. Both versions are

multiplatform and were tested on Windows and Gentoo (UNIX).

5.2.1 File and Pack7 formats

Both these programs work with binary input files where all page ID's are stored

in the Pack7 format. This format uses variable byte length for storing integer numbers

thus provides a simple compression. In the Pack7 format in each byte the lowest seven

bits contain the information about the number and the highest bit signalizes if the

information continues in the next byte. In Table 5 we can see the representation of

number 517 first in normal format and then in the Pack7 format. If the number were

represented as a 16-bit integer, using the Pack7 format would not bring us any benefit.

However, is the number is stored as 32-bit or 64-bit integer the Pack7 format we would

still need only 2 bytes.

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1

Table 5 Normal and Pack7 representation of number 517

This format is very suitable for the PageRank computation where ID's of pages

have a wide range and so have to be saved in at least 32-bit integer numbers.

Nevertheless, if the indexing is done properly then the most frequently used pages (i.e.

pages with the highest in-degrees) will have the lowest ID's and so the Pack7 format

45

would provide a comprehensive compression ratio with only a slight processing

overhead (see Table 6).

Both these programs use two input files and write the computed PageRank

distribution into an output file. All of the files use 64b integer numbers in the Pack7

format.

 The input files contain information about the link structure of the pages in the

collection and about redirections between pages in this collection. The link file has the

following form:

source out-links dest[1] ... dest[out-links]

source: 64b ID of the source page

out-links: number of links on the source page

dest[]: array of 64b ID's of target pages

and the redirect file has the form:

source destination

source: 64b ID of page from which we are redirected to page dst

destination: 64b ID of page to which we are redirected from page src

The D versions executed without the –p parameter produces the file containing

the computed PageRank in the following format:

ID rank

ID: 64b ID of a page

rank: 64b double precision floating point number representing rank of the page

All other versions generate the final rank in a text format to allow easier reading.

5.2.2 Program principles

Both program versions work on the same principles. We first describe the

common principles and then explain the differences and improvements made in both

versions.

Both programs first load the link graph into a dynamically allocated structure

where for each page the number of its neighbours and ID's of its neighbours are stored.

Then the redirects file is loaded to a structure, where for each page we store the ID of

the page where we are redirected to, or zero if no redirection is done. This structure is

then used to modify the link structure. All pages that contain a redirection are replaced

46

by the pages where the redirection links. The link structure is then processed further. All

links to not-crawled pages (pages with no record in the link file), duplicate links and

links to zero are erased and the new link count is calculated. This structure is then stored

for the rank computation.

The rank is computed using the power-method algorithm described in chapter

5.1.3. When checking the rank change we compute the change of rank of each page in

percentage and then compare the maximum change with �, which we set to 0.1, i.e. the

computation ends as soon as no rank of a page changed by more than a 0.1 percent in

the current iteration. The pages are then sorted in descending order by their rank and are

written to the output file in the form mentioned above.

5.2.3 M version

The M version program was created only for testing and comparison purposes. It

contains not only the procedures for computing PageRank distribution, but has also

other functionalities as rewriting the graph file in Pack7 format into a text format,

creating sub-graphs of the input graph etc. These functionalities are, however, present

only for further research and are not discussed further in this paper.

To compute the PageRank distribution the program has to be run with the

following parameters: -e "link file" –r "redirect file" "output file". As already mentioned

this program is based on the non-memory critical scenario, so all structures needed for

the computation are kept in memory. I.e. for each page we keep not only information

about the link graph but also the values of new and old PageRank in the memory. The

memory requirements are discussed in the chapter 5.2.6.

In the computation we used one optimisation that was based on the fact that after

preprocessing the graph, we erased almost half of the indexed pages. So for all pages

that were not crawled, instead of saving the number of their neighbours, we save the

number of not crawled pages that directly follow this page in the ID list. This enables us

to jump over these blocks during the computation.

5.2.4 D versions

The D64p7 version is the version intended for use in the Egothor search engine.

This version contains several differences comparing to the M version. It is intended to

be used on larger subsets of the web and is implemented in such a way that should allow

computation on the web-scale. In the tests bellow we present several variations of D

version – D64, D64p7, D32 and D32p7. The numbers 32 and 64 denote how many bites

47

are used for storing the page ID's. The only difference between the p7 and the

"standard" version is that after preprocessing, the p7 version saves the graph using the

Pack7 format while the "standard" version stores in a standard binary format The run-

times of all these versions are very similar and the program is written in a way that

requires very few modifications for switching between the versions.

Because of the intention to use this program for the Egothor search engine, the

program reads directly gzipped input files using popen procedure if compiled in

UNIX. As this is not possible in Windows, the Windows compilation works directly

with unpacked files. The time consumption of the unzipping operation is discussed in

chapter 5.2.5.

The graph loading part is then the same as in the M version. Because of the link

file format we need to be able to randomly access any part of the graph during the

loading and also during preprocessing part, so we load the whole graph into the memory

and if it does not fit there the system will create a swap file for it. After the

preprocessing we will have the file in a form that would enable us to process it

sequentially. So we store it to disk. However, to enable caching of the file on systems

with sufficient memory size, we used "ST" parameters in the fopen procedure that

ensure optimization for sequential caching and not flushing the file to disk if not

necessary.

In the PageRank distribution computation part we create a file for storing the old

rank values. To save some I/O operations this file only contains the information about

the rank of the crawled pages. In each iteration we then read one record from the link

file and the rank value of this page from rank file and distribute this rank to pages linked

from this page. The newly computed rank values are stored in the main memory. Again

this is necessary because of the need for random access. The convergence test is the

same as in the M version. However, to be able to compare the old and new rank we need

to perform additional scan through the rank file.

After the computation converges, we create and array of size equal to the

number of crawled pages, where each record contains the ID of a crawled page and its

computed rank. This array is then sorted using the quick-sort [45] procedure. The

resulting structure is than written to disk in the above-mentioned form.

48

5.2.5 Time consumption

All program versions were tested on three computers and two different systems

1. Intel Pentium M 1.6 GHz, with 512 MB RAM, 60 GB 5400 rpm disk with 8 MB

cache running Windows XP Professional, 2. AMD Athlon 2500+, 512 MB RAM, 120

GB 7200 rpm disk with 8 MB cache, running Gentoo with kernel version 2.6.16. and 3.

64-bit AMD Athlon 3000+, 1 GB RAM, 160 GB 7200 rpm disk with 16 MB cache,

running both Windows XP and Gentoo with kernel version 2.6.19 compiled in 64-bit

mode. The processors were running on 1.28 GHz, 1.84 GHz and 1980 GHz

respectively. All computers had more than 200 MB free main memory for the

computation.

The tests were done on an “mff.cuni.cz” test collection. The crawl of this

collection was done in April 2006 and was focused on pages containing the string

"mff.cuni.cz" in their URL. The index file of this collection contains 1 415 790 pages,

out of which, however, only 779 780 pages have a record in the link file, i.e. were

crawled. In the link file the average number of links of the crawled pages is

approximately 26. This number incorporates also links to not crawled pages, duplicate

links, zero links etc. After processing the link structure using the redirect file and

erasing of worthless links the average number of links of a crawled pages decreases to

17.2.

To test the run times and memory consumption of the program procedures, the

M version automatically prints out control texts. To display similar texts in the D

versions it has to be run with parameter –p.

