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1. Introduction 

Graph theory is a very well studied science discipline. So is the field of 

information retrieval (IR). These two disciplines are often perceived as being totally 

different, but as we show in this paper, there is a large overlap between them. 

In the last century, graph theory and graph algorithms have enjoyed a great deal 

of attention. Many new graph-based techniques have been proposed and utilized in 

various sectors. One of the best known theoretical results from the mid 20th century is 

the max-flow min-cut theorem which was proved by Ford and Fulkerson in 1956 [1]. 

The consequences of this theorem have helped researchers in multiple fields. Even now, 

more than 50 years after proving the theorem, new applications for it are being 

discovered. As we show in this paper, algorithms for computing maximum flow and 

their modifications are now starting to be used also in the field of information retrieval. 

We show two interesting applications of this group of algorithms. In one case it helps us 

to discover communities (web pages relevant to a given topic). In the other case a 

modification of maximum flow algorithm is utilized to obtain a relevance ranking of 

web pages to a given query. 

In this paper we show that network flow algorithms are not the only part of 

graph theory that is or can be used in the process of information retrieval. Graphs are 

now base elements of many information retrieval applications. 

In contrast to the graph theory, the history of information retrieval is much 

shorter. It relates to the amount of information that needed to be stored. As the amount 

of information that was being stored boosted, new techniques for storing information 

were needed. People first started to use paper for storing information. Soon they had 

many papers and books, but when they needed to find some information quickly, they 

ran into trouble. Hence, they started to develop structures for organizing documents that 

would help them to find the right information faster. This time point is considered as the 

birth time of information (text) retrieval systems. As the evolution has continued, data 

storage techniques have been improved. Data are now mostly stored on hard drives, CD 

and DVD discs, and also on magnetic tapes etc. However, the amount of data that we 

keep at disposition is enormous and surpasses one's imagination. This presents the same 

problem people had many years ago and that is: How can we find what we want 

quickly? 
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Currently, the most popular source of information is the World Wide Web 

(WWW or the Internet). It comprises several billion web pages containing information 

about almost everything we can imagine. To find information without a search engine 

might be an extremely difficult quest. That is why people started to develop search 

engines for the web. It probably started out as research aimed at helping people to find 

what they want, but it turned out to be a great business. Today companies like Google 

[2] and Yahoo! [3] are known around the world not only as very useful tools for 

searching the web, but also as companies traded on the stock exchange markets. The 

outstanding, and for many people unbelievable performance of these systems in the 

process of information retrieval got people thinking these companies would achieve 

similar performance in business, so we now see people paying enormous sums of 

money for their shares. To better explain this we can use the following example. If you 

bought the entire Google Company at the current share price at the beginning of the 

year 2006 times the number of shares issued (i.e. the market capitalization) and the 

company performed the same way it did then for the next 100 years, the profit for the 

100 years would roughly equal the price you paid for the company. That is, if Google 

was not a publicly traded company and you invested money into it, you would get it 

back after 100 years and only then you would start to make money. Therefore, the 

return of such an investment would be about 1% per annual while the average is more 

than 5 times higher.  

The success of these companies on the stock exchange market has brought these 

companies a considerable amount of money that is invested in research. This is 

probably one of the main reasons why so many top-class scientists are concentrating 

their research on IR. Thanks to this, there are numerous papers about the latest research 

in IR. The amount of available papers on IR would be even greater if most of the 

research done by these commercial companies was not confidential. There are two main 

reasons why companies such as Google or Microsoft do not publicize the results of their 

latest research nor the exact principles of their search engines. The obvious one is the 

competitors' battle between these companies. The second more important one is that 

many people are commercially interested in increasing the ranking of their web pages 

for certain queries. Uncovering the exact manner in which these engines work would 

make it easier to find out new tricks how to manipulate the ranking. 

In this thesis we first provide an introduction to the fields of information 

retrieval and graph theory and then provide an overview of approaches that use the 
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knowledge from the graph theory to improve some properties of the IR systems. We 

will also present our implementation of a program for computing the PageRank 

distribution, by our thoughts the most important utilization of the graph theory in 

information retrieval. 

The rest of this paper is organized as follows. Chapter 2 provides an introduction 

to information retrieval, presents the common structure of the IR systems and points out 

the most critical issues of the current IR systems. Chapter 3 contains insights to graph 

and complexity theories and describes algorithms for solving graph problems that are 

applicable in the field of information retrieval. A more detailed introduction to the use 

of graphs and graph theory in information retrieval is provided in chapter 4 which also 

premises the content of the following chapters. Chapter 5 then provides a detailed 

description of graph-based ranking algorithms provides different perspectives to the 

ranking process and reviews the results and applicability of different approaches. This 

chapter also contains a description of our implementation of the PageRank algorithm 

and provides comments, to the run-time and memory efficiency of different versions of 

this algorithm. An overview of approaches to finding communities – sets of web pages 

characterized by page content similarity and cohesive link structure is present in chapter 

6. In chapter 7 we briefly describe several other applications of the graph theory in 

information retrieval. We conclude with chapter 8, 
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2. Information retrieval 

With the increasing amount of documents available in electronic form the need 

for efficient storing and searching these documents arose. For this purpose information 

retrieval systems were developed.  

Text documents are generally stored in text databases and the IR systems 

provide a framework that enables searching for documents. A problem is that users 

mostly do not have extensive knowledge of these systems nor about the documents 

stored. Consequently most of user queries are vague and users often get either a lot of 

irrelevant documents or no documents as a result of their queries. However, the 

relevancy of a document to a query is very difficult to generalize. Different people 

expect different documents containing different information as a result of a single query 

([4]). This is the main difference between information retrieval and database retrieval, 

where the relevance of a record in the database to a query is explicit. 

In this chapter we provide an introduction to information retrieval and to the 

most common structure of the IR systems. We also point out most common issues of the 

current systems. Chapters 4 and 7 then present graph-based approaches to resolving 

some of these issues. 

2.1 Information retrieval systems 

The IR systems store some information about a set of documents and compare 

this information with user queries. Choosing the right information about the documents 

to store is a common issue in IR and is handled in a process called indexation.  

However, the main goal of IR systems is to find relevant documents to a given 

user request (query). There are two main forms of search – listing a directory and 

formulating a query. In this thesis we concentrate on the latter.  

In response to a given query, IR system outputs a list of documents. Generally, 

these are sorted by estimated relevancy in descending order. Since users often only take 

a look at the first 10-50 documents (the maximum criteria), the systems aim to place the 

most relevant documents at the top of the list. Documents actually relevant for the user 

are called hits. 

In order to compare the quality of the information retrieval systems, we define 

two basic measures - the precision and the recall of a system. Both of these measures 

assume binary relevancy. A document is either relevant, or is completely irrelevant.  
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Precision (P) states the proportion of retrieved and relevant documents to all 

documents retrieved. 

{ } { }|
|{ } |

rr

r

relevant documents retrieved documentsN
P

N retrieved documents

∩
= =  

Recall (R) indicates the proportion of retrieved and relevant documents to all the 

relevant documents available. 

| { } { } |
|{ } |

rr

re

N relevant documents retrieved documents
R

N relevant documents
∩= =  

Where  Nrr = number of retrieved relevant documents 

Nr  = number of retrieved documents 

Nre = number of relevant documents 

 

In an ideal IR system both of these metrics are equal to one. However in the real 

world, we can observe a reciprocal proportion between these two metrics. It is also 

important to note that the relevancy of a document depends on an individual opinion. 

The retrieved documents depend on the quality of the IR system, but also on the user-

formulated query. 

Many systems also provide a query tuning functionality. This can be either 

handled by simply allowing users to reformulate their queries or by allowing users to 

input some kind of feedback and using this information to re-rank the results. 

2.2 Architecture of IR systems 

Generally, the IR systems have two basic functions – inserting (indexing) 

documents and the searching function. Each of these functions can be broken down into 

modules.  The indexation units usually have modules for lexical analysis, 

lemmatization, thesauri usage and term weighting. The search unit usually has user 

interface, lexical and syntactic analyzer and search engine modules.  

2.2.1 Indexation 

The main goal of the indexation unit is to create a structure that properly 

characterizes documents so that they can be efficiently retrieved when they match a 

query. This structure can contain information about billions of documents (e.g. web), so 

it has to be space (memory) efficient, but also quick to work with. In this structure each 

document is represented by a record that contains a formal description of the document. 

The record should be composed of properly specified attributes and well chosen (key) 
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terms. The procedure of choosing terms that characterize the document is called 

document indexation. Documents can be indexed automatically, semi-automatically or 

manually.  

Primary
record

interface
Lexical
analysis Lemmatization Term

weighting

Indexation

Index

D
ocum

ents

 
Picture 1 Indexation 

The first phase of indexation in general IR systems is the lexical analysis. In this 

phase the elimination of improper (not influential) terms takes place. The list of such 

terms is commonly called stop-list.  

In the lemmatization phase, the morphological forms of words are eliminated to 

avoid excessive size increase of the index. 

The term weighting phase depends on the model of IR system. It the basic – 

Boolean model no term weighting is done and the index only contains the information 

about terms present in a document. 

2.2.2 Vector Model 

In the vector model ([5]), we assume using n various terms t1,..,tn for the 

indexation of all documents in the set. Then each document from the collection is 

represented by a vector  

1 2( , ,..., )i i i ind w w w=  

where wij∈<0,1> expresses the importance of term tj for the identification of document 

di, where higher values of wij represent higher importance. In the vector model the 

document collection is represented by a matrix M=(wi,j) with size m x n where the i-th 

row represents the i-th document and the j-th column represents the j-th term. 

The query is in the vector model represented by an n dimensional vector: 

1 2( , ,..., )nq q q q=  

where qj∈<0,1> or optionally qj∈<-1,1>. The similarity coefficient between the query 

and each document can be thought of as the distance between the vector of the 

document and the query vector and can be calculated as: 

.

1

( , )
n

i k ik
k

Sim q d q w
=

=�  

To ensure good precision of the system, the weights of terms in matrix M have 

to be set properly. Most of the automated indexation methods are based on the 
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observation that the importance of terms for the indexation is in direct proportion with 

the frequency of term occurrence in the document. The basic weight setting is the term 

frequency that is defined as: 

,i j
ij

i

m
TF

m
=  

As the TF values are usually very low, the normalized term frequency NTF 

measure that ignores very low values is used more often.  

,
,

,

0 if ,

1 1
otherwise

2 2 max( )

i j
i j

i k

TFi j
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�
�
�
�
��
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=
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The terms that occur in most of the documents are not very good key terms for 

the indexation process. Because of this we also incorporate a measure that characterizes 

the terms depending on the document collection. One such measure is the inverse term 

frequency that can be calculated as: 

)log( /j kITF m O=  

where Ok is the number of document where term k occurs. The elements wij of matrix M 

can be calculated as: 

.ij ij jw NTF ITF=  

To achieve uniform size of the document vectors, the term weights of a document are 

usually normalized to one. 

2.2.2.1 Vector model with the term similarity matrix 

As the basic vector model does not consider the substitutability of key terms, the 

results of the query significantly depend on choosing the right terms in both index and 

the query. This problem can be partly solved by using the thesauri, by lemmatization or 

by using a term similarity matrix.  

The term similarity matrix is a square matrix S, where Sij∈<0,1> represents the 

substitutability of term ti by term tj. This matrix can then be used to process the user 

query by incorporating the term similarity as: 

' .q q S=  

This transformation ensures that terms that are similar to the query terms but are 

not part of the query are also considered in the result. The matrix S is usually symmetric 

and is computed by statistical methods. 
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2.3 Web IR systems 

Before the expansion of web, IR systems were typically installed in libraries and 

were mostly used by the skilled librarians. The retrieval algorithms of these systems 

were usually based exclusively on word analysis.  

The web changed all this. Users have now access to various search engines 

whose algorithms consider many more factors when computing the results of the query. 

The major difference between the traditional and the web IR systems is that the web IR 

systems have to solve one additional issue – obtaining the document collection. The 

process of collecting web pages is called crawling and is described in chapter 7.1.1. 

In addition the web IR systems also have to face the issue ([6]) that the web 

lacks any imperative structure as e.g. centralized obligatory structure of the documents; 

control of reliability of information; information categorization; standard terminology; 

or separation of advertisement from other documents, etc. 

As we show in chapters 5 to 7 a lot of these issues can be partly resolved using 

the hyper-link analysis. However, all of these issues still present open problems. 

2.4 Main drawbacks and issues of the current IR systems 

Although current web IR systems use more and more sophisticated and complex 

methods, users of these systems still face several issues. The results provided by these 

systems often contain a lot of irrelevant documents and the documents actually 

matching user's needs are stashed in the rest of the results. 

This is mainly caused by the subjectivity of human understanding. The user 

queries are often vague and the notion of what should actually be returned as relevant 

results is very indefinite. 

To improve this condition, different approaches to ranking the results were 

proposed. In this paper we describe different graph-based rankings that try to 

incorporate available information to provide the current users with better results. 
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3. Graphs theory and algorithms 

In this chapter we would like to introduce you to graph theory and graph 

algorithms and briefly describe algorithms that we use later on in the process of 

information retrieval. We will describe general terms and explain principles of 

algorithms that we show have application in IR systems. As graph theory is very broad, 

we only define terms that we use further on. In this thesis we would use the terminology 

used in the largest free web encyclopedia – Wikipedia [7]. 