49

 Time comparison of different versions of programs for computing PageRank
 (in seconds)

Computer Version Graph
Loading

Redirect
Processing

Graph
Processing

Graph
Saving

Computing
PageRank

Sorting and
Saving rank Total

M 13 <1 4 X 9 4 30

D32 13 <1 4 16 183 5 222

D32p7 13 <1 3 10 153 5 188

D64 14 <1 4 17 192 7 235

1 - Win

D64p7 14 <1 5 10 163 8 201

M 2 <1 3 X 7 2 14

D32 2 <1 4 1 28 2 38

D32p7 2 <1 4 4 28 2 41

D64 3 <1 5 2 28 16 55

2 - UNIX

D64p7 3 <1 5 4 28 16 57

D32 10 <1 3 4 46 3 67

D32p7 10 <1 3 9 115 3 140

D64 10 <1 3 4 52 4 74

3 – Win

D64p7 10 <1 3 9 120 4 148

D32 2 <1 2 2 17 1 24

D32p7 2 <1 2 2 18 1 25

D64 2 <1 2 2 17 1 24

3 – UNIX
64 bit

D64p7 2 <1 2 2 17 1 24

Table 6 Time comparison of procedures of different program versions

In this table we can notice that if the M version is run on the first computer than

more time is spent loading the graph than computing the PageRank although the

PageRank computation requires 17 iterations. This confirms the fact stated in chapter

3.4 that the most time expensive operations are the I/O operations. It also shows that

when we have enough memory, the PageRank computation can be done in very

reasonable time. It is important to note that the D versions executed on UNIX directly

read the gzipped input files, which, however does not have any negative effect on the

run time. The time spent unpacking the compressed file is balanced by reading less data

from disk

50

From Table 6 we can also notice several other interesting facts. First, the use of

the Pack7 format for storing the graph file presents an advantage only on computers

with slower disks (in terms of rotations per minute) running Windows. If the program is

run on UNIX the compression of the numbers brings no advantage because the files are

not directly written to disk, but thanks to caching are only stored to the main memory. It

might, however, be beneficial if the computation is run on larger datasets where the full

caching would not be possible.

Other important fact that can be noticed is that the UNIX caching is much more

effective than caching in Windows. In fact we observed that Windows does not do any

caching at all even when there is enough memory for it. This results in much worse run

times of the D versions when run in Windows.

Another important observation is that using the 64 bit instead of 32 bit numbers

for storing the IDs does not result in any overhead when the program is run in the 64 bit

system. In fact the D64 version is even slightly quicker than D32.

5.2.6 Memory requirements

We have also measured the amount of dynamically allocated memory used by

different versions of the program. The following table provides the results.

���������	
���
��	�������������
��	��������	
����
��	
�����������
����������
�	��

������	����	������

������� ��	�
���

	����
����
���

���
	����
�	�����
���

	����
�	�����
���

	����
���
���

������
���
���������

��	�
�������
���
���	����

����

�� ������ � !�""�� � #� #� ���! �$�%� �&��#�"�

'�&� �(��! � !""�� � #� ����&"� ���! �$�%� ��� &���&�)
��

'"(� ��!�(��� ����&"� �"� #� ����&"� �&�(�"�$�%� � "� #��

'�&� �#"��� � !�""�� � #� ����&"� ���! �$�%� ��&�"#��
"(�)
��

'"(� � �&��� ����&"� �"� #� ����&"� �&�(�"�$�%� ����"#��

Table 7 Memory consuption comparison

This table, however, requires a few comments. In the M version the graph

loading consumes more memory because we already allocate the structure for the

PageRank computation that is we allocate two floating-point numbers for the PageRank

computation for each page. In this version this memory is kept throughout the whole

computation process. In contrast, the D versions only allocate memory for the adjacency

list structure (see chapter 3.2), which is then preprocessed and stored to disk. For the

rank computation and array for computing new ranks is allocated and the link structure

and old ranks are read from disk. This means that if the link graph was preprocessed

before the rank computation, the total memory requirements of the D versions would in

51

this case be 21.6 MB for the D32 and 23.8 MB for the D64 versions (we assume that the

memory for allocated for the PageRank computation is deallocated before running the

quick sort procedure and that q, the memory needed in the quick sort procedure, is less

than the memory needed for the rank computation).

In order to give some more detailed comments to figures in Table 7 we have to

provide a few more details about the exact way of memory allocation and about the data

types used.

In the graph-loading phase, we start with an array of initial size, in all programs

set to hundred thousand, and load records about the graph from the input file. If we load

an ID of a page that is higher than the current size of the array, we double the size of the

array using the realloc function. So in our case the final array has size 1.6 million.

The structure for storing the link structure in the M version contains a 32-bit

integer for storing the number of links on the current page, a 32-bit pointer to array of

ID's of pages linked from this page and also contains two 64-bit double precision

floating point numbers for storing rank. So each page needs at least 24 bytes of

memory. Given the fact that we allocated an array of size 1.6 million for this structure

gives us 38.4 MB memory. As already stated the average number of links on a crawled

page in the input file is 26 and the number of crawled pages is 779 780, then when using

32-bit integer number for storing the IDs of pages in the neighbour list, we need

approximately 81 MB of memory. When we sum these two numbers we get 119.4 MB,

which is approximately the number present in Table 7.

On the other hand, the D versions do not allocate any memory for the numbers

for computing PageRank in the load phase. So each page requires only 8 bytes of

memory - 4 bytes for link count and 4 bytes for pointer to the neighbour list. So the size

required for storing the array of pages is 8 times 1.6 million, which is 12.8 MB. For the

D32 version the memory requirements for the link structure stay the same so the total is

93.8 MB, which is again very close to the figure, presented in Table 7. For the D64

version, the memory requirements for storing the neighbour lists are doubled. So the

total consumed memory size is 174.2.

In the redirect-processing phase we need to create an array of size of the current

collection containing page ID's. So the M and D32 version need 1 415 790 times 4 bytes

which is 5 663 KB and the D64 requires double this size, which is 11 326 KB. This

memory is, however, freed as soon as the redirects are processed.

52

The D versions then further require an array of double precision floating-point

numbers of size equal to the size of the collection for the rank computation which is

again 11 326 KB. The M version does not require any memory for the rank

computation. For the sorting purposes we allocate a structure of size equal to the

number of crawled pages, where we store the ID and the rank of each crawled page.

This array is then used for sorting. The M and D32 versions require 9 358 KB and the

D64 version requires 1.5 times as much, which is 12 476 KB for the array allocation.

Further memory is also required for the quick sort procedure.

In the 64-bit system the additional memory is consumed by the use of 64 bit

pointers.

5.2.7 Results of the PageRank computation

In this subchapter we provide a few comments to the PageRank distribution

produced by our program.

Surprisingly, the page with the highest rank is not the root page – mff.cuni.cz,

but the personal homepage of RNDr. Libor Forst (www.ms.mff.cuni.cz/~forst)

containing only a few links and personal photos. The high rank is mainly caused by the

fact that our collection contains multiple faculty dictionary pages which all contain a

copyright logo with the link to this page. Also, the Google Toolbar PageRank [46] of

this page is 6/10, which is still a very high ranking that confirms our results. This web

page is a very good example that shows that the PageRank is completely independent of

the page content.

The second best page in our ranking competition was the www.mff.cuni.cz page

which has the Google Toolbar Rank 8/10 and the third highest ranked page was the

homepage of the faculty magazine called M&M – mam.mff.cuni.cz with Google

Toolbar Rank 5/10. It is important to note that the Google Toolbar Rank considers the

links from the whole web, while our ranking only takes into account links within the

mff.cuni.cz site.

The highest achieved rank was approximately 0.005 which confirms our

assumptions from chapter 5.1.4.6. We have also tested the power-law distribution of the

logarithmically scaled PageRank values and were able to observe that the collection

roughly follows the power-law. We assume that the small deviations are mainly caused

by the low size of our collection.

53

Distribution of PageRank values

�������*�� #� �� &� �� (� !� "� �� � �� �#�

+	,��-������� !! � ��� � ��" � &���(&� ��#!�� &��(!� ��#�"� �&�� �"� &"� �� ��

Table 8 PageRank distribution

5.2.8 Our implementation – summary

In this chapter we have presented our implementation of program for computing

the PageRank distribution and provided figures describing its run time and memory

requirements. We have also pointed out some issues connected with the PageRank

computation.

However, we believe that the D64p7 program version is designed in such a way

that would also enable its use on the web-scale. In such a case a computer with a huge

main memory and three fast disks and a good preprocessing would be needed. The disks

would be used for following purposes: swapping the main memory content; reading

graph structure; reading and writing the PageRank values. The preprocessing would

ensure that the main memory would be used "almost" sequentially so the total run-time

of the program might be reasonable.

For further optimisation it might be interesting to test computing the PageRank

in scale (0, .., n) and use Pack7 format for storing the values to disk as proposed in

chapter 5.1.4.6.

For further research, the M version program might be found useful as it contains

a lot of procedures for processing the input files. The D version contains detailed

comments in the code and so can be used as a framework for different rank

computations as for example computing the rank using the site approximation as

proposed in chapter 5.1.5.2.

54

5.3 Query dependent web-graph based rankings

In chapter 5.1 we have described PageRank, in our opinion the most important

utilization of graph theory in information retrieval. Another well-known approach

utilizing the web-graph structure to provide web page relevancy estimation is the HITS

algorithm proposed by Kleinberg in [47]. In this chapter we describe the idea of HITS

and also a simple way how to compute it. However, we do not describe the algorithm in

detail nor provide overview of possible optimisation, because as we explain in the

following subchapter, although the algorithm is very well known, it is not widely used.

We also present a few alternative approaches that utilize the web-graph structure

to provide a relevancy ranking. One of the presented approaches also analyses the use of

the combination of the use of user-supplied feedback with the distance of the pages in

the web-graph to provide a customized ranking.

5.3.1 HITS

At around the same time as Brin and Page presented PageRank, Jon Kleinberg

proposed an alternative link-based ranking scheme called Hyperlink Induced Topic

Search (HITS) [47]. The main difference between these two schemes is the different

query dependency. While PageRank provides a query independent ranking, the HITS

algorithm incorporates the query information into the link-based ranking.

The basic idea is to build a query-specific (neighbourhood) graph and perform

the link analysis on this graph. In the ideal case, this graph would only contain pages

relevant to the query and the link analysis helps us to find the most informative ones.

In his approach Kleinberg used neighbourhood graph as proposed by Carrere

and Kazman in [48]. This graph is constructed in the following way. We create a start

set of n (e.g. 200) vertices where the vertices represent the first n pages retrieved by a

search engine when searching for results of query q. The start set is then augmented by

its neighbourhood, which is the set of pages that either contain a link to a page in the

start set or are linked by a page from this set. Since the number of pages linking to a

page (like google.com) can be huge, the number of pages added to the neighbourhood

graph because of linking to a page in the start set is limited by a constant i (e.g. 50).

Similarly to the case of web-graph used in PageRank, each page in these sets is modeled

by a node in the graph. However there is link from page a to page b if and only if a

contains link to b and a and b are pages on different sites (hosts). The second condition

tries to prevent the possibility of manipulation.

55

In his approach Kleinberg tries to determine pages with good content on the

topic of the query called authorities and directory-like pages with many hyperlinks to

pages on the topic called hubs. The algorithm then assumes that a page that links to

many other pages is a good hub and a page that is linked by many pages is a good

authority.

These two scores can be calculated by the following recursive algorithm. We

first create the query-specific neighbourhood graph N and initialize hub scores of all

pages to 1.Then till H and A have not converged, calculate the new authority and

hubness score for all p∈N.

:

:

() ()

() ()
q q p

q p q

A p H q

H p A q

→

→

=

=

�

�

Again elementary linear algebra ensures that both these vectors converge even

though it does not provide an upper bound to the number of iterations. Empirically the

vectors converge quickly again.

Several improvements of HITS were proposed recently. The CLEVER HITS

[49] expands the start set up to two links away and weights links by the similarity

between the query and the text surrounding the hyperlink (anchor text).

Bharat and Henzinger [50] proposed several improvements to HITS. The most

important is derived from Topical PageRank. In order to reduce topic drift they

calculate similarity of each document to the query and use this measure in the mutual

reinforcement process so that the pages most relevant to the query have the most

influence on the calculation.

Even though these changes improved the HITS algorithm, it is still not that

widely used. As already premised, according to Monika Henzinger, the director of

research in Google Inc, the HITS algorithm is currently not used in any commercial

search product [51]. The main reasons for this are that the HITS algorithm is query-

sensitive and the creation of the query-dependent graph has to be done for every single

query. This requires significant computational capacities when taking into account that

the major search engines process thousands of queries every second [26]. Important

point also is that the results of this ranking algorithm are not much better comparing to

PageRank when the query is related to a specific topic. In such cases the topic drift may

still occur.

56

5.3.2 Flow based Rank

Recently Chitrapura and Kashyap [52] proposed a query dependent flow-based

ranking. In their approach they use the network flows in the web-graph as a measure of

page relevance. Even though their intuition is on the first glance totally different from

PageRank, their work is closely related to topically biased PageRank algorithms (see

chapter 5.1.6). In their model, the volume of flow indicates the relevancy of the pages to

associated labels (topics) and can be used to compute both the query dependent and

independent rankings.

In their model they use a flow that moves through one edge at a time. At the

beginning they start with one vertex which is assigned all the flow. Then in each time

point all vertices containing a flow with label l move this flow along the outgoing edges

containing label l to vertices pointed to by these edges. If no such edge is present, the

flow is lost. However when moving the flow a small portion of it is lost. All vertices

containing label l get a small volume of flow belonging to label l in each time point.

The labels of vertices (pages) are derived from the content relevance of the current page

to the given labels. The edge (link) labels are derived from anchor text and the content

of the page that they link to.

From another point of view this flow-based model is only a slightly modified

different perspective to PageRank. However these modifications are shown to bring

results better than the topic-sensitive PageRank. However the comparison to the Topical

PageRank which is much more similar to this flow based approach was not done. Both

Topical PageRank and the flow-based ranking were shown to provide better fine-

grained ranking than the Topic-sensitive PageRank, however to the best of our

knowledge no comparison of these two rankings was publicized.

Another important point is of course the time complexity of this approach. It

depends mainly on the type of algorithm used in the computation. The approach

presented in paper [52] used an algorithm similar to the Pre-flow push (Push-relabel)

algorithm, which in fact uses very similar principles, and so no major modifications

were needed. However no indication of the run-time of this algorithm was mentioned,

so the web-scale usage of this approach is questionable.

5.3.3 Re-ranking pages using user supplied feedback

This approach is fundamentally different from the ranking schemes mentioned

earlier, because it is intended for use in a different phase of the retrieval process. It

57

assumes that the user submitted a query however is not totally satisfied with the

retrieved pages. So rather than using query refinement, Vassilvitskii and Brill [53]

propose using user-supplied feedback to re-rank the initially retrieved set of documents.

This algorithm presents a novel approach to using the relevancy feedback. While

previous studies used mostly term re-weighting schemes or tried to automatically refine

the query, Vassilvitskii and Brill propose using web-graph distance as a measure of

relative document relevancy.