3.1 Graphs – general terms 

In mathematics and computer science graph theory is the study of mathematical 

structures called graphs. Graphs are used to model pairwise relations between objects 

from a collection. In this context a graph G = (V, E) usually means a set V of vertices 

and a set E of pairs of vertices called edges. Edges connect two vertices. We say a graph 

is undirected if there is no distinction between the two vertices associated with each 

edge. If all edges of a graph are directed from one vertex to another, the graph is 

directed. Each edge can also have parameter called weight (w: E � R) associated with 

it. In that case we say the graph is weighted, otherwise it is unweighted. (Pictures 2 and 

3 present examples of an unweighted and undirected graph and a weighted and directed 

graph respectively). 

In an undirected graph, we say that v0 and v1 are adjacent if and only if there is 

an edge (v0, v1)∈E. The edge is then incident on vertices v0 and v1. In a directed graph, v0 

is adjacent to v1 and v1 is adjacent from v0 if there is an edge <v0, v1>∈E and the edge is 

then incident on vertices v0 and v1. 

Each vertex in a graph has its degree. The degree of a vertex is the number of 

edges incident on that vertex. In directed graphs, we consider both the in-degree and the 

out-degree of a vertex v meaning the number of edges adjacent from v and adjacent to v 

respectively and denote them by ind(v) and outd(v) respectively. 

Another commonly used term is a path. Existence of a path from v0 to vk is equal 

to the existence of a sequence v0, v1, ... ,vk such that for every i ∈{1, ..., k}, vertices vi-1 

and vi are adjacent. A path is called simple if no vertex is repeated in the sequence and is 

called a cycle if it is a simple path except that v0 = vk. The shortest distance between two 

vertices v0 and v1 in an unweighted graph is defined as the number of edges of the 

shortest path between v0 and v1 in the graph and is denoted by dist(v0, v1). In a weighted 
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graph the dist(v0, v1) is defined as the sum of edge weights of a path between v0 and  v1 

such that sum is minimal among all paths connecting v0 and v1. 

A graph is said to be connected if for any two vertices there exists a path that 

connects them. A subgraph G' = (V', E') of graph G = (V, E) consists of a subset of 

vertices V' ⊆ V and a subset of edges E' ⊆ E such that they form a graph. A connected 

component of a graph is a maximal connected subgraph. I.e. a connected component is a 

subgraph of a graph that can not be enlarged by any vertex or edge from the original 

graph without losing the property of being connected. A directed graph is strongly 

connected if for any two vertices there exist a directed path between them in both 

directions. A graph is a called a tree when it is a connected graph without cycles and is 

called a forest when it is a collection of trees. A graph is complete if all pairs of vertices 

are connected by an edge.  

 
 

G=(V, E) 

V={1,2,..,7} 

E={(1,2),(2,4),(2,3),    

      (5,6),(5,7)} 

 
 

G'=(V', E') 

V={1,2,3,4} 

E={(1,2),(2,3),(2,4)} 

 

Picture 2 Graph examples 

Notes: G is an undirected unweighted graph. G' is a subgraph of G. G' is also a 

connected component of G and also a tree. 

3.2 Graph representation 

Graphs can be represented by geometrical means as shown above, but for 

mathematical and computer science purposes we generally use other representations of 

which most commonly used is the adjacency matrix. For a graph with n vertices the 

adjacency matrix A has size n x n. The element ai,j in the i-th row and j-th column is 

equal to 1 if there is an edge between vi and vj. In the case of an undirected graph, the 

matrix is symmetric, i.e. ai,j = aj,i for each i and j. If the graph is weighted, then ai,j is 

equal to the weight of edge (vi, vj). The degree of any vertex of an undirected and 

unweighted graph represented by an adjacency matrix equals to the sum of the i-th line 

(or row). In a directed graph the sum of the i-th line and the sum of the i-th column are 

equal to the out-degree and the in-degree of vi respectively. 

Another possible, commonly used representation is an adjacency list, where 

each row of the adjacency matrix is represented as a list. This representation is more 

1 2

3 4

5

6

7

1 2

3 4
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suitable for sparse graphs because of its memory efficiency, but is more difficult to 

work with and much slower when changes in graph are made.  

There are lots of other representations that can be used for various purposes, but 

those are not of much importance for this paper. 

3.3 Graph algorithms 

Graph algorithms are used to compute some properties of a given graph. If we 

can imagine a map represented by a graph where towns are represented by vertices and 

highways correspond to edges. Then we might want to know the distance between 

certain cities. We might want to find out names of all the towns where we can get from 

a given town just by using highways. We might be interested in which town is the most 

central one in our map or in many others aspects. To answer these questions, one might 

utilize an algorithm for solving the shortest-path problem and a graph-crawling 

algorithm.  

A different realistic scenario where graph algorithms may be used to solve a real 

world problem is if we imagine a water pipe network. In such a network each pipe 

(modeled by an edge) has a certain width and so can transport only a limited amount of 

water in a given time unit. The junctions of these pipes (modeled by vertices) can be 

considered not being able to hold any water; that is the amount of water that flows into 

the junction equals the amount of water flowing out. Furthermore we can imagine we 

have an inlet to this network called source and an outlet called sink. Intuitively the total 

flow of this network is the rate at which the water comes out of the outlet.  

If we model this network by a weighted directed graph, we can use a maximum 

flow problem solving algorithm to find out the total flow of the network, or we use a 

minimum cut algorithm to find out the least number of pipes that need to be blocked to 

prevent the possibility of transporting any flow from the inlet to the outlet. 

These examples illustrate some applications of graph algorithms. Further on in 

this paper we show how these algorithms are used in IR systems. 

3.4 Complexity 

Before going any further in explaining various algorithms, we need to define 

some measures to be able to compare them. 

To describe the asymptotic behavior of a function, we use the big O notation. 

The time complexity of graph-based algorithm can be asymptotically represented by a 
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function of two variables m, n meaning the number of edges and vertices respectively. 

Thus, if we say an algorithm has asymptotic time complexity O(m + n) we are saying 

that the time complexity can be bounded from above by a(m + n) for some constant a. A 

similar definition holds for the space complexity. For a more detailed explanation of 

asymptotical complexities see [8]. The asymptotic complexity is mostly used for worst 

case complexity analysis. This means that if f(x) = O(g(x)), then for "big" x, f performs 

better than or equal to a.g. However, this does not say anything about neither the 

constant a nor the minimum size of x. They both can be small, but they also can be 

enormous numbers. 

As a result we also use other measures of algorithms. One of these measures is 

the average complexity which attempts to measure the average performance of an 

algorithm. Again it is a theoretical approach, but for practical use, it is much more 

relevant than the worst-case asymptotical complexity. Probably the best example where 

the worst-case asymptotic complexity is not a reasonable ranking is the case of sorting 

algorithms. These algorithms get a list of numbers on input and their task is to sort these 

numbers. The best achieved and proved to be best achievable worst-case asymptotic 

result is O(n.log(n)) which is for example achieved by merge-sort. In practice, however, 

the most used algorithm is quick-sort because it is simple to implement, but primarily 

because of its performance. Empirical tests showed that the algorithm is faster than 

other sorting algorithms and that the average asymptotic complexity is O(n.log(n)) with 

a small constant. The main drawback of these theoretical approaches is that they treat all 

basic operations (multiplying, square root etc.) as being equally time demanding, which 

obviously is not true. However, they can provide a good heuristic for the real time 

complexity. 

Another important measure is counting the I/O (input / output) operations of a 

given algorithm. This measure is generally important in algorithms on huge graphs that 

can-not be loaded into the main memory (random access memory - RAM). This 

measure only counts the number of I/O operations because they are much more 

expensive (in terms of time) than other operations. Current disks are several orders of 

magnitude slower (disk seek time) than the random access memories. Therefore if an 

algorithm works with a graph that is not stored in the main memory, it is reasonable not 

to choose an algorithm with the lowest asymptotical nor average complexity but rather 

the one using the least I/O operations.  
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All of these heuristics help us to choose the right algorithm for given problem, 

but the real time complexity may sometimes surprise us at the end. For example 

different graph representations used by one algorithm can drastically change the 

performance.  

3.5 Graph traversal 

The goal of graph traversal algorithms can either be to find out if a certain vertex 

is reachable from a given start vertex, or to provide a list of all vertices connected (by a 

path) to a given start vertex. 

There are two commonly used approaches – the BFS and DFS. The basic idea of 

breadth first search (BFS) is to start several paths at a time and advance in each one 

step at a time. I.e. it starts from a given start vertex and in the i-th iteration it finds 

vertices that are reachable from the start vertex by a path of length i. It terminates when 

no previously undiscovered vertices are found in the iteration. On the other hand the 

depth first search (DFS) propagates the idea of continuing the search until the end of the 

path once a possible path is found. Both of these algorithms have their pros and cons 

and both are widely used. Good examples of uses of these algorithms are web crawlers 

– programs that browse the World Wide Web (WWW) in an automated predefined 

manner. 

3.6 Shortest path finding 

The objective of the shortest path algorithms is either to find the shortest path 

between two given vertices, or to find the minimum distance between a given vertex 

and all other vertices.  

3.6.1 BFS based approach  

On unweighted graphs (we consider all edges having length 1) the problem can 

be solved by a slight modification of the above-mentioned BFS algorithm. In the i-th 

iteration the distance d[v] of the newly discovered vertices is set to i. After running the 

algorithm all reachable vertices have been assigned a distance that is also the shortest 

distance. The average and worst case time complexity of this algorithm is O(n+m) 

because every vertex and every edge is only used once and then it is marked as 

discovered and never used again.  
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3.6.2 Dijkstra 

Dijkstra's algorithm is a greedy algorithm (more about greedy algorithm 

technique can be found in [9]) that solves the shortest path problem for weighted 

directed graphs with nonnegative edge weights. The algorithm works in iterations on 

two sets S and Q. Initially S is empty and Q contains all vertices. For all vertices except 

the start vertex s, distance d[v] of vertex v from vertex s is set to infinity. In each 

iteration the algorithm extracts a vertex u with minimum d[u] from Q and relaxes all 

edges (u,v). By relaxation we mean that we compare if d[v] > d[u] + w(u,v) (weight of 

the edge (u,v)) and if the condition is fulfilled we set d[v] = d[u] + w(u,v). The vertex u 

is then deleted from Q and added to S. The intuition behind this algorithm is that in each 

iteration the distance of the vertex from Q with the minimum distance cannot be 

improved any further and so we say it is the definite distance. After n iterations, all 

vertices have the definite distance set. 

The time complexity of this algorithm depends primarily on the data-structure 

we use. The complexity can be described as n times Extract Min from Q + m times 

Relax edge. For the simplest case – Q represented as an unsorted list the time 

complexity is O(n2). If Q is represented as a binary heap (BH), the Extract Min and 

Relax edge operations require O(1) and O(log(n)) respectively which implies time 

complexity O((m+n).log(n)) which in the worst case (for dense graphs) means 

O(n2log(n)). To lower the worst-case time complexity we can use the Fibonacci heap 

(FH) (for description see [10]) where Extract Min and Relax edge operations require 

O(log(n)) and O(1) respectively. So the time complexity is O(m + n.log(n)) implying 

worst-case time complexity O(n2). For dense graphs the complexity of the simple and 

FH implementations (O(n2)) outperform the binary-heap implementation (O(n2log(n))) 

and for sparse graphs the heap implementations (O(n.log(n))) perform better than the 

simple implementation (O(n2)). 

From what is stated above, one might very probably think, the Fibonacci heap 

implementation of the Dijkstra algorithm would be generally the most efficient and 

most commonly used. But as noticed from the tests done in [11] the Fibonacci heap 

only rarely outperforms both other implementations. For dense and sparse graphs the 

simple and the binary heap implementations performed the best respectively. The binary 

heap implementation was generally the best performing, although it was seldom slightly 

outperformed by the FH implementation on the dense graphs. The price this 
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implementation pays for achieving the best worst-case asymptotical complexity is too 

high and does not pay off in the real world. 

By this example we illustrated that a better worst-case or average complexity 

does not guarantee, that the algorithms would also perform better in empirical tests.  

3.6.3 Other shortest path algorithms 

There are several other approaches to the shortest path problem. Another that is 

worth mentioning is the Bellman-Ford algorithm that is very simple to implement and 

works also on graphs with negative edge weights. Initially d[v] is set to infinity for all 

vertices except the start one, which is set to zero. The algorithm then works in 

iterations. In each iteration it relaxes all edges. By relaxation we mean that it checks if 

d[v] > d[u] + w(u,v) and if the condition is fulfilled, then it sets d[v] = d[u] + w(u,v). It 

repeats the iterations until no d[v] is changed in the last iteration. For graphs with 

positive edge weights the time complexity is O(m.n) because in each iteration we 

process all edges and after each iteration at least one vertex has its final distance value 

set.  

As already stated, the most commonly used algorithms for solving the shortest 

path problem are the Dijkstra algorithm and the BFS-based algorithm. In this paper we 

show an interesting utilization of the shortest path algorithm that helps us to re-rank 

web pages to a given query using the user-supplied relevance feedback. 

3.7 Network flow 

Maximum s-t flow problem is defined on a weighted oriented graph G with two 

special vertices: source (s) and sink (t). For illustration we may suppose that edges are 

(oriented) pipes with a given diameter and vertices are the only places where edges can 

cross. We can then ask how many liters of water can flow from the source to the sink in 

a given time unit. 

As we will demonstrate the network flow algorithms have a wide variety of 

applications. In [12] the following examples are mentioned:  
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Examples of network flow utilization in real life   

Network Vertices Edges Flow 

hydraulic reservoirs, pumping 

stations, lakes 

pipelines fluid, oil 

circuits gates, registers, 

processors 

wires byte flow 

mechanical joints rods, beams, springs heat, energy 

communication  telephone exchanges, 

computers, satellites 

cables, fiber optics, 

microwave relays 

voice, video, 

packets 

financial stocks, currency transactions money 

transportation airports, rail yards, street 

intersections 

highways, rail beds, 

airway routes 

freight vehicles, 

passengers 

chemical sites bonds energy 

Table 1 Examples of network flow utilizations 

In this paper we show two IR applications of the network flow computations. As 

already mentioned it helps us to discover communities and it provides us with a 

relevancy ranking to a given query. 