Their approach is based on the hypothesis that relevant pages tend to contain

links to other relevant pages while irrelevant pages are mostly linked from other

irrelevant pages. The results of this algorithm showed that this hypothesis holds.

The intended scenario for this system is as follows. Upon receiving the list of

retrieved pages, the user provides a feedback about the relevancy of 1 to 5 random

pages from this set, where each of these pages is ranked on the scale 1 to 3. In this scale

1 stands for relevant, 2 for neutral and 3 for irrelevant. The system then uses this

information to re-rank the retrieved documents and provide a new list, which better

matches user's needs. What is however important is that this approach is shown to be

effective even when the user provides feedback to only one page in retrieved set.

The re-ranking algorithm is relatively simple. For all rated pages a set of pages

with distance (both ways) less than or equal to 4 is discovered. To avoid exponential

growth of this graph the maximum considered number of links was set to 35. Ranking

of all pages in these graphs is then refined by the ranking of the rated pages multiplied

by inversed distance between these pages.

5.4 Other query dependant rankings

This chapter provides an overview of some graph-based ranking algorithms also

suitable for traditional IR systems. Non of these algorithms explicitly uses the web-

graph structure but all work with a graph-based framework.

5.4.1 FlowRank - Collaborative Ranking

A recently presented paper [54] describes a very unique approach to document

ranking. It does not explicitly use the links of the web-graph structure, but works on a

graph where vertices present the collaborating users, their queries and the documents, so

is also suitable for traditional IR systems. This network is derived from search engine

logs and its edge weights model the relationship between the relevant entities.

58

This approach tries to use gathered collective knowledge and use it to enhance

outputs for current users. It can be interpreted as using some Artificial Intelligence

techniques to help gather and use the information present in logs. In contrast to most

other collaborative ranking algorithms this algorithm models the relationships between

relevant queries, documents and collaborators by a graph. The paper presents a

framework, where the final ranking is derived from the maximum flow in a graph.

The intuitive background of this approach comes from the study [55] which

showed that user click-through (record of clicks on retrieved documents for a query) is

an accurate reflection of user-related relevancy (preference) of the documents to the

given query. This measure provides very valuable information even for similar queries

and documents [56]. This information is utilized to re-rank pages based on the gathered

knowledge.

The FlowRank algorithm is a query and user specific ranking that performs the

creation of the above described network and computation of the network flow on this

network in the query time. This might be considered a drawback of this technique

nevertheless it presents a very prospective approach that was shown to provide very

good results mainly for the naive queries. Although it is important to note that the use of

such techniques might improve the competition advantage of the biggest web search

engines because of availability of plenty of fresh log information which might enable

these engines to adjust their rankings very quickly. Time will show if the advantages

resulting from such approaches will be valuable enough for the search engines to offset

the slow-down of the response and if some engines will encapsulate such an algorithm

into their rankings.

5.4.2 Ranking retrieved pages using Affinity Graph

The paper of Zhang et al. [57] presents a novel query dependent ranking scheme

called Affinity Ranking suitable also for classic IR systems. In this approach the

ranking is focused not only on optimizing the precision and recall (see chapter 2.1) of

the systems but also aims to also optimize two novel metrics – diversity and information

richness. The diversity of a set of documents indicates the variance of topics within the

set. The information richness measures the coverage of a single document to its topic.

Both of these metrics are calculated from a directed weighted graph called Affinity

Graph (AG), which models the content similarity between all pairs of documents in a

set.

59

The idea of the re-ranking algorithm is derived from the observation that most

user queries are ambiguous [58] and the exact needs of the users are unknown. The

result of such queries contain a vast of documents relevant to some popular topic that

are however not very relevant to user's needs.

To prevent such situations Zhang et al. propose an algorithm that aims to

improve the information richness and diversity within the top results. Increasing these

metrics would increase the probabilities that some page that represents actual user's

needs are present in the top rated retrieved documents and also that the document is one

of the most informative to his actual needs.

The Affinity Ranking is a query-time re-ranking that does not use the

information about the web-graph link structure at all. It only assumes that the retrieved

results have already been rated using a full-text analyzing algorithms. The goal of this

ranking is to re-rank the retrieved set of documents in order to achieve higher diversity

and information richness values while keeping the precision and recall of the system at

the same level.

Query-dependent
(Online)

Query-independent
(Offline)

Document
Collection

Query Relevance

Diversity
penalty

Information
Richness

Affinity
Rank Score

Affinity Graph

+

+

Output

Picture 6 Affinity Ranking Framework

For a set of documents D = {d1, d2, .., dn} the diversity Div(D) denotes the

number of different topics contained in D, i.e. the number of unique topics present in D.

For a document di information richness IRD(di)∈<0,1> denotes the informative degree

of the document di with respect to the entire collection D. For each topic k, Nk denotes

the number of documents in D associated with k and di
k denotes the i-th document

associated with the k-th topic.

The average information richness of a set of documents D can be calculated as:

60

()

1 1

1 1
() ()

()

kDiv D N
k

D i
kk i

IR D IR d
Div D N= =

= � �

The Affinity Graph AG=(V, E) is a directed weighted graph where V represents

documents and E represents the similarity between documents. The similarity is not

computed using the common cosine measure (see chapter 0) but with similar measure

called affinity defined as:

.
(,) i j

i j

i

d d
Aff d d

d
=
�� ��

��

To save some space we Aff(di, dj) = 0 if Aff(di, dj)<Afft where (Afft is a threshold).

To represent this graph we define a normalized adjacency matrix M = (Mi,j) of size n x n

defined as:

,

(,) / (,) if (,) 0
1 1

0 otherwise

i j

n n
aff d d aff d d aff d di j i k i k

k kM

�
>� ��

� = == �
�
�
�

On such a matrix we can define a model very similar to PageRank. Assume there

is a random reader who selects a random document as the start of his reading journey

and when looking for another document, he chooses one of the documents similar to the

current document with probability D and chooses a random document with probability

(1-D). The stationary distribution of this journey can be computed using any of the

algorithms for computing PageRank described in chapter 4.

The computed distribution helps us to choose the most informative documents,

however some of them can still be very similar. To increase the topic coverage of the

top retrieved documents, Zhang et al. propose imposing different diversity penalty to the

information richness score of each of the retrieved documents. The penalty can be

calculated by a simple iterative greedy algorithm. The algorithm starts with the set of

documents A returned by the full-text search. For each document we initialize ARi =

IR(di) and sort A by AR in descending order. Then for i = 1 to q (where q=|A| or q is the

desired number of returned documents) it extracts the most informative document da

from A, places it to the output (as i-th top ranked result) and for each document dj∈A

with Mj,j > 0 it sets ARj=ARj – Mj,i.ARi and resorts the set A using the new AR values.

This procedure ensures that for each topic relevant to the query only the most

informative document becomes distinctive in the ranking process.

61

To combine the Affinity Ranking with ranking with full-text ranking we can use a

simple linear combination:

(,)(,) . .i ii Sim q d ARScore q d a Rank b Rank= +

where a and b are tunable constants. We think that setting of a and b derived

from the length of the query could improve this ranking further. We assume that the

shortest queries are more likely ambiguous than the longer ones and so the variety of

topics should be more desirable for the shorter queries.

The Affinity Ranking is a ranking that does not use the link structure at all and is

fully applicable to basic IR systems. However it would be possible to integrate this

technique in the web IR systems. The main problem of this integration would be the

creation of the Affinity Graph and computation of the Affinity Ranking. Nevertheless the

construction of the AG could be done during the crawl process, when for each new

crawled page, we would calculate the affinity between this page and all the pages that

have already been crawled. The ranking computation would require similar time as the

PageRank computation (even the site approximation might be possible) so we would

only need to have more available resources to be able to take advantage of the Affinity

Ranking in any web IR system.