3.7.1 Network flow problem definition 

The input of the problem is of the following form G = (V, E, s, t, c) where (V, E) 

is a directed graph, s (source) and t (sink) are two distinguished vertices, c(e) stands for 

the capacity function c: E � R+. 

In graph theory a network flow is an assignment of flow f to the edges of a 

digraph that satisfies the following constraints: 

- flow on each edge is less than or equal to the capacity of that edge (f(e) � c(e)) 

- for every vertex (except source and sink) the amount of flow into that vertex 

equals to the amount of flow out of it ( f+(v) = f--(v) )  
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Picture 3 Example of a network  and a flow in this network 

3.7.2 Ford – Fulkerson 

To explain this algorithm, we need a few more definitions. Suppose that we have 

a correct flow f. Then the residual graph G[f] for graph G and flow f can be defined as: 

G[f] = (V, E') where edge <x,y> ∈ E' if  f(u,v) < c(u,v) or f(v,u) > 0, i.e. the residual 

graph contains unsaturated edges and backwards oriented edges that contain a flow in 

the original graph. An augmenting path is a path from source to sink in the residual 

graph. The above definitions imply that f is a maximum flow if there is no augmenting 

path between source and sink in the residual graph. 

The basic idea of the algorithm is very straightforward. Iteration: find an 

augmenting path and augment the flow along this path. Repeat iteration until there is no 

augmenting path. It has been proved, that if we use the shortest (in terms of number of 

edges used) augmenting path (Edmonds-Karp enhancement) in each iteration, the 

algorithm converges to the maximum flow. As attachment 1 you can find illustration to 

the steps of Ford-Fulkerson algorithm on network flow from Picture 3. 

 The worst-case asymptotic time complexity of the Ford-Fulkerson algorithm is 

not bounded. When using irrational edge capacities, the algorithm might never achieve 

the exact solution. When using integer capacities, the run-time is bounded by O(m.ƒ) 

where m means the number of edges and ƒ is the value of the maximum flow. The 

modified version (Edmonds-Karp) of Ford-Fulkerson algorithm has asymptotic worst-

case time complexity O(m2.n).  

3.7.3 Pre-flow push (Push re-label) algorithm 

The pre-flow push algorithm uses a different approach than augmenting 

algorithms as for example Ford-Fulkerson. Augmentation paradigm says: “start with 

zero flow and augment, maintain a feasible flow and aim for optimality”. Pre-flow push 

paradigm says: “start with super-optimality first, then aim for feasibility” 

This means that we first try to push the flow through the network without 

checking that for each vertex the conservation rule applies (conservation rule – for each 
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vertex other than source and sink, the inflow equals outflow). And in the second phase 

we make the flow feasible. 

In the pre-flow push algorithm we use two further definitions. We define: Excess 

(pre-flow) of a vertex v as: e: V � R+
0 where e(v) = f+(v) - f--(v); Height of a vertex h: 

V�N0 

Initially we set the height of each vertex v as the shortest path distance (number 

of edges on the path) between v and t (sink) and set the excess of source to infinity. 

Then we iterate the following principle: Find a vertex with non-zero excess and try to 

push the excess further. If we are not able to push the whole excess out of the vertex 

(other then s), we increase its height. By "pushing" we mean moving the excess (or part 

of it) from vertex u to its neighbours v such that h(u) = h(v) + 1 and there is an 

unsaturated edge <u,v> or there is an edge <v,u> with a non-zero flow in the network.  

The iterations converge because the biggest height a vertex can achieve is 2.n 

because after that, the vertex is surely able to push the excess back to s, which can have 

the maximum height of n-1. Thus the worst-case (and also average) time complexity is 

O(n2). This is also the best-known theoretical result. 

For a better illustration of the principles of the Pre-flow push algorithm see 

attachment 2 that illustrates the steps of this algorithm on the graph from picture 3. 

3.8 Minimum s-t cut 

The goal of algorithms that solve the minimum s-t cut problem is to partition 

vertices of a network into two sets A and B such that s∈A, t∈B and the sum of weights 

of edges between A and B is minimized.  

There are two ways how to compute it. The naive way is to try to partition V in 

all possible ways and check the sum of edge weights between A and B. However, this 

algorithm requires exponential time depending on the size of the graph. 

A more useful way comes from the max-flow min-cut theorem proved by Ford 

and Fulkerson in [1]. This theorem enables us to compute the maximum flow in the 

network and find the minimum cut using the computed flow. The idea is very simple. 

We start with a set A that contains only s and then run a breadth-first search and add all 

vertices reachable from A through unsaturated edges or reversely oriented edges 

containing a flow. When no vertices are reachable from A through such edges, we set B 

= V \ A and the edges between A and B form the cut and the total weight of the cut is 

equal to the value of the flow. For proof see [13]. 
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As the minimum cut algorithms have application in various fields, multiple 

studies have tried to improve the performance of these algorithms or proposed faster 

approximate methods. In this paper we mostly use the method explained above and use 

the Pre-flow push algorithm for the flow computation. For alternative approaches see 

[13]. 
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4. Graphs and graph theory in information retrieval 

As already noted, graph theory has many applications in various fields. In the 

following chapters we provide an overview of graph theory usage in the field of 

information retrieval. We provide a detailed overview of graph-based ranking 

algorithms, algorithms for finding communities and also provide a brief overview of 

other interesting applications of graph theory in IR. 

A significant part of the algorithms described bellow takes advantage of the 

hyperlink-induced web-graph. In this graph, each web page is represented by a node and 

each link is denoted by a directed edge. Even though the web has no obligatory 

structure and every user can create and add pages with any content we show that the 

web has a self-organizing structure. This structure is shown to contain valuable 

information and can be utilized to help to solve various IR problems as e.g. relevancy 

ranking or finding communities. 

The most stress in this thesis is put on the ranking algorithms because these are 

trying to improve the most critical property of the IR systems, the relevancy (see 

chapter 2.1). We provide a very detailed description of the most important of these 

rankings – the PageRank, and also present various perspectives to its optimisation and 

improvements. We also provide a description of our implementation of the PageRank 

algorithm designed and optimized for the Egothor 2.0 search engine developed by 

RNDr. Leo Galambos from the Charles University [14]. 

In chapter 6 we describe several max-flow min-cut based approaches to finding 

communities. These approaches provide an application of min-cut algorithms that is not 

straightforward but is shown to be very effective. 

In the last chapter we provide an overview of some other graph-based algorithms 

that try to improve some other characteristics of the IR systems. Again some of these 

algorithms take advantage of the web-graph, but we also present a few algorithms that 

create and work with a totally different graph structure. 
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5. Ranking Algorithms 

In this chapter we describe graph-based relevancy ranking algorithms, which can 

be divided using several criteria. In this paper we describe three main categories. We 

start with the query independent web-graph based ranking – PageRank, then we 

describe some query dependent web-graph based ranking as e.g. HITS and in the last 

subchapter we describe some graph-based approaches that do not use web-graph 

structure at all. 

The query independent rankings provide a general ranking of documents based 

on some inter-document structure. One such ranking is citation ranking that assigns 

each document a ranking directly proportional to the number of documents that cite this 

document. In this paper we provide a detailed description of query independent web-

graph based page ranking algorithm - PageRank. We also describe our implementation 

of PageRank algorithm designed and optimized for the current version of the Egothor 

search engine. 

In the following subchapter we describe some web-graph based query dependent 

ranking algorithms, point out their major pros and cons and give comments to realistic 

usage of these algorithms. As we show, the most critical property of the query 

dependent ranking is the time consumption in the query time.  

The last subchapter describes some other graph-based rankings. In this chapter 

we show that the web-graph is not the only graph used by ranking algorithms. 

5.1 Query independent ranking – PageRank 

In the last several years, The World Wide Web (WWW) has witnessed an 

exponential growth in size. The number of pages on the web has grown from a few 

thousand in 1993 ([15]) to more than 25 billion ([16]) in 2006. Due to this boom, search 

engines are becoming ever more important tools for locating relevant information. The 

amount of available information on most topics has given rise to the importance of not 

only finding documents relevant to a given query, but also sorting them in descending 

order by estimated relevancy. The relevancy is influenced by many factors, some of 

which have been mentioned earlier. In the WWW there is one more instrument that 

helps us to better estimate the relevancy - the hyperlink structure. 

PageRank, probably the most important example of graph theory usage in web 

IR systems, uses the information of the hyperlink structure of the web to rank web 
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pages. Hyperlinks are a useful instrument for simplifying navigation on the web 

however the important information comes from the reason why authors create these 

links. From existence of a hyperlink between pages p and q we can assume that author 

of p thinks q is related to p.  

The PageRank of a page is an estimation of general relevancy of that page. It is 

calculated solely from the link structure of the web and its main power comes from the 

fact that it uses the content of other pages to rank the current page. It was developed at 

Stanford University by Larry Page and Sergey Brin as part of a research project held 

between 1995 and 1998 that led to a functional prototype of Google [17]. The name 

PageRank is usually explained either as web page ranking or as Larry Page's ranking. 

According to [18] the latter is the right one. Even though PageRank is only one of 

several factors that determine Google's relevancy ranking of documents to a given 

query, it is one of the main reasons why Google became so popular. While nowadays 

Google claims considering more than one hundred factors [19] when calculating the 

results of a query, PageRank still provides the basis for it. 

In this chapter we provide an introduction to the PageRank computation and 

usage and also describe several approaches to improving the run-time and the precision 

of this ranking. In the subchapter 5.2, we also describe our implementation of the 

PageRank algorithm designed for the Egothor search engine. 

5.1.1 Intuitive Background 

PageRank can be intuitively explained as a model of user behavior. Imagine that 

there is a random surfer who selects a random page as the start of a web journey and 

then follows the links on the current page with uniform probability, but can eventually 

get bored, and instead of following a link, moves (jumps) to a random page and then 

continues the journey. The PageRank of a page is then the probability that the random 

surfer visits the page. This intuition is often thought of as a random walk and can be 

modeled by a Markov chain [20]. PageRank is then the stationary distribution of the 

Markov Chain. 

Another intuitive justification comes from the citation ranking, but refines it. 

The citation ranking sets the number of citations of a document as its rank. This 

ranking, however, does not work well on the web, because it is vulnerable to 

manipulation as it is relatively easy to create lots of pages with no informative value 

pointing to a given page and hence improving its ranking. PageRank uses the idea of 

distributing the ranking through links, i.e. a page can have a high PageRank, if there are 
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a lot of pages pointing to it, or if important pages point to it. The idea is intuitively clear 

because pages that are linked by many other pages and pages that are linked from pages 

like Yahoo's homepage might be worth looking at. It is improbable that a low quality 

page would be linked from a high quality page (e.g. Yahoo's homepage), or that lots of 

pages with at least moderate quality would link to it.  

 
Picture 4 PageRank intuition 

5.1.2 Existence of PageRank distribution 

In order to provide an explanation to existence of the PageRank distribution, we 

first need to define several terms. We use the notation P(p) for PageRank of page p; D 

for damping factor – probability that the random surfer continues his journey by 

clicking on a link on the current page – usually set around 0.85; n for number of pages 

in our collection; and d(p), ind(p) and outd(p) for total degree, in-degree and out-degree 

of page p respectively. With these definitions, we can write the formula for computing a 

PageRank of a page p as: 

( , )

(1 ) ( )
( ) .

( )b a E

D P b
P a D

n outd b∈
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This formula shows that PageRank of a given page is derived from PageRank of 

pages that point to it.  The problem is that such an equation is created for every page, so 

to compute PageRank of all pages in a collection, a huge set of linear equations needs to 

be solved. 

However there is also another important point – the question of whether, there 

even is a solution to all of these equations. To be able to give a positive answer to this 

question, we need to handle a few special cases and use some knowledge from linear 

algebra. 
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We define the adjacency matrix H= [Hi,j] for i,j = 1 to n as: 

{,

1 if ( , )( )
0 otherwise

i j
j

i j

a a Eoutd aH
∈

=  

Notice that H has some special properties. All entries in H are nonnegative and sum of 

each column is one unless the page is a sink (page with no links on it). To improve this, 

we set all values in the i-th column to 1/n if pi is a sink. Now sum of each column of H 

is 1 and all values are nonnegative, i.e. H is stochastic.  

In this matrix representation the PageRank of all pages can be represented as a 

vector P where Pi = P (pi) i.e. Pi is the page rank of i-th page in the collection. Now we 

can express the equation for computing PageRank as: 

.P H P=  

I.e. P is the eigenvector of matrix H with the eigenvalue 1 or P is the stationary vector 

of H. The existence of such a vector implies from the stochastic property of H (for proof 

see [21] or [22]).  

5.1.3 Computation of PageRank 

When we know that PageRank assignment exists we might want to know how to 

compute it. The "naive" way is to create an adjacency matrix H and compute its 

stationary vector using standard eigenvector computation techniques. However, 

computation on a matrix having n = 25 billion (which was the estimated size of web in 

2006 [16]) rows and columns is prohibitively memory expensive. To store such a matrix 

we would need 2.5 Zettabytes (Zetta = 1021) when using 32-bit floating-point numbers 

for storing the value of its elements. This is far more than our current resources allow 

and given the fact that web grows much faster than the computational capacities, future 

use is also improbable. 