It is very probable that Google already uses a similar kind of ranking. We have

tested this assumption by a few experiments. E.g. when we searched for "puma" on the

Czech version of Google, the results covered three topics incorporated with "puma" –

the sport brand, the animal and the car brand (Ford Puma). However when we checked

the first page relevant to "Ford Puma" the Google toolbar shows 0 as its PageRank

while several pages having considerably higher PageRank and containing similar

occurrences of word puma (e.g. pumastore.com) can be found below this site in the

results. It is probable that this can be caused by various other factors like the

localization of the "Ford Puma" page. Nevertheless similar result structure was observed

experimenting with a few other queries (e.g. jaguar). As already stated the principles

and algorithms of Google are confidential, so we can only guess which techniques does

it use and how. However when we take into account that Google claims considering

more than hundred factors when computing results to a query, it is highly probable that

the diversity of the top results also plays a role in the procedure.

62

5.4.3 Conceptual graph

A conceptual graph is a good example of using the advantages of graph theory

and processing of text based on semantics to improve the effectiveness of IR. This

concept is intended for use in classical information systems and improves the

performance of these systems by incorporating limited semantic knowledge into an

improved representation of documents. The semantic analysis is not widely used in IR

systems because of the complexity of such analysis. This approach tries to bring

benefits of the semantic analysis into IR systems by modeling the documents in a

conceptual graph that contains basic semantic information about the documents. To

avoid the high time complexity, the graph is constructed in the query time using only

part of the top results. The semantic knowledge is then used to improve the ranking of

this set.

5.4.4 HITS and PageRank without hyperlinks

The major success of the web-graph based rankings, motivated researches that

tried to use similar algorithms also on documents lacking the hyper-link structure. In

[59] Kurland and Lee utilized a PageRank-like algorithm to re-rank the retrieved set of

documents. The graph for the rank computation was constructed using language models

induced from the document set. In their approach the documents are represented by

vertices and edges represent similarity between the documents. The PageRank-like

distribution is then computed on a graph that contains first i (e.g. 200) documents

retrieved by text-based search engine.

As this approach was not showed to be effective, Kurland and Lee proposed

incorporating the cluster information into the ranking process [60]. The intuition of their

approach is that (1) the documents within the clusters that do best represent user's

information needs, are likely to be relevant and that (2) the most representative clusters

should be those that contain many relevant documents. As this intuition is very similar

to intuition behind the HITS algorithm (see chapter 5.3.1) they used this algorithm to

compute the authority and hubness score on a bipartite graph composed of documents

and clusters. The graph was again created in the query time from the first i results. They

showed, the cluster-document graphs provide a very efficient framework for the graph-

based ranking algorithms.

63

6. Finding communities

A lot of current search engines also provide an alternative to searching by

queries, they enable us to input a web page and want the engines to find similar pages to

the input page.

To achieve the desired result, the search engines often use the web-graph

structure. The main idea is that highly similar pages would very likely be close to each

other in the web graph.

For this purpose it is possible to employ the HITS algorithm. In this case the

start set is the set of input pages. We then just run the algorithm and sort the pages by

authority score in descending order and output the first k pages that were not part of the

input set (k is the desired number of output pages). However usage of HITS algorithm

for this purpose is even less feasible than the query-sensitive ranking. The input set

would often be relatively small so the topic drift occurs more probably.

The problem of finding communities is similar to the above mentioned

approach. The goal in finding communities is to find pages that are thematically highly

related to the given input set of pages. It has been shown such pages are often highly

connected and so this task can be efficiently solved using the web-graph structure.

6.1 Flake's max-flow based algorithm

In an approach proposed by Flake et al. in [61] they assume that the input is a set

of seed pages and the result of their algorithm is the approximate community composed

of the seed pages and some of their neighbour pages. Their method uses a maximum

flow, minimum s-t cut (see chapter 3.7) based approach to find a dense subgraph

containing the seed pages and regards it as the approximate community.

In their approach they use a graph G=(V, E) such that the set V is composed of

sets S,P and Q, where S is the set of seed (input) pages; P is the set of all pages that

contain a link to or are linked from any page in S; and Q is the set of all pages linked

from pages in P. The set of edges E contains all links from pages in S to pages in S ∪ P

and all the links from pages in P to pages in S ∪ P ∪ Q.

We then add virtual source s and sink t to G. For each x∈S we add a virtual edge

(s,x) to E' and for each x∈V we add a virtual edge (x,t) to E. Let G'=(V',E') be the

64

resulting graph, formally V' = V ∪ {s} ∪ {t} and E' = E ∪ {(s,x) | x ∈ S} ∪ {(x,t) | x∈V

}.

The capacity c(e) of each edge e∈E' is set as follows: c(e) = � for e = (s,x); c(e)

= 1 for e = (x,t); and c(e) = k for each e∈E, where k = |S| i.e. k equals to the number of

seed pages.

The result of the construction phase is the graph G'=(V',E') and capacity function

c.

The algorithm then works as follows. For i=1 to l (where l = 4 in the [61]) we do

the following procedures.

1. We compute the minimum s-t cut C of network Gi' (where G0' = G') such that

C is nearest to s. Let X denote the connected component of Gi'\C containing s.

2. if i<l, then we find a vertex u of maximum degree in X \ (Si ∪ {s}). I.e. vertex

u with maximum d(u) in X such that u is not one of the seed vertices, where d(u)

denotes the sum of the in and out degree. We set Si+1 = Si + {u}, construct G'i+1 and

increment i.

3. if i=l we output X \ {s}as an approximate community.

s

t

1

1 1

8

1

k k

k k

k k

kk
S

P

Q

8

Picture 7 Example of G' constructed for finding communities

In their experiments Flake et al. pointed a few problems and also easy solutions

to these problems. First to avoid topic drift (adding pages with different topics) they

adopted the assumption that if a page has more than q (e.g. 50) links they regard it as a

portal and totally ignore it. Second, to avoid only adding pages reachable from S0 to the

final community they regard all edges between vertices in P and S a bi-directed even if

there exist only an edge in one direction. Third, to avoid adding all pages of all sites

(hosts) they ignore all intra-site (intra-host) links.

65

This approach was found very effective for finding communities even though it

does not consider the content of the pages at all. However, several papers noted several

problems and improvements to this algorithm.

6.2 Improvements

Asano et al. [62] presented a site-based approach that tries to improve the Flake's

algorithm by pointing out several problems and providing solutions to these problems.

They consider the ignored link problem to be the major weakness of the

algorithm proposed by Flake and demonstrate how this can be avoided by using the site

as unit of information. The following picture illustrates the ignored link problem as

defined in [62].

b

a
c

page site

Site A Site B

Picture 8 Ignored link problem illustration

This picture demonstrates that ignoring the intra-site links can lead to loosing

valuable inter-site links because of inability to get to different page in a site that

contains this link. In the picture above we can see that if we get to page a in site A by

ignoring the intra-site links in A we loose the information about the link from page b in

A to page c in B.

Asano et al. showed that the ignored link problem occurs relatively often and

propose solving this problem by using the site as the element in the graph. In their

approach they propose constructing the inter-site graph G'=(V',E') in a similar way as

the host-graph in chapter 5.1.5.1 I.e. the vertices represent hosts (sites) and there is an

edge between site S1 and S2 if there exists a page a∈S1 containing a link to page b∈ S2.

Intuitively this framework disposes of the ignored link problem.