A good improvement of the memory effectiveness comes from the observation 

that (according to [23]) the average number of links on a page is 10 (in our mff.cuni.cz 

collection it is 22). This means that in average in each column all but 10 entries are 

zero. This fact motivates us to use another graph representation – the adjacency list, 

mentioned in chapter 3. The adjacency list can in this case be thought of as an array of 

size n where the i-th record consists of an integer number m, meaning the number of 

links on page i and a list of IDs of pages linked from page i. For sinks, we only store 

m=0. Given the average number of links contained on a page is 10 the memory needed 

for storing this structure for n = 25 billion is 2.05 Terabytes (we need to use the 64-bit 
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integer numbers for storing page IDs (the range of 32-bit unsigned integer is 0 to 

approximately 4.3 billions) and we need to store a 16-bit unsigned "short" integer – the 

link count, for each page). This is a fairly better result however it is still quite over 

current (top computers) possibilities. It is, however, the most widely used representation 

structure of the web graph. It is also important to note that the web-graph is not the only 

structure we need to store. 

Having the web graph represented by the adjacency list structure we can use 

another approach to computing the PageRank distribution – the power method. The 

general power method can be thought of as an iterative algorithm, where in each 

iteration we use the results of the foregoing iteration to get a new result that is closer to 

the definite solution. In our PageRank computation, we use the power method in the 

following way. We start with a vector P0
 (initial PageRank) of size n where each 

element is equal to 1/n. In the i-th iteration (for i = 1, 2...), we initialize elements in Pi to 

(1-D)/n and then we distribute rank from all elements of Pi-1 in the following way. If 

page j contains m links, Pi
 values of pages linked to by j-th page are increased by D.(Pi-

1)j/m. If page j is a sink, all elements of Pi
 are increased by D.(Pi-1)j/n. I.e. in each 

iteration each page distributes D % of its PageRank uniformly to all its neighbours and 

in case the page is a sink, to all pages from the collection.  
1(1 )
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It is proved (for proof see [23]) that when D ∈ (0,1) Pi
 converges to the 

stationary vector. The dumping factor D is usually set to 0.85 and empirical tests (see 

[24]) showed that in average after 20 – 50 iterations the relative ordering of pages is 

close to the converged state. The power method and adjacency list structure are also 

used in our implementation of PageRank computation. 
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Algorithm 1 PageRank computation 

   
  // Initialization 
  for i = 1 to n do 
   NewP[i] = 1/n 
 
  // Main iteration 
  while ( |NewP - OldP| > � ) do 
  begin 
   OldP = NewP 
   // Initialization of the the rank vector 
 for i = 1 to n do 
  NewP[i] = (1-D)/n 
 
 for i = 1  to n do 
  for all j such that page j is linked from page i do  
   NewP[j] += D.OldP[i]/outd(i) 
 
  end while    

5.1.4 PageRank I/O optimisation 

One of the main advantages of PageRank is that it is a query independent 

measure, so it can be precomputed and then used for optimizing the structure of the 

inverted index file. It is believed that Google re-computes the PageRank once in every 

3-4 weeks. These facts might imply that the PageRank calculation is not that time 

critical. However the slowness of Google in adding new pages into his index is one of 

the main drawbacks that Google is upbraid for. It is also one of the main reasons why a 

lot of people find Live search (from Microsoft) [25] more useful when searching for 

more fresh information. According to [26] the Google's PageRank computation takes 2-

3 days, which results in impossibility to rank the newest pages. This information gives 

us a notion about how long might it take for a non optimized version of PageRank 

algorithm run on the whole web to converge. 

Some people argue that the PageRank distribution does not change too much in 

time and so if we use the last computed PageRank as the initial vector in the new 

PageRank computation we can expect that the number of iterations till getting to 

converged state decreases considerably. However this is not exactly true. There are two 

main reasons contradicting this idea. First one is that the number of newly added pages 

is still increasing. The second argument is that according to [27] the average half-life of 

pages on the web is 10 days (in 10 days half of the pages on the web are gone; i.e. their 

URL's are no longer valid). This brings us to a conclusion that using the last computed 

PageRank when creating the initial vector might decrease the number of iterations 

needed, but only slightly. 
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There are scenarios where the time needed for PageRank computation plays a 

major role because it is computed multiple times. Extensions of PageRank like, topic-

biased or personalized PageRank (both to be described later) are good examples of such 

scenarios. Thus a highly optimized PageRank computation is needed in order to make it 

possible to use these extensions on the web scale.  

There are several approaches to PageRank optimisation. Some studies try to 

minimize the number of iterations needed, some try to speed up the time needed in each 

iteration, some examine the possibility to approximate PageRank using various 

heuristics etc. 

In this paper we survey some of these approaches and give some comments on 

realistic usage of some recent algorithms.  

5.1.4.1 File structure definition 

For further use we describe the structures needed for the computation in more 

details. We assume the web graph is stored in an input file with the following structure. 

The first record in the file has the meaning of number of pages indexed through the 

crawl process. Then in the rest of the file, there is a record for each crawled page having 

the structure: ID of the crawled page; Number of links on this page; and the list of IDs 

these links link to, sorted by ID. As already stated, the average number of links on a 

page is a small constant, so the sorting of the ID's would not present a time critical 

issue.  

The result of the algorithms is written to a file that is sorted by the PageRank 

values in descending order and has the form: ID and the PageRank of this page. 

5.1.4.2 Memory non-critical scenario 

In a lot of realistic scenarios web search engines work on just a fragment of the 

web, e.g. pages in the domain cuni.cz or mff.cuni.cz. In such cases the whole adjacency 

list and also the vectors for computing PageRank can be fit into main memory. In this 

case the easiest way how to compute PageRank of these pages is to load the input file 

into an adjacency list in the memory, create two arrays (vectors) of size n for rank 

computation and use the power method for the computation. A good time saving 

improvement can be achieved in treating sinks in a smart way. Instead of distributing a 

portion of PageRank to each page every time we process a sink, we can store the portion 

of PageRank by which this page (sink) contributes to the new rank of all pages to a 
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variable. At the end of the iteration we just add the sink contribution to new rank of all 

pages. 

In such scenarios no further optimisation is needed. The only I/O operations 

performed are input file loading and saving the final PageRank file. The run time of our 

implementation of the PageRank algorithm, run on a collection of about 1.4 million 

pages crawled by the Egothor crawler, is approximately one minute. 

5.1.4.3 Memory critical scenarios 

In many common scenarios the size of the collection would, however, not allow 

us to store the whole web graph and the PageRank vectors in the main memory.  

However, if the graph is stored as proposed earlier, the only data we need to 

store in the main memory (when using the above mentioned graph representation) to 

ensure an acceptable speed of the computation is the currently computed PageRank 

vector or at least a part of it. The reason for this is that in each step of the iteration any 

element of the newly computed PageRank vector can be changed. To write this 

information to disk every time would be prohibitively time expensive, because of the 

disk seek time. We review the options of computation we have with decreasing ratio 

between the size of main memory and the size of a given collection. 

First we can imagine that we are able to store two PageRank vectors. One for the 

current computation and the other one containing results from the previous iteration. In 

this case the only change in the computation process is that instead of loading the input 

file into the memory, we read the information directly from the disk in each iteration. 

However if we store the graph in the above proposed way, we can read the whole file 

sequentially. The rest of the algorithm stays the same. 

In an even more memory critical scenario, we might not even have enough 

memory for storing the two PageRank vectors. In this case we only keep the currently 

computed vector in the main memory and in each iteration we read the vector from last 

iteration and the graph from disk. Thus it would be beneficial to have the file containing 

the graph sorted by ID, so that both files can be read sequentially. This idea is also used 

in of the program versions implemented as a part of this thesis. Detailed description of 

the implemented algorithm can be found in chapter 5.2.4. 
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5.1.4.4 Haveliwala's algorithm 

There are scenarios, where the size the PageRank vector exceeds the size of the 

main memory. A practical example of such a scenario is the PageRank computation for 

the whole web. Even if we only assume that the size of the web is 25 billion pages we 

would need more than 200 Gigabytes of main memory (when using a 64-bit floating 

point number) to store the currently computed PageRank vector. In such cases we can 

use an approach proposed by Haveliwala in [28]. The main idea of this approach is that 

if we can not store the whole currently computed PageRank vector into the memory, we 

only store a part of it that fits there leaving some space for other computations. We then 

process the input file in a way that would enable us to only process pages from the 

collection that contain links to pages in the currently stored part of the vector. To 

achieve this, we would first estimate the size s that we would be able to fit in the main 

memory and then we preprocess the input file in the following way. We create q = n/s 

files. The i-th file contains information about all pages that have links (at least one) to 

any page in the range i.s to (i+1).s (for illustration see Table 2).  

 
Table 2 Example of link file partitioning in Haveliwala's algorithm 

Having this structure of the input file we are able to compute the part of the 

PageRank vector stored in the main memory without the need of many disk seek 

operations. We then save this part of the vector for the use in the next iteration and free 

the memory for the next part of the vector. Empirical tests showed that this algorithm 

performs very well for moderate values of q. We present several improvements of the 

algorithm that would enlarge the scope of its usage, but that can also be used in other 

algorithms. 
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5.1.4.5 Use of the web graph structure 

First we can use the results of web graph structure studies as for example [29, 

f30, f31]. These papers present a good overview of the web's organization. The study by 

Broder et al. describes the web having the shape of something like a bow tie. That is, 

about 28% of the pages form a strongly connected core (the center of the bow-tie). 

About 22% of pages that can be reached from the core, but cannot reach it themselves, 

form one of the tie's loops. The other loop consists of approximately 22% of the pages 

that can reach the core, but cannot be reached from it. The remaining nodes (pages) can 

neither be reached from the core nor reach it. 

 
Picture 5 Bow tie structure of the web 

Some papers (e.g. [32]) also present the idea of hyperlink locality. These studies 

proved that if the ID file is sorted in a smart way then the most of the links on a page 

link to pages with a close ID. 

Results of these studies can be used to improve Haveliwala's algorithm by using 

an intelligent crawler (e.g. [33]). Such crawlers can provide a structure that could be 

processed to get an efficient block structure, i.e. majority of links on pages in a block 

would link to pages in the same block. This would result in a very good improvement in 

the run time of the algorithm, because it would minimize (or at least decrease) the 

number of pages stored in each block of the input file. 
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5.1.4.6 Compression techniques 

A further improvement of Haveliwala's algorithm (but also all the others) can be 

achieved by using some kind of compression technique. A simple compression 

technique that is also used in our implementation is the Pack7 number format. It tries to 

avoid storing zero bytes in the memory by not using a uniform byte length for storing 

numbers. I.e. in each byte, first seven bits contain the value information and the last bit 

signalizes, if this is the end of the number, or if it continues in the next byte. This 

technique is intended for use on integer numbers, but can easily be transformed for use 

on the floating-point numbers, when we know an approximate range of these numbers. 

More about the Pack7 compression technique can be found in chapter 5.2.  

In this paper we do not concentrate too much on the compression techniques, 

however for an illustration we present a concept of a compression technique that might 

decrease the memory requirements for storing the PageRank vector by a factor of more 

than 2.  

Our compression technique is based on the following observations. As shown in 

[34] the distribution of the logarithmically scaled PageRank follows a power law 

distribution with exponent approximately 2.1. I.e. the portion nr of pages with rank r is 

approximately c/(r.n)2.1 where c is a constant set so that the sum of nr for all r ∈ {0,..9} 

is equal to 1. In this case the constant c is roughly equal to 1.6. This fact implies that 

about 2/3 of pages have PageRank very close to minimum and that the highest rank of a 

single page would mostly be close to 10-log(n)/2.  

The second observation that lead to the concept of our compression technique 

comes from the fact that some papers assume computing PageRank not in the scale 

(0,1), but in the range (0, n). We assume that rounding (truncating) the floating-point 

numbers for storing the PageRank values 4-th decimal places bellow the first non zero 

number of the minimum rank would not have any major influence on neither the 

number of iterations nor the final PageRank values.  

If we summarize these facts we come to the conclusion that the range of 

PageRank values we need to be able to store is approximately (10-4.0.15/n, 10-log(n)/2), 

which is {0,..., 10log(n).5/2} in integer numbers. For n = 25 billion this is approximately 

the range {0, .., 109} which is less than the range of a 32-bit unsigned integer which has 

range {0,.. 4,294,967,295}. 
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It is now important to note that we actually know the minimum PageRank of all 

pages. So instead of storing this number, we can only store the difference between the 

PageRank of the current page and the minimum rank. This improvement causes that for 

a lot of pages we would only store 0 as its page rank.  

Realizing all these facts we can use the Pack7 format for storing the PageRank 

value for all pages. Due to the power-law distribution of the PageRank values at least 

2/3 of all pages would only need 1 byte for storing their rank and for more than half of 

the rest of the pages 2 bytes are sufficient for storing the rank which results in 

compression factor of more than 2 as presented earlier. It is also important to note that 

the upper bound of the highest PageRank we need to store is not crucial, because it 

would only be achieved by a few pages and so it would not change the final 

compression factor considerably. 

Even though this compression technique is only based on a few simple 

observations, it can decrease the memory requirements for storing the PageRank vector 

by more than half, which implies that better results should be achievable. 

5.1.4.7 Improvements summary  

To summarize this we can come to the following conclusion. If the size of the 

web was currently 25 billion of pages and we used our simple compression technique 

we would need approximately 50 Gigabyte of main memory for storing the PageRank 

vector. This is achieved by using the observation about the range of PageRank values, 

which enables us to use 32-bit unsigned integer numbers for storing the values and the 

use of our compression technique. 

This is already a size that might fit into the main memory of some top 

computers. So we might not even need the Haveliwala's algorithm, but can use the one 

of the algorithms mentioned earlier. However taking into account that it is highly 

effective for moderate values of q this algorithm can be used to efficiently compute 

PageRank for all pages on the web on computers with at least 20 GB of main memory. 

However, if we take into account that most common main memory size of the present 

computers is between 0.5 and 2 GB, further optimisation is deserved.  

5.1.4.8 Split-Accumulate algorithm 

Several other papers presented approaches that tried to minimize the number of 

I/O operations needed to compute the PageRank distribution. One of the best 
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performing algorithms in this category is the Split-Accumulate algorithm presented by 

Chen et al. in [15].  

The main idea of this algorithm is derived from Haveliwala's algorithm, but uses 

it reversely. This algorithm again splits the vector for PageRank computation into q 

blocks Vi, such that each block fits into main memory leaving again some space for 

further computations. These blocks however only exist in the main memory and are 

written to disk only after the last iteration.  

Further, this algorithm works with three sets of files Li, Pi, Oi each containing q 

files. Li contains for each page all pages from the i-th block that contain a link to it and 

also the number of such pages (see Table 3). Oi contains out-degree of each page from 

the i-th block. Pi is defined as containing all packets of rank values with destination in Vi 

in arbitrary order, i.e. Pi contains all rank values that influence PageRank of pages in the 

i-the block. E.g. For the example from Table 3 P0 contains packets (0, (1-D)/8n+..), (1, 

(1-D)/14n), etc. in the first iteration. The packet (0, (1-D)/8n +..) contains information, 

that PageRank of page 0 should be increased by (1-D)/8n (initial rank divided by the 

out-degree of page 1) + .. (initial PageRank divided by the out-degree of other pages in 

this block that contain a link to page 0). 

 
Table 3 Example of link file partitioning in the Split-Accumulate algorithm 

The algorithm works in iterations where each iteration has q phases. In each 

phase we first initialize all values in vector Vi in the memory to (1-D)/n. Then we run a 

scan through the file Pi (that contains all packets with destination in Vi) and add rank 

from each packet to the appropriate entry in Vi. After finishing the scan through Pi we 

load the file Oi (out-degrees) and divide each rank value in Vi by its out-degree. Then 

0, 2, 2023201

0, 1, 2, 3, 4..51200

0, 2, 4, 20..12100

3, 4, 21..23101

0, 1, 5, 6, 33, 114..142

Destination pages ID 
(8 bytes each)

Out Degree  
(2 bytes)

Source page 
ID (8 bytes)

0, 9, 199, 212, 568..81

1, 2, 4, 66, 122, 146..500

0, 2, 2023201

0, 1, 2, 3, 4..51200

0, 2, 4, 20..12100

3, 4, 21..23101

0, 1, 5, 6, 33, 114..142

Destination pages ID 
(8 bytes each)

Out Degree  
(2 bytes)

Source page 
ID (8 bytes)

0, 9, 199, 212, 568..81

1, 2, 4, 66, 122, 146..500

Original Link file 

0, 2, 4, 2141

Block of links 0: Source 0 -99

0, 4, 8732

Destination pages 
ID (8 bytes each)

In-Degree   
(2 bytes)

Destination 
page (8 bytes)

1,244

1,2,4, 66, 77, 9860

0, 2, 4, 2141

Block of links 0: Source 0 -99

0, 4, 8732

Destination pages 
ID (8 bytes each)

In-Degree   
(2 bytes)

Destination 
page (8 bytes)

1,244

1,2,4, 66, 77, 9860

Block of links 1: Source 100 -199

10113

100, 102, 104..142

100, 101, 10334

100, 102, 120, 122..400

Block of links 1: Source 100 -199

10113

100, 102, 104..142

100, 101, 10334

100, 102, 120, 122..400

20013

Block of links 2: Source 200 -299

200, 20122

200, 223, 228..141

200, 209, 212..44

200, 201, 203..500

20013

Block of links 2: Source 200 -299

200, 20122

200, 223, 228..141

200, 209, 212..44

200, 201, 203..500

Link files - Li 



34 

we run a scan through Li and for each record in Li that contains some (at least one) 

sources in Vi and a destination in Vj we write one packet with this destination node and 

the total amount of rank to be transmitted to it from these sources and output it into file 

P'j (that is used as Pj in the next iteration). 

The idea of this algorithm is not as straight forward as the one of the algorithm 

proposed by Haveliwala. Empirical tests showed that for moderate values of q (number 

of blocks the PageRank vector has to be divided to, so that the blocks fit into the main 

memory) the Split-Accumulate algorithm performs similar to Haveliwala's algorithm. 

However with increasing values of q the time consumption of the Split-Accumulate 

approach if significantly lower than the one of Hawelivala's approach. 

If well implemented, this algorithm already enables us to compute PageRank on 

the web-scale on common home PC's without need for any significant compression. The 

paper [15] also shows how this algorithm can be slightly modified to efficiently 

compute the Topic-Sensitive PageRank. We return to this application later. 

In this chapter we presented algorithms that allow us to compute PageRank even 

for massive graphs without a need of the best high-tech hardware. The computation 

would however take quite a long time and the potential of usage on common computers 

is still limited.  

5.1.4.9 I/O efficient approaches summary 

In the previous subchapters we showed that there are several ways how to speed 

up the power-method computation of the PageRank distribution. The Split-Accumulate 

algorithm is shown to be able to efficiently compute the ranking even on computers 

with common memory size. However we also noted that the computation on the web-

scale would take a few days even on above average computers, which is still very 

limiting. These approaches only attempted to speed up the computation using various 

ways how to distribute the data in a way that would minimize the number of I/O 

operations needed. In the next subchapter we describe some approaches that use 

alternative ideas. 

5.1.5 Other approaches to PageRank optimisation 

As we showed in the previous chapter, even though the size of the web is huge, 

it is still possible to compute PageRank of all pages on it. However, the computation 

takes a really long time even when using a highly (I/O) optimized approach. Hence, 

people examined other approaches how to speed it up. One approach that can easily 
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come to our minds is not to compute the PageRank as it is defined, but to try to 

approximate it in a way that would enable a quicker computation. This might be a 

reasonable approach because PageRank already is an approximation of user behavior, 

so a further approximation might still have the required property of providing a general 

ranking of web pages while requiring less computation time. 

A naive way of utilizing this idea would be to try to use a bigger (than usual) 

epsilon in the convergence check in the basic PageRank computation. However this 

approach reduces the run time only slightly and the trade off between the lost precision 

and the saved run time is not reasonable. 

Several papers (e.g. [35]) presented algorithms that try to approximate PageRank 

computation using the sites (for simplicity mostly modeled by hostnames) as nodes of 

the web graph and then distribute the rank to pages in the site using only the intra-site 

links. These approaches take into account that a lot of documents (e.g. PowerPoint 

documents) consist of multiple web pages and that pages on one site are often topically 

related. So they consider the site level to be the right level of granularity for the 

relevancy analysis. Further on we use the terminology illustrated by Table 4. 

URL Terminology 

Term Example: en.wikipedia.org/wiki/ 

top level domain org 

domain wikipedia.org 

hostname en 

host en.wikipedia.org 

path /wiki/ 

web page en.wikipedia.org/wiki/ 

Table 4 URL Terminology 

Another fact that speaks for using the site approximation is that the amount of 

web sites (hosts) is considerably smaller than the amount of web pages. According to 

[36] there were less than 100 million of registered hosts and about 25 billions of web 

pages in October 2006. Another important fact is that according to [37] more than 75% 

of all hyperlinks on the web are intra-host links. These facts imply that the PageRank 

computation on the host graph should be substantially more time efficient. The 

following two subchapters show that this assumption actually holds. 
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5.1.5.1 PageRank approximation via Graph Aggregation  

An algorithm utilizing this idea was proposed by Broder et al. in [35]. The main 

idea of this algorithm is to compute PageRank of all sites and then to distribute this rank 

to pages in each site. In their approach they were able to achieve a (Spearman) rank-

order correlation of 0.95 in respect to PageRank while requiring less than half of the 

running time of a highly optimized PageRank implementation.  

To be able to explain the principles of this algorithm, we need the following 

definitions. Let the n nodes be partitioned into m classes H1,..,Hm by their hostnames. 

Let P = [pi,j] denote the stochastic matrix (of size n x n) defining the web graph on the 

page level. Then we define an alternative random walk T derived from P, whose 

stationary distribution can be computed more efficiently. In T the random walk consists 

of two basic steps. First we move to some node y ∈ Hi with respect to the distribution 

�i, (where �i only depends on the class of y - Hi) then we perform a step from y 

according to P.  

The algorithm then works as follows: 

We define (compute) an m x m stochastic matrix R = [ri,j] (for calculating the 

stationary distribution of T) as follows: 

, ,( )i j

i j

iH H q p
q H p H

r q pπ
∈ ∈

= � �  

Then we calculate the stationary vector of R, i.e. we compute a vector A satisfying AT = 

A. 

We then compute the vector P' of size n where for each page p, P'(p) would be 

computed as follows (h(p) denotes the class (host) to which page p belongs): 

( ) ( )'( ) . ( )h p h pP p A pπ=  

The stationary distribution of T is then defined as the vector B = P'T. 

The main advantage of this approach is that we only run the iterative power 

method on a graph that is substantially smaller than the web page collection. As stated 

above, the average number of web pages on a host is approximately 250. Compared to 

other algorithms for computing PageRank, this might be a source of substantial time 

saving. 

It is also important to note that it is very difficult to describe how the differences 

between PageRank and this approximation would influence the overall search quality of 
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search engines using it. It might even turn out that this might be a more appropriate 

model. 

5.1.5.2 BlockRank algorithm 

Golub et al. in [32] proposed an algorithm very similar to the one described 

above. Actually they use an algorithm very similar to the one mentioned above, to get 

an initial ranking for all pages and then try to run standard PageRank algorithm 

expecting only a few iterations needed till getting to the converged state.  

In this algorithm they use the "naive" host graph. This graph structure uses hosts 

as nodes and there is an edge between two hosts i, j if and only if there exists a page on i 

that contains a link to a page on j (the weighted host graph has the same structure, but 

allows multiple (or weighted) edges between hosts based on the real number of links 

between pages on these hosts). They also described a simple method how to create this 

structure. They propose sorting the link file (containing the url index) lexicographically, 

but with reversed order of URL components before the first slash (e.g. the sort key for 

www.ms.mff.cuni.cz/~kopecky/ would be cz.cuni.mff.ms.www/~kopecky/). Then each 

host is assigned an ID and the adjacency list structure is created.  

In the proposed algorithm they use this structure as input for a standard 

PageRank algorithm, which assigns a rank to each of the hosts. This rank is then 

distributed to the pages in each host using a local PageRank algorithm (standard 

PageRank algorithm that computes PageRank on the graph of this host and then weights 

it by the rank of the host). This part of algorithm results in a vector very similar to the 

one computed by the algorithm proposed by Broder et al. in [35]. However in this 

algorithm this vector is used as the initial vector for the standard PageRank computation 

on the page-induced graph. 

According to time measures provided in their paper, the last step takes more than 

70% of the time computation. This time can probably be improved by using a weighted 

host graph, which is believed to produce more precise host ranking. 

Another improvement of this algorithm can be achieved by performing the Local 

PageRank algorithm during the crawl process as soon as the whole host has been 

crawled. The precomputed Local PageRank would then just be weighted by the rank of 

its host. Also it is important to note that the Local PageRank computation is highly 

parallelizable because the block PageRank values are completely independent. 
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The proposed algorithm is (again) described to be approximately two times 

faster than the standard PageRank algorithm. However it is only slightly better when 

compared to PageRank algorithm run on a graph with sorted URL list. This could be 

improved by Local PageRank computation parallelization and using the weighted host 

graph in the host rank computation. 

The main advantages of this algorithm are that by using the block structure and 

the sorted link structure the number of I/O operations is decreased significantly. Also 

the Local PageRank computation converges quickly because the number of pages in a 

site is mostly a small number (they showed that approximately 75% of the local rank 

computations converge in less than 10 iterations). All these pros apply to both 

approaches (Golub et al. and Broder et al.). However this algorithm has one more 

significant advantage. It enables very quick (approximate) rank re-computation after 

node update. This can be achieved by storing the sum-rank (sum of rank of all pages on 

a host) of all hosts and after the node update only compute the Local PageRank of that 

host and weight it by the sum rank of this host. This approach might help to keep the 

index of web search engines more up-to-date. 

5.1.5.3 Other site-based algorithms 

Recently several other papers proposed using the site (host) structure, although 

we think that these brought only minor improvements or proposed a more appropriate 

host rank calculation ([38]) that however requires much more time than the weighted 

host graph computation and so it looses the required time saving property.  

Though we think the host-based approach to PageRank computation has a lot of 

advantages (e.g. time efficiency) and because of its simple idea we think it will very 

probably become widely used. It is also probable that it is already utilized in various 

search engines. 

5.1.6 PageRank extensions 

The major success of PageRank very much influenced the web search engines. 

The idea of pre-computing some measures that would help better estimate the relevancy 

to a given query is however much older. It is already the basis of indexation process. 

The first indexes only stored key terms contained in the documents. Nowadays 

however, they also try to store the importance of the term to identification of the 

document. So the evolution of indexes tried to improve the information richness of the 

stored data. 
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The same idea applied to PageRank resulted in two PageRank extensions. One 

combines the topical distribution and the link structure and other one tries to personalize 

the PageRank distribution. 

5.1.6.1 Topic-sensitive PageRank 

The topic-sensitive PageRank (proposed by Haveliwala in [39].) is a very simple 

extension of the standard PageRank algorithm. It performs a separate PageRank 

calculation, for each topic. In his approach Haveliwala chose the top class topics from 

the ODP (Open Directory Project [40]) for the topic biasing.  