They also showed that a major loss of precision is caused by the capacity

problem. They showed that because of the uniform edge capacities setting to |S| the

following two situations may occur if the graph G' does not contain "too many" links

between vertices within sets P and Q. First a vertex v∈Q that only has only one

66

incoming edge (u,v) might become a member of the community if u∈ X 	 P. Second if

a vertex v has incoming edges from all vertices in S, v would not become a member of

the community when outd(v) > |S|. These two cases are intuitively wrong, because a

vertex with only one link from the community is highly unlikely to be a good member

of the community, while a vertex connected to all pages in the seed set would be

expected to belong to the community.

To solve such special cases Asano et al. tested setting the parameter k (see

algorithm definition in chapter 6.1) to various values. The best results were achieved

when k was set in the range {10, .., 15}.

Such an assignment can remind us of an idea of not setting the edge capacities

constant, but choosing another criteria. This idea was explored in detail by Imafuji et al.

in [63]. As the result of their study their proposed improving Flake's algorithm by using

HITS (see chapter 5.3.1) score based edge capacities. In their approach they proposed to

set edge capacity c for edge (u,v) as follows:

dist(u)

h(u) + a(v)
c(u,v) = + 1

2

Where h and a mean the hub and authority score of a vertex respectively and

dist(u) represents the distance of page u from any of the seed pages. Their results

showed a considerable improvement in the precision of the community pages

assignment.

To the best of our knowledge, no study has explored incorporating the site-based

approach with the HITS score based capacity assignment, which might surely be an

interesting study.

6.3 Summary

In the subchapters above we presented algorithms for finding web communities.

All of the experiments above only focused on improving the precision of the resulting

communities. However to be able to facilitate these algorithms we need to be able to

compute the results in a reasonable time. The run-time of these algorithms is influenced

by two main factors, the construction of graph G' and the computation of the minimum

s-t cut. The most of time needed for the graph construction phase is spent loading the

information from the disk (if we assume web-scale use). It might be interesting to find

out how different storage techniques would influence the run-time however we did not

concentrate on this part.

67

The second part of the algorithm is influenced by the choice of algorithm for

finding the maximum-flow and the minimum cut. Even though it might not look to be

important to try to optimize this part of computation because of the graph size it might

not be absolutely true. Given the fact that average number of out-links on a page is 10-

20 gives us approximately 30 edges to other pages for each page. So if we consider size

of seed approximately 30 we need to compute minimum s-t cut on a dense graph with

about 5-20 thousand vertices (when considering..). This is significantly less than in the

case of PageRank computation however if we have to take into account that algorithms

for finding communities are also intended for instant use then each saved mili-second is

valuable. The size of this graph enables us to store it into the main memory, so we

should only concentrate on minimizing the number of operations.

For such graph sizes the most common implementation – the Ford-Fulkerson

algorithm would probably not be the best performing because these graphs contain lots

of paths between source and sink and improving one at a time would require a lot of

run-time. Hence, we would emphasize using the Pre-flow Push (push re-label)

algorithm which would very probably work very well in this kind of graph. We assume

that it would be able to compute the maximum flow in very few iteration because of the

small distance between the source (or sink) and all other vertices. The shortest distance

between source and sink is 3 and so the algorithm would need at most 6 iterations till

returning the flow value. In each iteration we would run a scan through (at most) all

edges so the resulting time complexity of this algorithm would be less than 6m, which is

a fairly good result.

68

7. Other examples of graph theory in IR

7.1 Other uses of Web-graph Analysis

As we showed the analysis of the link structure of the web can be a valuable

source of information. In the last two chapters we have shown using it to provide us

with document ranking and for helping us to find communities. However there are

several other applications.

7.1.1 Web Crawling

The web crawler (also known as Web spider or Web robot) is a program that

browses the web in a predefined manner. The crawlers are mostly used to provide a

snapshot of the web, which can be used for generating index. The basic crawlers are

usually based on the BFS algorithm. Common crawlers generate three files, the web

page archive, web-page index file and the web-graph file. They can work in the

following way.

The algorithm gets a set of start pages Q as the input. It then repeats the

following iteration until an end condition is reached.

Choose a page p from Q, download it, create its page index record and store it to

the archive. Check if pages linked from p have already been indexed. If not add these

pages to Q. Remove p from Q.

As the crawlers are an important part of all search engines they were in focus of

various studies. Some of these studies [64] tried to improve the crawlers in a way that

would ensure that they crawl most of the important pages while avoiding the irrelevant

ones. Some [65] aimed to create a topic-driven crawler that would be able to download

web pages relevant to a given topic and thus provide complex information about the

topic.

7.1.2 Mirrored hosts

Two hosts H1 and H2 are mirrors if and only if for every document on H1 there is

a highly similar document on H2. Mirrors have very similar hyperlink structure both

within and out of the host. Mirrors waste space in the index data structure and can lead

to duplicate results. Combining the IP address analysis, URL analysis, the text analysis

and the link structure analysis can help us to detect many near-mirrors [66]. It is

however important to note that even though the link structure can provide us with a

good heuristic in finding mirrors the present state-of-the-art algorithms for near-

69

duplicate web-page finding do not use it at all. The reason for this is that the problem

can be explicitly solved by text analyzing tools and computing the heuristic provided by

exploiting the link structure consumes more time than it saves.

7.1.3 Web sampling

Web-graph analysis can also be useful tool for computing statistics about groups

of Web pages, like their average length, average number of links, the percentage of web

pages that are in Slovak etc. PageRank based random walks can provide us with almost

uniformly distributed samples of the web. These almost random samples can then be

used to measure various properties of the web pages but also to compare the number of

the pages indexed by various search engines. More about the use of web sampling can

be found in [67]

7.1.4 Geographical scope

Whether a page is globally interesting, or is only of interest of a small region or

nation might be interesting information about the page content (e.g. the official site of

the Czech Hydro meteorological Institute chmu.cz is mostly interesting only for Czech

citizens). This information can be very useful for search engines providing personalized

rankings. The information about the geographical position of the user might be detected

from the regional settings of his browser, or it can be supposed that if user is using

regional version of the search engine rather than the global one, he is located in that

region (E.g. use of google.cz instead of google.com implies being located in the Czech

Republic).

The information about the range of interest of a page can again be computed

using the hyperlink analysis. The intuition is that local pages are mostly linked from

pages from the same region, while globally interesting pages are assumed to have a

regionally uniform distribution of pages linking to them. More details about this subject

can be found in [68]

7.2 Other graphs in IR

7.2.1 Clustering

A very important part of the information retrieval starts a long time before a user

queries the system. We first need to store the documents. There are lots of possibilities

in organizing the stored documents. As already mentioned in Chapter 3, the most

expensive (measured in time spent) operations are the I/O operations. A significant part

70

of an I/O operation is the disks seek time. So when storing the documents we need to

think of a structure that would minimize the average number of seeks for a query. This

problem is often handled by the document (text) clustering algorithms. Most of these

algorithms are graph-based and use the maximum flow – minimum cut theory for

clustering the documents in such a way, that the documents in one cluster are highly

similar, so there is a high probability that when one document is relevant to a given

query, all the others would be. The common definition of a good clustering requires that

nodes assigned to the same cluster should be highly similar while points in different

clusters should be highly dissimilar.

A simple example of a clustering approach is the Spectral Clustering algorithm.

It uses a similarity graph where documents are modeled by vertices and edges (edge

weights) represent the similarity between the documents connected by this edge. The bi-

partitioning (dividing the document into two disjoint sets) problem can be solved by

finding a minimum cut in this graph, however the eigenvector-based approach is more

commonly used. The goal of k-way clustering algorithms is to partition the given

documents to k clusters. One way how to achieve this is using the bi-partitioning

algorithms repeatedly however the eigenvector based approaches are used more

commonly, because they are empirically performing better.