The topic-sensitive PageRank for topic j and page i (TSPRj(i)) is then defined as 

the standard PageRank random surfer model except that when the random surfer gets 

bored instead of jumping to a random page, he randomly jumps to one of the tj (number 

of pages within the j-th topic) pages within j. So the TSPR is defined as follows: 
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To rank the results for a particular query q we compute C(q,j), the relevancy of 

the query q to topic j. Then for page i the query-sensitive importance ranking is 
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j
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The algorithm based on this approach first computes PageRank for each topic 

and then provides a query-time efficient document ranking. Its main advantage is its 

simplicity and parallelization (PageRank for each topic can be computed separately). 

The topic-biasing is however relatively weak and the PageRank for each topic is in fact 

a basic PageRank just partly skewed towards pages contained in the page list for the 

current topic in a human processed directory. 

5.1.6.2 Topical PageRank 

A much more complex approach to topic-biased PageRank was proposed by 

Davison et al. in [41]. They proposed a ranking that can also be used in other link based 

rankings such as HITS (described in chapter 5).  

This approach tries to improve the ranking by incorporating the page content 

into the ranking process. As the PageRank already is a very memory critical application 

we need to use a memory efficient abstraction of the page content. For this purpose a set 

of topics T is chosen (usually top-level topics of a directory like ODP [40] or Yahoo 
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directory [42]). A measure C(pi) meaning the relevancy of page p to topic i (in 

percentage) is then stored for each document and each topic. The measure C(pi) has the 

property that the sum through all topics is equal to one. It can be computed by textual 

classifiers such as the one proposed in [43] 

In this approach the topical random surfer model is used. This model is very 

similar to the standard random surfer except that the topic sensitivity is added. In this 

algorithm we assume that if the surfer is interested in topic k and is on page p then in the 

next move he might do one of the following steps. He might either follow an outgoing 

link on the current page with probability D or teleport to a random page with probability 

(1-D). The only difference (comparing to classical PageRank) is that when following a 

link, the surfer is with probability A likely to stay on the same topic (action - follow-stay 

FS), however with a probability (1-A) he may jump to any topic i in the target page 

(action - follow-jump Fj). Though, the topic bias is only present when the random surfer 

follows a link. When he is taking the teleport (jump-jump Jj) action he is always 

considered to take a random topic. The constant D is usually set the same way as in 

standard PageRank algorithms, i.e. D = 0.85. The probabilities of taking certain action 

when browsing page v while interested in topic k can be described as: 
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The probability that the surfer is on page u for topic i can in this model be 

computed as: 

:
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These equations look very scary on the first sight. However, it is not difficult to 

understand them with a few comments. The part between the first two equal signs can 

be explained as follows: Each line contains a rank contribution of each action multiplied 

by the probability of taking this action. So for example the first line (after the first 

equals sign) indicates the sum of rank contribution of action FS to rank of page u to 

topic i, i.e. it is the sum (through all vertices v containing link to u) of the probability of 

moving from v to u when taking the action FS multiplied by the probability of choosing 

action FS (i.e. probability that the random surfer follows the link between v and u while 

keeping the same topic interest) multiplied by the rank of page v on topic i. The second 

and third lines describe similar probabilities for the other two actions. 

In the second part we only substitute the probabilities with actual constants using 

the equations above. The last part (after the last equals sign) only substitutes the 

following two sums by their equivalents and groups sums with identical ranges. 
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Such an equation is created for each page and each topic. However the definition 

allows us to compute all of the ranks (for all topics) simultaneously. To compute the 

solution of such a set of equations we can again use the power-method described earlier. 

All the conditions essential for the distribution convergence (see chapter 4.2) hold if 

A∈(0,1) so the power method usage is feasible.  
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The best results of this algorithm were achieved by not setting A constant, but 

deriving it from the relevance of the current page to the current topic (Such use of A still 

satisfies the power method convergence conditions.). This improvement does not 

require any further computation, because we have to compute relevance of all pages to 

all topics before the start of this algorithm. However, it turned out to deliver a good 

improvement in precision. The intuition behind this idea is that when a topic-biased 

browser gets to page p when interested in topic i and the relevance of a page to the topic 

is low, he might be more likely reset his current topical interest. 

After the computation converges, each component R(ui) of the vector Ru 

represents the ranking of page u to topic i. R(u) is the overall PageRank of the given 

page and it is identical to rank produced by standard PageRank algorithms. I.e. the 

topical PageRank provides us with both, the PageRank for each topic as well as the 

global PageRank for each page.  

This algorithm provides a very complex approach to integrating topics into the 

PageRank computation. However, the possibility of using it on the web-scale is a big 

question. The main drawbacks of this approach are its very high memory and 

computational requirements. In the standard approaches we only work with the 

currently computed PageRank vector (or its part) stored in the main memory and with 

the adjacency list and the last computed PageRank vector stored on the disk and we 

already need to use sophisticated algorithms to be able to calculate the PageRank on the 

web-scale in a reasonable time. 

However, in order to compute the Topical PageRank, the stored structures have 

to be enlarged. The main memory requirements are more than |T| times higher because 

of the need to store |T| distinct PageRank values and the need to store the content vector 

C for each processed page. The structures stored on the hard disk require more space 

because of the need to store the topical rank vector (instead of the simple PageRank 

vector) and the need to store the content vectors C of all pages. Hence, each 

computational step is more complex compared to standard PageRank. 

These facts imply that a highly sophisticated algorithm would need to be used, 

when computing the Topical-PageRank on the web-scale. The best (time) performing 

algorithms are considered those that utilize the host graph structure. The idea of 

approximating multiple pages by hosts might also work for the Topical-PageRank. It is 

very common that pages on a single host are highly topically related which implies that 

the topical relevancy generalized to the site (host) level might provide a good 



43 

approximation. However, the topical relevancy generalization would have to be done 

properly otherwise the following bad case could happen.  

Imagine a host containing a lot of pages highly related to topic i also contains a 

few related to topic j where the latter pages are highly relevant (highly rated) to this 

topic. So it might happen that the topic relevancy vector of the site would only contain a 

very little or no portion of relevancy to the j-th topic. This might result in requiring a lot 

of iterations to get to the converged state after using the precomputed Topical-

PageRank as the initial vector. However this might not be a common case and given the 

fact that amount of host is substantially smaller than the amount of web pages, we might 

be able to use a very precise topic relevancy approximation at the site level, which 

significantly decreases the risk of such cases.  

As this approach is relatively fresh (publicized in August 2006) we might expect 

various studies trying both to improve the run-time and the precision of this algorithm. 

We think that this is a very perspective approach and it would be very interesting to 

follow its evolution. 

5.1.6.3 Personalized PageRank 

In this subchapter we just provide a very brief introduction to the principles and 

perspectives of Personalized PageRank. 

The main idea of this PageRank extension is very similar to that used in topic 

sensitive approaches. The personalization can again take place in various parts of the 

computation. A simple approach might consider that the user has a certain set of 

favorite pages F. The random surfer then prefers these pages when doing the jump 

(teleport) action. Another approach might use the idea that the user has certain preferred 

topics and when the random surfer chooses a link to follow, links leading to pages 

related to topics of his interest are favored. 

Such approaches might be very useful. It might not be reasonable to compute 

personalized PageRank for each user, however it might make sense to create user 

categories and after gathering some information about the user, to try to assign him to 

one of these categories. The current search engines (e.g. Google) already try to gather a 

lot of information about its users. They have access to details about queries submitted 

by certain user and they can often incorporate it with a few important profile details got 

from providing the user with a free-mail service and from the time zone and regional 

settings of users browser etc. 
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This information may be extensive enough to enable us to well categorize the 

users. It is believed that Google has been gathering such data for several years. It is 

however questionable if this way of data gathering is ethical and how it can be utilized. 

A utilization that might be convenient for the user is the personalization of query 

results. However it is also believed that Google uses this information (mainly) for 

improving the "accuracy" of its advertisements, which might not be in accordance with 

user's desire. Multiple discussion about this topic are held on the Internet (see e.g. [44]) 

5.2 Our implementation 

As part of this thesis, we have also implemented two versions of algorithm 

computing the PageRank distribution in C++. The M (as memory non-critical) version is 

derived from the concept presented in chapter 5.1.4.2 and the D (memory critical – 

using disk) version implements the concept from chapter 5.1.4.3. Both versions are 

multiplatform and were tested on Windows and Gentoo (UNIX). 

5.2.1 File and Pack7 formats 

Both these programs work with binary input files where all page ID's are stored 

in the Pack7 format. This format uses variable byte length for storing integer numbers 

thus provides a simple compression. In the Pack7 format in each byte the lowest seven 

bits contain the information about the number and the highest bit signalizes if the 

information continues in the next byte. In Table 5 we can see the representation of 

number 517 first in normal format and then in the Pack7 format. If the number were 

represented as a 16-bit integer, using the Pack7 format would not bring us any benefit. 

However, is the number is stored as 32-bit or 64-bit integer the Pack7 format we would 

still need only 2 bytes.  

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 

                

1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 

Table 5 Normal and Pack7 representation of number 517 

This format is very suitable for the PageRank computation where ID's of pages 

have a wide range and so have to be saved in at least 32-bit integer numbers. 

Nevertheless, if the indexing is done properly then the most frequently used pages (i.e. 

pages with the highest in-degrees) will have the lowest ID's and so the Pack7 format 
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would provide a comprehensive compression ratio with only a slight processing 

overhead (see Table 6). 

Both these programs use two input files and write the computed PageRank 

distribution into an output file. All of the files use 64b integer numbers in the Pack7 

format. 

 The input files contain information about the link structure of the pages in the 

collection and about redirections between pages in this collection. The link file has the 

following form: 

source out-links dest[1] ... dest[out-links] 

source: 64b ID of the source page 

out-links: number of links on the source page 

dest[]: array of 64b ID's of target pages 

 

and the redirect file has the form: 

source destination 

source: 64b ID of page from which we are redirected to page dst 

destination: 64b ID of page to which we are redirected from page src 

 

The D versions executed without the –p parameter produces the file containing 

the computed PageRank in the following format: 

ID rank 

ID: 64b ID of a page 

rank: 64b double precision floating point number representing rank of the page 

 

All other versions generate the final rank in a text format to allow easier reading. 

5.2.2 Program principles 

Both program versions work on the same principles. We first describe the 

common principles and then explain the differences and improvements made in both 

versions.  

Both programs first load the link graph into a dynamically allocated structure 

where for each page the number of its neighbours and ID's of its neighbours are stored. 

Then the redirects file is loaded to a structure, where for each page we store the ID of 

the page where we are redirected to, or zero if no redirection is done. This structure is 

then used to modify the link structure. All pages that contain a redirection are replaced 
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by the pages where the redirection links. The link structure is then processed further. All 

links to not-crawled pages (pages with no record in the link file), duplicate links and 

links to zero are erased and the new link count is calculated. This structure is then stored 

for the rank computation.  

The rank is computed using the power-method algorithm described in chapter 

5.1.3. When checking the rank change we compute the change of rank of each page in 

percentage and then compare the maximum change with �, which we set to 0.1, i.e. the 

computation ends as soon as no rank of a page changed by more than a 0.1 percent in 

the current iteration. The pages are then sorted in descending order by their rank and are 

written to the output file in the form mentioned above.  

5.2.3 M version 

The M version program was created only for testing and comparison purposes. It 

contains not only the procedures for computing PageRank distribution, but has also 

other functionalities as rewriting the graph file in Pack7 format into a text format, 

creating sub-graphs of the input graph etc. These functionalities are, however, present 

only for further research and are not discussed further in this paper.  

To compute the PageRank distribution the program has to be run with the 

following parameters: -e "link file" –r "redirect file" "output file". As already mentioned 

this program is based on the non-memory critical scenario, so all structures needed for 

the computation are kept in memory. I.e. for each page we keep not only information 

about the link graph but also the values of new and old PageRank in the memory. The 

memory requirements are discussed in the chapter 5.2.6.  

In the computation we used one optimisation that was based on the fact that after 

preprocessing the graph, we erased almost half of the indexed pages. So for all pages 

that were not crawled, instead of saving the number of their neighbours, we save the 

number of not crawled pages that directly follow this page in the ID list. This enables us 

to jump over these blocks during the computation.  

5.2.4 D versions 

The D64p7 version is the version intended for use in the Egothor search engine. 

This version contains several differences comparing to the M version. It is intended to 

be used on larger subsets of the web and is implemented in such a way that should allow 

computation on the web-scale. In the tests bellow we present several variations of D 

version – D64, D64p7, D32 and D32p7. The numbers 32 and 64 denote how many bites 
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are used for storing the page ID's. The only difference between the p7 and the 

"standard" version is that after preprocessing, the p7 version saves the graph using the 

Pack7 format while the "standard" version stores in a standard binary format The run-

times of all these versions are very similar and the program is written in a way that 

requires very few modifications for switching between the versions. 

Because of the intention to use this program for the Egothor search engine, the 

program reads directly gzipped input files using popen procedure if compiled in 

UNIX. As this is not possible in Windows, the Windows compilation works directly 

with unpacked files. The time consumption of the unzipping operation is discussed in 

chapter 5.2.5.  

The graph loading part is then the same as in the M version. Because of the link 

file format we need to be able to randomly access any part of the graph during the 

loading and also during preprocessing part, so we load the whole graph into the memory 

and if it does not fit there the system will create a swap file for it. After the 

preprocessing we will have the file in a form that would enable us to process it 

sequentially. So we store it to disk. However, to enable caching of the file on systems 

with sufficient memory size, we used "ST" parameters in the fopen procedure that 

ensure optimization for sequential caching and not flushing the file to disk if not 

necessary.  