The eigenvector-based algorithm for solving the k-way spectral clustering

problem can be very briefly described to work as follows. It first builds a reduced space

from multiple eigenvectors of the adjacency matrix of the similarity graph. Then it uses

the 3rd eigenvector to further partition the clustering output produced using the 2nd

eigenvector.

Lots of studies have focused on solving the clustering problem, however, we do

not concentrate on the clustering in this paper any further.

7.2.2 Graphs in document classification

Another interesting example that uses graph theory to improve some

functionality of the IR systems is document classification. The goal of the text

document classification algorithms is to assign (predefined) labels to texts and so to

create directories similar to ODP [40] or Yahoo! directory [41].

There are two main types of classification. In one we do not have any predefined

labels and only know the approximate number of categories we want to create. In such

71

case the clustering and communities finding algorithms (see chapters 7.2.1 and 6

respectively) might be utilized.

However, the more common case is that we are given a category structure and

want to assign documents to these categories. This task is usually solved by text-based

algorithms for document classification that use some kind of artificial intelligence as

e.g. [43]. In [69] Angelova and Weikum proposed enhancing these algorithms by using

additional information about the documents gathered from neighbours of the

documents. In the hyperlink environment this is a very suitable approach because the

neighbours can easily be found in the web-graph. Information about the neighbour

documents and the anchor texts surrounding the links can provide valuable additional

information for the classification.

As the human made directories are very difficult to create and maintain the

demand for the automated tools for this task is obvious. The automatically created

directories would probably not achieve as high quality as the human generated ones in

the next few years, but are much cheaper to create and much easier to enhance and so

we think that the text classification algorithms will surely find a broad utilization in the

upcoming years.

72

8. Conclusion

The goal of this thesis was to explore and provide an overview of application of

graph theory in information retrieval, choose an interesting application, explore it in

detail and provide a test implementation.

Chapters 4 to 7 provide an exhaustive overview of graph theory usage in

information retrieval. To the best of our knowledge this is a unique overview and was

not presented in any previous paper.

For the detailed inquiry we have chosen the graph-based ranking algorithms as

they aim to improve the most critical property of the IR systems - their precision. In this

part we have presented various perspectives to computation of the best known graph-

based ranking - PageRank. We have also described several approaches to both

optimising the computation, and improving the precision of the ranking. In this chapter

we have also described our implementation of algorithms for computing the PageRank

distribution and provided facts and comments about the run time and memory

consumption of different versions of the algorithm.

Further we have also presented rankings that are based on a graph structure fully

independent of the web link structure and so can also be used in traditional IR systems.

We have also provided ideas, how these rankings can be incorporated into web IR

systems and gave comments on their realistic usage.

Another contribution of this thesis is that it provides several subjects for further

research. E.g. a very interesting study (described in chapter 5.1.6.2) might be to try to

compute the Topical PageRank described in chapter 5.1.6.2 using the BlockRank

algorithm described in chapter 5.1.5.2. Another interesting idea for further research

might be to implement several other PageRank algorithms described in chapters 5.1.4

and 5.1.5 and compare their performance to our implementation. Chapter 5.2 also

contains several concepts that might further improve the efficiency of the presented

implementation.

73

9. References

[1] L.R. Ford, Jr. and D.R. Fulkerson, "Maximal Flow Through a Network".
Canadian Journal of Mathematics, 8:399 404, 1956.

[2] Google – Searching. Google. [online], 2007

 WWW: http://www.google.com

[3] Yahoo search – Searching. Yahoo. [online], 2007
 WWW: http://search.yahoo.com

[4] R. Baeza-Yates, B. Ribeiro-Neto, "Modern Information Retrieval", Addison

Welsey, 1999

[5] M. Kopecky, "Information Retrieval Systems", Slides and Lecture Notes, 2005
 WWW: http://www.ms.mff.cuni.cz/~kopecky/vyuka/dis

[6] L.Galambos, "Web data mining", Slides and Lecture Notes, 2006
 WWW: http://kocour.ms.mff.cuni.cz/~galambos/swi107/slides.pdf

[7] Wikipedia the free encyclopedia. Wikipedia [online] 2007
 WWW: http://www.wikipedia.org

[8] H.W. Lang, "Asymptotic Complexity". Retrieved 12 March 2007

WWW: http://www.inf.fh-flensburg.de/lang/algorithmen/asympen.htm

[9] Paul E. Black, "greedy algorithm", in Dictionary of Algorithms and Data
Structures, 2005. Retrieved March 2007
WWW: http://www.nist.gov/dads/HTML/greedyalgo.html

[10] M. L. Fredman, R. E.Tarjan, "Fibonacci heaps and their uses in improved
network optimization algorithms". Journal of the ACM 34(3), 596-615, 1987

[11] J. Cibulka, T. Dzetkulic et. al., "Peklo project". Retrieved March 2007

WWW:http://sourceforge.net/projects/peklo/

[12] R. Mihalcea, "Graph-based Algorithms for Information Retrieval and Natural
Language processing". Tutorials on RANLP 2005 Conference, 2004

[13] S. C. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, C. Stein,

"Experimental Study of Minimum Cut Algorithms". In Proceedings of the eighth
annual ACM-SIAM symposium on Discrete algorithms, 1997

[14] L. Galambos, "Egothor" – Searching [online] 2007

WWW: http://www.egothor.org

74

[15] Y.Y. Chen, Q. Gan. T. Suel, "I/O efficient techniques. for computing
PageRank", In Proceedings of the 11. th. International Conference on
Information and. Knowledge Management, 2002

[16] D. Austin, "How Google Finds Your Needle in the Web's Haystack". Retrieved

March 2007
 WWW: http://www.ams.org/featurecolumn/archive/pagerank.html

[17] S. Brin and L. Page, "The Anatomy of a Large- Scale Hypertextual Web Search

Engine;", In Proceedings of the 7th International WWW Conference, 1998
WWW: http://www-db.stanford.edu/pub/papers/google.pdf

[18] D. Vise, M. Malseed , "The Google Story", 37 ISBN 0-553-80457-X. 2005

[19] Google, Inc. "Google information for webmasters". Retrieved March 2007

WWW: http://www.google.com/webmasters/4.html

[20] Wikipedia contributors, "Markov chain", Wikipedia, The Free Encyclopedia.

Retrieved January 2007
WWW: http://en.wikipedia.org/wiki/Markov_Chain

[21] D. L. Isaacson and R. W. Madsen. "Markov Chains: Theory and Applications",
chapter IV, pages 126–127. John Wiley and Sons, Inc., New York, 1976.

[22] J. H.Wilkinson, "The Algebraic Eigenvalue Problem", Oxford University Press,

1965

[23] K. P. Chitrapura, "Node ranking in Labeled Directed Graphs", In Proceedings of

the 13th ACM CIKM, 2004

[24] I. Rogers, "The Google PageRank Algorithm and How it works", IPR

Computing Ltd. 2005

[25] Microsoft Inc – Searching, "Live search", [online] 2007
 WWW:http://www.live.com

[26] N. Blachman and J. Peek, "The Google Guide". Retrieved April 2007
 WWW: http://www.GoogleGuide.com

[27] A. Arvind, Ch. Junghoo, G. M. Hector, P. Andreas, R. Sriram, "Searching the

Web", ACM Transactions on Internet Technology, Vol1, No. 1, 2001

[28] T.H. Haveliwala, "Efficient computation of pagerank", Technical report,

Stanford University, 1999
WWW: http://dbpubs.stanford.edu:8090/pub/1999-31.