In the PageRank distribution computation part we create a file for storing the old 

rank values. To save some I/O operations this file only contains the information about 

the rank of the crawled pages. In each iteration we then read one record from the link 

file and the rank value of this page from rank file and distribute this rank to pages linked 

from this page. The newly computed rank values are stored in the main memory. Again 

this is necessary because of the need for random access. The convergence test is the 

same as in the M version. However, to be able to compare the old and new rank we need 

to perform additional scan through the rank file. 

After the computation converges, we create and array of size equal to the 

number of crawled pages, where each record contains the ID of a crawled page and its 

computed rank. This array is then sorted using the quick-sort [45] procedure. The 

resulting structure is than written to disk in the above-mentioned form. 
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5.2.5 Time consumption 

All program versions were tested on three computers and two different systems   

1. Intel Pentium M 1.6 GHz, with 512 MB RAM, 60 GB 5400 rpm disk with 8 MB 

cache running Windows XP Professional, 2. AMD Athlon 2500+, 512 MB RAM, 120 

GB 7200 rpm disk with 8 MB cache, running Gentoo with kernel version 2.6.16. and 3. 

64-bit AMD Athlon 3000+, 1 GB RAM, 160 GB 7200 rpm disk with 16 MB cache, 

running both Windows XP and Gentoo with kernel version 2.6.19 compiled in 64-bit 

mode. The processors were running on 1.28 GHz, 1.84 GHz and 1980 GHz 

respectively. All computers had more than 200 MB free main memory for the 

computation.  

The tests were done on an “mff.cuni.cz” test collection. The crawl of this 

collection was done in April 2006 and was focused on pages containing the string 

"mff.cuni.cz" in their URL.  The index file of this collection contains 1 415 790 pages, 

out of which, however, only 779 780 pages have a record in the link file, i.e. were 

crawled. In the link file the average number of links of the crawled pages is 

approximately 26. This number incorporates also links to not crawled pages, duplicate 

links, zero links etc. After processing the link structure using the redirect file and 

erasing of worthless links the average number of links of a crawled pages decreases to 

17.2. 

To test the run times and memory consumption of the program procedures, the 

M version automatically prints out control texts. To display similar texts in the D 

versions it has to be run with parameter –p. 
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 Time comparison of different versions of programs for computing PageRank  
 (in seconds) 

Computer Version Graph 
Loading 

Redirect 
Processing 

Graph 
Processing 

Graph 
Saving 

Computing 
PageRank 

Sorting and 
Saving rank Total 

M 13 <1 4 X 9 4 30 

D32 13 <1 4 16 183 5 222 

D32p7 13 <1 3 10 153 5 188 

D64 14 <1 4 17 192 7 235 

1 - Win 

D64p7 14 <1 5 10 163 8 201 

M 2 <1 3 X 7 2 14 

D32 2 <1 4 1 28 2 38 

D32p7 2 <1 4 4 28 2 41 

D64 3 <1 5 2 28 16 55 

2 - UNIX 

D64p7 3 <1 5 4 28 16 57 

D32 10 <1 3 4 46 3 67 

D32p7 10 <1 3 9 115 3 140 

D64 10 <1 3 4 52 4 74 

3 – Win 
 

D64p7 10 <1 3 9 120 4 148 

D32 2 <1 2 2 17 1 24 

D32p7 2 <1 2 2 18 1 25 

D64 2 <1 2 2 17 1 24 

3 – UNIX 
64 bit 

D64p7 2 <1 2 2 17 1 24 

Table 6 Time comparison of procedures of different program versions 

In this table we can notice that if the M version is run on the first computer than 

more time is spent loading the graph than computing the PageRank although the 

PageRank computation requires 17 iterations. This confirms the fact stated in chapter 

3.4 that the most time expensive operations are the I/O operations. It also shows that 

when we have enough memory, the PageRank computation can be done in very 

reasonable time. It is important to note that the D versions executed on UNIX directly 

read the gzipped input files, which, however does not have any negative effect on the 

run time. The time spent unpacking the compressed file is balanced by reading less data 

from disk  
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From Table 6 we can also notice several other interesting facts. First, the use of 

the Pack7 format for storing the graph file presents an advantage only on computers 

with slower disks (in terms of rotations per minute) running Windows. If the program is 

run on UNIX the compression of the numbers brings no advantage because the files are 

not directly written to disk, but thanks to caching are only stored to the main memory. It 

might, however, be beneficial if the computation is run on larger datasets where the full 

caching would not be possible. 

Other important fact that can be noticed is that the UNIX caching is much more 

effective than caching in Windows. In fact we observed that Windows does not do any 

caching at all even when there is enough memory for it. This results in much worse run 

times of the D versions when run in Windows. 

Another important observation is that using the 64 bit instead of 32 bit numbers 

for storing the IDs does not result in any overhead when the program is run in the 64 bit 

system. In fact the D64 version is even slightly quicker than D32. 

5.2.6 Memory requirements 

We have also measured the amount of dynamically allocated memory used by 

different versions of the program. The following table provides the results. 
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Table 7 Memory consuption comparison 

This table, however, requires a few comments. In the M version the graph 

loading consumes more memory because we already allocate the structure for the 

PageRank computation that is we allocate two floating-point numbers for the PageRank 

computation for each page. In this version this memory is kept throughout the whole 

computation process. In contrast, the D versions only allocate memory for the adjacency 

list structure (see chapter 3.2), which is then preprocessed and stored to disk. For the 

rank computation and array for computing new ranks is allocated and the link structure 

and old ranks are read from disk. This means that if the link graph was preprocessed 

before the rank computation, the total memory requirements of the D versions would in 
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this case be 21.6 MB for the D32 and 23.8 MB for the D64 versions (we assume that the 

memory for allocated for the PageRank computation is deallocated before running the 

quick sort procedure and that q, the memory needed in the quick sort procedure, is less 

than the memory needed for the rank computation). 

In order to give some more detailed comments to figures in Table 7 we have to 

provide a few more details about the exact way of memory allocation and about the data 

types used.  

In the graph-loading phase, we start with an array of initial size, in all programs 

set to hundred thousand, and load records about the graph from the input file. If we load 

an ID of a page that is higher than the current size of the array, we double the size of the 

array using the realloc function. So in our case the final array has size 1.6 million.  

The structure for storing the link structure in the M version contains a 32-bit 

integer for storing the number of links on the current page, a 32-bit pointer to array of 

ID's of pages linked from this page and also contains two 64-bit double precision 

floating point numbers for storing rank. So each page needs at least 24 bytes of 

memory. Given the fact that we allocated an array of size 1.6 million for this structure 

gives us 38.4 MB memory. As already stated the average number of links on a crawled 

page in the input file is 26 and the number of crawled pages is 779 780, then when using 

32-bit integer number for storing the IDs of pages in the neighbour list, we need 

approximately 81 MB of memory. When we sum these two numbers we get 119.4 MB, 

which is approximately the number present in Table 7.  

On the other hand, the D versions do not allocate any memory for the numbers 

for computing PageRank in the load phase. So each page requires only 8 bytes of 

memory - 4 bytes for link count and 4 bytes for pointer to the neighbour list. So the size 

required for storing the array of pages is 8 times 1.6 million, which is 12.8 MB. For the 

D32 version the memory requirements for the link structure stay the same so the total is 

93.8 MB, which is again very close to the figure, presented in Table 7. For the D64 

version, the memory requirements for storing the neighbour lists are doubled. So the 

total consumed memory size is 174.2. 

In the redirect-processing phase we need to create an array of size of the current 

collection containing page ID's. So the M and D32 version need 1 415 790 times 4 bytes 

which is 5 663 KB and the D64 requires double this size, which is 11 326 KB. This 

memory is, however, freed as soon as the redirects are processed. 
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The D versions then further require an array of double precision floating-point 

numbers of size equal to the size of the collection for the rank computation which is 

again 11 326 KB. The M version does not require any memory for the rank 

computation. For the sorting purposes we allocate a structure of size equal to the 

number of crawled pages, where we store the ID and the rank of each crawled page. 

This array is then used for sorting. The M and D32 versions require 9 358 KB and the 

D64 version requires 1.5 times as much, which is 12 476 KB for the array allocation. 

Further memory is also required for the quick sort procedure. 

In the 64-bit system the additional memory is consumed by the use of 64 bit 

pointers. 

5.2.7 Results of the PageRank computation 

In this subchapter we provide a few comments to the PageRank distribution 

produced by our program. 

Surprisingly, the page with the highest rank is not the root page – mff.cuni.cz, 

but the personal homepage of RNDr. Libor Forst (www.ms.mff.cuni.cz/~forst) 

containing only a few links and personal photos. The high rank is mainly caused by the 

fact that our collection contains multiple faculty dictionary pages which all contain a 

copyright logo with the link to this page. Also, the Google Toolbar PageRank [46] of 

this page is 6/10, which is still a very high ranking that confirms our results. This web 

page is a very good example that shows that the PageRank is completely independent of 

the page content. 

The second best page in our ranking competition was the www.mff.cuni.cz page 

which has the Google Toolbar Rank 8/10 and the third highest ranked page was the 

homepage of the faculty magazine called M&M – mam.mff.cuni.cz with Google 

Toolbar Rank 5/10. It is important to note that the Google Toolbar Rank considers the 

links from the whole web, while our ranking only takes into account links within the 

mff.cuni.cz site. 

The highest achieved rank was approximately 0.005 which confirms our 

assumptions from chapter 5.1.4.6. We have also tested the power-law distribution of the 

logarithmically scaled PageRank values and were able to observe that the collection 

roughly follows the power-law. We assume that the small deviations are mainly caused 

by the low size of our collection.  



53 

Distribution of PageRank values 
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Table 8 PageRank distribution 

5.2.8 Our implementation – summary 

In this chapter we have presented our implementation of program for computing 

the PageRank distribution and provided figures describing its run time and memory 

requirements. We have also pointed out some issues connected with the PageRank 

computation.  

However, we believe that the D64p7 program version is designed in such a way 

that would also enable its use on the web-scale. In such a case a computer with a huge 

main memory and three fast disks and a good preprocessing would be needed. The disks 

would be used for following purposes: swapping the main memory content; reading 

graph structure; reading and writing the PageRank values. The preprocessing would 

ensure that the main memory would be used "almost" sequentially so the total run-time 

of the program might be reasonable.  

For further optimisation it might be interesting to test computing the PageRank 

in scale (0, .., n) and use Pack7 format for storing the values to disk as proposed in 

chapter 5.1.4.6.  

For further research, the M version program might be found useful as it contains 

a lot of procedures for processing the input files. The D version contains detailed 

comments in the code and so can be used as a framework for different rank 

computations as for example computing the rank using the site approximation as 

proposed in chapter 5.1.5.2. 
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5.3 Query dependent web-graph based rankings 

In chapter 5.1 we have described PageRank, in our opinion the most important 

utilization of graph theory in information retrieval. Another well-known approach 

utilizing the web-graph structure to provide web page relevancy estimation is the HITS 

algorithm proposed by Kleinberg in [47]. In this chapter we describe the idea of HITS 

and also a simple way how to compute it. However, we do not describe the algorithm in 

detail nor provide overview of possible optimisation, because as we explain in the 

following subchapter, although the algorithm is very well known, it is not widely used.  

We also present a few alternative approaches that utilize the web-graph structure 

to provide a relevancy ranking. One of the presented approaches also analyses the use of 

the combination of the use of user-supplied feedback with the distance of the pages in 

the web-graph to provide a customized ranking. 

5.3.1 HITS 

At around the same time as Brin and Page presented PageRank, Jon Kleinberg 

proposed an alternative link-based ranking scheme called Hyperlink Induced Topic 

Search (HITS) [47]. The main difference between these two schemes is the different 

query dependency. While PageRank provides a query independent ranking, the HITS 

algorithm incorporates the query information into the link-based ranking. 

The basic idea is to build a query-specific (neighbourhood) graph and perform 

the link analysis on this graph. In the ideal case, this graph would only contain pages 

relevant to the query and the link analysis helps us to find the most informative ones.  

In his approach Kleinberg used neighbourhood graph as proposed by Carrere 

and Kazman in [48]. This graph is constructed in the following way. We create a start 

set of n (e.g. 200) vertices where the vertices represent the first n pages retrieved by a 

search engine when searching for results of query q. The start set is then augmented by 

its neighbourhood, which is the set of pages that either contain a link to a page in the 

start set or are linked by a page from this set. Since the number of pages linking to a 

page (like google.com) can be huge, the number of pages added to the neighbourhood 

graph because of linking to a page in the start set is limited by a constant i (e.g. 50). 

Similarly to the case of web-graph used in PageRank, each page in these sets is modeled 

by a node in the graph. However there is link from page a to page b if and only if a 

contains link to b and a and b are pages on different sites (hosts). The second condition 

tries to prevent the possibility of manipulation.  
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In his approach Kleinberg tries to determine pages with good content on the 

topic of the query called authorities and directory-like pages with many hyperlinks to 

pages on the topic called hubs. The algorithm then assumes that a page that links to 

many other pages is a good hub and a page that is linked by many pages is a good 

authority.  

These two scores can be calculated by the following recursive algorithm. We 

first create the query-specific neighbourhood graph N and initialize hub scores of all 

pages to 1.Then till H and A have not converged, calculate the new authority and 

hubness score for all p∈N. 
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Again elementary linear algebra ensures that both these vectors converge even 

though it does not provide an upper bound to the number of iterations. Empirically the 

vectors converge quickly again. 

Several improvements of HITS were proposed recently. The CLEVER HITS 

[49] expands the start set up to two links away and weights links by the similarity 

between the query and the text surrounding the hyperlink (anchor text). 