[29] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.
Tomkins, J. Wiener, A. Borodin, G. O. Roberts, J. S. Rosenthal, P. Tsaparas.
"Graph structure of the web". In Proceedings of the ninth international
conference on World Wide Web, pages 309–320. Foretec Seminars, Inc., 2000.

75

[30] J. Leskovec, J. Kleinberg, C. Faloutsos "Graphs over Time: Densification Laws,
Shrinking Diameters and Possible Explanations", In Proceedings of the KDD
conference, 2005.

[31] J. Kleinberg, S. Lawrence, "The structure of the Web",Science's compass VOL

294, 30 November 2001

[32] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, "Exploiting

the block structure of the Web for computing PageRank", Technical report,
Stanford University, 2003.

[33] C. C. Aggarwal, "Intelligent Crawling on the World Wide Web with Arbitrary.

Predicates", IBM T. J. Watson Research. Center. 2003

[34] G. Pandurangan, P. Raghavan and E. Upfal, "Using PageRank to characterize

Web structure", In Proc. of 6. th. COCOON, vol. 2387, 2002

[35] A. Z. Broder and T.J. Watson, "Efficient PageRank Approximation via Graph

Aggregation", 2004

[36] Netcraft, Internet services and statistics company. [online] 2007

WWW: http://www.netcraft.com

[37] M. R. Henzinger, R. Motwani, and C. Silverstein, "Challenges in web search

engines", SIGIR Forum, 36(2):11--22, 2002

[38] Bao Guang Feng, Tie-Yan Liu, et al, "AggregateRank: Bringing Order to Web

Sites", In Proceeding of SIGIR, 2006.

[39] T.H.Haveliwala, "Topic-sensitive PageRank". In Proceedings of the Eleventh

International World Wide Web Conference, Honolulu, Hawaii, 2002

[40] R. Skrenta, B. Truel. "Open Directory Project", [online] 2007
 WWW: http://www.dmoz.org

[41] B.D. Davison, L. Nie, X. Qi, "Topical Link Analysis for Web Search", In

Proceedings of the ACM SIGIR conference, 2006

[42] Yahoo Inc., "The Yahoo dictionary".

WWW: http://dir.yahoo.com/

[43] X. Zhu; X. Yin, "A new textual/non-textual classifier for document skew

correction Pattern Recognition", In Proceedings of the 16th International SIGIR
Conference, Volume 1, Issue , 2002

[44] Leapteg blog, "Google the Spy?"
WWW: http://blog.leaptag.com/2007/02/google_the_spy.html

76

[45] Wikipedia contributors, "Quicksort," Wikipedia, The Free Encyclopedia,
Retrieved February 2007.
WWW: http://en.wikipedia.org/wiki/Quicksort

[46] Google, Inc., "Google Toolbar", Take the power of Google with you anywhere

on the Web.
 WWW: http:// toolbar.google.com

[47] M. J. Kleinberg. "Authoritative Sources in a Hyperlinked Environment", In

Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, 1998

[48] J. Carroere and R. Kazman "Webquery: Searching and Visualizing the Web

through connectivity", Computer Networks and ISDN Systems, Volume 29,
1997.

[49] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, J. Kleinberg,

"Automatic resource compilation by analyzing hyperlink structure and
associated text", In Proceedings of World-Wide Web '98 (WWW7), 1998

[50] K. Bharat and M.R. Henzinger, "Improved algorithms for topic distillation in a

hyperlinked environment", In Proceedings of SIGIR'98, pages 104--111, 1998.

[51] M. Henzinger, "Hyperlink Analysis for the Web", volume 23, In Proceedings of
the IEEE 2000 Conference, 2000

[52] K. T. Chitrapura, S. R. Kashyap, "Node Ranking in Labeled Directed Graphs",

In Proceeding of the SIKD 2004 Conference, 2004

[53] E. Brill, S. Vassilvitskii, "Using Web-Graph Distance for Relevance Feedback in

Web Search", In Proc. of Annual ACM Conference on Research and
Development in Information Retrieval (SIGIR) 2006, pp. 147-153, 2006

[54] S. Cucerzan, C. L. Giles, Z. Zhuang, "Network Flow for Collaborative

Ranking", In Proceeding of the PKDD Conference 2006

[55] T. Joachims, L. Granka, B. Pan, H. Hembrooke, G. Gay, "Accurately

Interpreting Clickthrough Data as Implicit Feedback", In Proc. of Annual ACM
Conference on Research and Development in Information Retrieval (SIGIR)
2005, pp. 154-161, 2005.

[56] J. Wen, J. Nie and H. Zhang, "Clustering user queries of a search engine", In

Proc. of the 10th International World Wide Web Conference, pp. 162-168. 2001

[57] B. Zhang B et al., "Improving Web Search Results Using Affinity Graph", In

Proceedings of Annual ACM Conference on Research and Development in
Information Retrieval (SIGIR) 2005, pp. 504-511, 2005.

[58] W. B. Croft, S. Cronen-Townsend, V. Larvenko, "Relevance feedback and

personalization: A language modeling perspective", In Proceedings of DELOS
Network of Excellence Workshop, 2001

77

[59] O. Kurland and L. Lee, "PageRank without hyperlinks: Structural re-ranking
using links induced by language models", In Proceedings of SIGIR 2005, pages
306-313, 2005

[60] O. Kurland and L. Lee, "Respect my authority! HITS without hyperlinks,

Utilizing Cluster-Based language models", In Proceedings of SIGIR 2006, pages
83-90, 2006

[61] G. W. Flake, S. Lawrence and C. L. Giles, "Efficient identification of Web

communities", In Proceeding of the 6th SIGKDD KDD2000, pages 150-160,
2000

[62] Y. Asano, T. Nishizeki, M. Toyoda, M. Kitsuregawa, "Mining Communities on

the Web Using a Max-Flow and a Site-Oriented Framework", In Proceedings of
the 6th International Conference on Web InformationRetrieval, 2006

[63] N. Imafuji and M. Kitsuregawa, "Finding a Web Community by Maximum Flow

Algorithm with HITS Score Based Capacity", In Proceedings of the 8th
International Conference on Database Systems for Advanced Applications, Proc
of DASFAA 2003, pp.101-106, 2003

[64] M. Diligenti, F.M. Coetzee, S.Lawrence, C.L.Giles, M.Gori, "Focused Crawling

Using Context Crawling", In Proceeding of the 26th VLDB Conference, 2000
WWW: http://clgiles.ist.psu.edu/papers/VLDB-2000-focused-crawling.pdf

[65] F. Menczer, G. Pant, P. Srinivasan, M. Ruiz, "Evaluating Topic-Driven Web

Crawlers", In Proceeding of the 24th SIGIR Conference, 2001

[66] K. Bharat, A. Broder, J. Dean, and M. R. Henzinger, "A comparison of

Techniques to Find Mirrored Hosts on the WWW", JASIS (Journal of the
American Society for Information Science) 51, 2000

[67] Henzinger M. et al., On Near-Uniform URL Sampling. Proceedings of the

Ninthe International World Wide Web Conference. Elsevier Science, Amsterdam
2000

[68] O. Buyukkokten et al., "Exploiting Geographical Location Information of Web

Pages". In Proccedings of the ACM SIGMOD Workshop on the Web and
Databases 1998.

[69] R. Angelova, G. Weikum, "Graph-based Text Classification: :Learn from your

neighbours", In Proceedings of Annual ACM Conference on Research and
Development in Information Retrieval (SIGIR) 2006, pp. 485-492, 2006