Bharat and Henzinger [50] proposed several improvements to HITS. The most 

important is derived from Topical PageRank. In order to reduce topic drift they 

calculate similarity of each document to the query and use this measure in the mutual 

reinforcement process so that the pages most relevant to the query have the most 

influence on the calculation. 

Even though these changes improved the HITS algorithm, it is still not that 

widely used. As already premised, according to Monika Henzinger, the director of 

research in Google Inc, the HITS algorithm is currently not used in any commercial 

search product [51]. The main reasons for this are that the HITS algorithm is query-

sensitive and the creation of the query-dependent graph has to be done for every single 

query. This requires significant computational capacities when taking into account that 

the major search engines process thousands of queries every second [26]. Important 

point also is that the results of this ranking algorithm are not much better comparing to 

PageRank when the query is related to a specific topic. In such cases the topic drift may 

still occur. 
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5.3.2 Flow based Rank 

Recently Chitrapura and Kashyap [52] proposed a query dependent flow-based 

ranking. In their approach they use the network flows in the web-graph as a measure of 

page relevance. Even though their intuition is on the first glance totally different from 

PageRank, their work is closely related to topically biased PageRank algorithms (see 

chapter 5.1.6). In their model, the volume of flow indicates the relevancy of the pages to 

associated labels (topics) and can be used to compute both the query dependent and 

independent rankings. 

In their model they use a flow that moves through one edge at a time. At the 

beginning they start with one vertex which is assigned all the flow. Then in each time 

point all vertices containing a flow with label l move this flow along the outgoing edges 

containing label l to vertices pointed to by these edges. If no such edge is present, the 

flow is lost. However when moving the flow a small portion of it is lost. All vertices 

containing label l get a small volume of flow belonging to label l in each time point. 

The labels of vertices (pages) are derived from the content relevance of the current page 

to the given labels. The edge (link) labels are derived from anchor text and the content 

of the page that they link to. 

From another point of view this flow-based model is only a slightly modified 

different perspective to PageRank. However these modifications are shown to bring 

results better than the topic-sensitive PageRank. However the comparison to the Topical 

PageRank which is much more similar to this flow based approach was not done. Both 

Topical PageRank and the flow-based ranking were shown to provide better fine-

grained ranking than the Topic-sensitive PageRank, however to the best of our 

knowledge no comparison of these two rankings was publicized. 

Another important point is of course the time complexity of this approach. It 

depends mainly on the type of algorithm used in the computation. The approach 

presented in paper [52] used an algorithm similar to the Pre-flow push (Push-relabel) 

algorithm, which in fact uses very similar principles, and so no major modifications 

were needed. However no indication of the run-time of this algorithm was mentioned, 

so the web-scale usage of this approach is questionable. 

5.3.3 Re-ranking pages using user supplied feedback  

This approach is fundamentally different from the ranking schemes mentioned 

earlier, because it is intended for use in a different phase of the retrieval process. It 
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assumes that the user submitted a query however is not totally satisfied with the 

retrieved pages. So rather than using query refinement, Vassilvitskii and Brill [53] 

propose using user-supplied feedback to re-rank the initially retrieved set of documents. 

This algorithm presents a novel approach to using the relevancy feedback. While 

previous studies used mostly term re-weighting schemes or tried to automatically refine 

the query, Vassilvitskii and Brill propose using web-graph distance as a measure of 

relative document relevancy.  

Their approach is based on the hypothesis that relevant pages tend to contain 

links to other relevant pages while irrelevant pages are mostly linked from other 

irrelevant pages. The results of this algorithm showed that this hypothesis holds. 

The intended scenario for this system is as follows. Upon receiving the list of 

retrieved pages, the user provides a feedback about the relevancy of 1 to 5 random 

pages from this set, where each of these pages is ranked on the scale 1 to 3. In this scale 

1 stands for relevant, 2 for neutral and 3 for irrelevant. The system then uses this 

information to re-rank the retrieved documents and provide a new list, which better 

matches user's needs. What is however important is that this approach is shown to be 

effective even when the user provides feedback to only one page in retrieved set. 

The re-ranking algorithm is relatively simple. For all rated pages a set of pages 

with distance (both ways) less than or equal to 4 is discovered. To avoid exponential 

growth of this graph the maximum considered number of links was set to 35. Ranking 

of all pages in these graphs is then refined by the ranking of the rated pages multiplied 

by inversed distance between these pages. 

5.4 Other query dependant rankings 

This chapter provides an overview of some graph-based ranking algorithms also 

suitable for traditional IR systems. Non of these algorithms explicitly uses the web-

graph structure but all work with a graph-based framework. 

5.4.1 FlowRank - Collaborative Ranking 

A recently presented paper [54] describes a very unique approach to document 

ranking. It does not explicitly use the links of the web-graph structure, but works on a 

graph where vertices present the collaborating users, their queries and the documents, so 

is also suitable for traditional IR systems. This network is derived from search engine 

logs and its edge weights model the relationship between the relevant entities. 
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This approach tries to use gathered collective knowledge and use it to enhance 

outputs for current users. It can be interpreted as using some Artificial Intelligence 

techniques to help gather and use the information present in logs. In contrast to most 

other collaborative ranking algorithms this algorithm models the relationships between 

relevant queries, documents and collaborators by a graph. The paper presents a 

framework, where the final ranking is derived from the maximum flow in a graph. 

The intuitive background of this approach comes from the study [55] which 

showed that user click-through (record of clicks on retrieved documents for a query) is 

an accurate reflection of user-related relevancy (preference) of the documents to the 

given query. This measure provides very valuable information even for similar queries 

and documents [56]. This information is utilized to re-rank pages based on the gathered 

knowledge.  

The FlowRank algorithm is a query and user specific ranking that performs the 

creation of the above described network and computation of the network flow on this 

network in the query time. This might be considered a drawback of this technique 

nevertheless it presents a very prospective approach that was shown to provide very 

good results mainly for the naive queries. Although it is important to note that the use of 

such techniques might improve the competition advantage of the biggest web search 

engines because of availability of plenty of fresh log information which might enable 

these engines to adjust their rankings very quickly. Time will show if the advantages 

resulting from such approaches will be valuable enough for the search engines to offset 

the slow-down of the response and if some engines will encapsulate such an algorithm 

into their rankings.  

5.4.2 Ranking retrieved pages using Affinity Graph 

The paper of Zhang et al. [57] presents a novel query dependent ranking scheme 

called Affinity Ranking suitable also for classic IR systems. In this approach the 

ranking is focused not only on optimizing the precision and recall (see chapter 2.1) of 

the systems but also aims to also optimize two novel metrics – diversity and information 

richness. The diversity of a set of documents indicates the variance of topics within the 

set. The information richness measures the coverage of a single document to its topic. 

Both of these metrics are calculated from a directed weighted graph called Affinity 

Graph (AG), which models the content similarity between all pairs of documents in a 

set.  
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The idea of the re-ranking algorithm is derived from the observation that most 

user queries are ambiguous [58] and the exact needs of the users are unknown. The 

result of such queries contain a vast of documents relevant to some popular topic that 

are however not very relevant to user's needs.  

To prevent such situations Zhang et al. propose an algorithm that aims to 

improve the information richness and diversity within the top results. Increasing these 

metrics would increase the probabilities that some page that represents actual user's 

needs are present in the top rated retrieved documents and also that the document is one 

of the most informative to his actual needs. 

The Affinity Ranking is a query-time re-ranking that does not use the 

information about the web-graph link structure at all. It only assumes that the retrieved 

results have already been rated using a full-text analyzing algorithms. The goal of this 

ranking is to re-rank the retrieved set of documents in order to achieve higher diversity 

and information richness values while keeping the precision and recall of the system at 

the same level.  

Query-dependent
(Online)

Query-independent
(Offline)

Document
Collection

Query Relevance

Diversity
penalty

Information
Richness

Affinity
Rank Score

Affinity Graph
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+

Output
 

Picture 6 Affinity Ranking Framework 

For a set of documents D = {d1, d2, .., dn} the diversity Div(D) denotes the 

number of different topics contained in D, i.e. the number of unique topics present in D. 

For a document di information richness IRD(di)∈<0,1> denotes the informative degree 

of the document di with respect to the entire collection D. For each topic k, Nk denotes 

the number of documents in D associated with k and di
k denotes the i-th document 

associated with the k-th topic. 

The average information richness of a set of documents D can be calculated as: 
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The Affinity Graph AG=(V, E) is a directed weighted graph where V represents 

documents and E represents the similarity between documents. The similarity is not 

computed using the common cosine measure (see chapter 0) but with similar measure 

called affinity defined as: 
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To save some space we Aff(di, dj) = 0 if Aff(di, dj)<Afft where (Afft is a threshold). 

To represent this graph we define a normalized adjacency matrix M = (Mi,j) of size n x n 

defined as: 
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On such a matrix we can define a model very similar to PageRank. Assume there 

is a random reader who selects a random document as the start of his reading journey 

and when looking for another document, he chooses one of the documents similar to the 

current document with probability D and chooses a random document with probability 

(1-D). The stationary distribution of this journey can be computed using any of the 

algorithms for computing PageRank described in chapter 4. 

The computed distribution helps us to choose the most informative documents, 

however some of them can still be very similar. To increase the topic coverage of the 

top retrieved documents, Zhang et al. propose imposing different diversity penalty to the 

information richness score of each of the retrieved documents. The penalty can be 

calculated by a simple iterative greedy algorithm. The algorithm starts with the set of 

documents A returned by the full-text search. For each document we initialize ARi = 

IR(di) and sort A by AR in descending order. Then for i = 1 to q (where q=|A| or q is the 

desired number of returned documents) it extracts the most informative document da 

from A, places it to the output (as i-th top ranked result) and for each document dj∈A 

with Mj,j > 0  it sets ARj=ARj – Mj,i.ARi and resorts the set A using the new AR values.  

This procedure ensures that for each topic relevant to the query only the most 

informative document becomes distinctive in the ranking process.  
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To combine the Affinity Ranking with ranking with full-text ranking we can use a 

simple linear combination: 

( , )( , ) . .i ii Sim q d ARScore q d a Rank b Rank= +  

where a and b are tunable constants. We think that setting of a and b derived 

from the length of the query could improve this ranking further. We assume that the 

shortest queries are more likely ambiguous than the longer ones and so the variety of 

topics should be more desirable for the shorter queries. 

The Affinity Ranking is a ranking that does not use the link structure at all and is 

fully applicable to basic IR systems. However it would be possible to integrate this 

technique in the web IR systems. The main problem of this integration would be the 

creation of the Affinity Graph and computation of the Affinity Ranking. Nevertheless the 

construction of the AG could be done during the crawl process, when for each new 

crawled page, we would calculate the affinity between this page and all the pages that 

have already been crawled. The ranking computation would require similar time as the 

PageRank computation (even the site approximation might be possible) so we would 

only need to have more available resources to be able to take advantage of the Affinity 

Ranking in any web IR system. 

It is very probable that Google already uses a similar kind of ranking. We have 

tested this assumption by a few experiments. E.g. when we searched for "puma" on the 

Czech version of Google, the results covered three topics incorporated with "puma" – 

the sport brand, the animal and the car brand (Ford Puma). However when we checked 

the first page relevant to "Ford Puma" the Google toolbar shows 0 as its PageRank 

while several pages having considerably higher PageRank and containing similar 

occurrences of word puma (e.g. pumastore.com) can be found below this site in the 

results. It is probable that this can be caused by various other factors like the 

localization of the "Ford Puma" page. Nevertheless similar result structure was observed 

experimenting with a few other queries (e.g. jaguar). As already stated the principles 

and algorithms of Google are confidential, so we can only guess which techniques does 

it use and how. However when we take into account that Google claims considering 

more than hundred factors when computing results to a query, it is highly probable that 

the diversity of the top results also plays a role in the procedure. 
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5.4.3 Conceptual graph 

A conceptual graph is a good example of using the advantages of graph theory 

and processing of text based on semantics to improve the effectiveness of IR. This 

concept is intended for use in classical information systems and improves the 

performance of these systems by incorporating limited semantic knowledge into an 

improved representation of documents. The semantic analysis is not widely used in IR 

systems because of the complexity of such analysis. This approach tries to bring 

benefits of the semantic analysis into IR systems by modeling the documents in a 

conceptual graph that contains basic semantic information about the documents. To 

avoid the high time complexity, the graph is constructed in the query time using only 

part of the top results. The semantic knowledge is then used to improve the ranking of 

this set. 

5.4.4 HITS and PageRank without hyperlinks 

The major success of the web-graph based rankings, motivated researches that 

tried to use similar algorithms also on documents lacking the hyper-link structure. In 

[59] Kurland and Lee utilized a PageRank-like algorithm to re-rank the retrieved set of 

documents. The graph for the rank computation was constructed using language models 

induced from the document set. In their approach the documents are represented by 

vertices and edges represent similarity between the documents. The PageRank-like 

distribution is then computed on a graph that contains first i (e.g. 200) documents 

retrieved by text-based search engine.  

As this approach was not showed to be effective, Kurland and Lee proposed 

incorporating the cluster information into the ranking process [60]. The intuition of their 

approach is that (1) the documents within the clusters that do best represent user's 

information needs, are likely to be relevant and that (2) the most representative clusters 

should be those that contain many relevant documents. As this intuition is very similar 

to intuition behind the HITS algorithm (see chapter 5.3.1) they used this algorithm to 

compute the authority and hubness score on a bipartite graph composed of documents 

and clusters. The graph was again created in the query time from the first i results. They 

showed, the cluster-document graphs provide a very efficient framework for the graph-

based ranking algorithms. 
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6. Finding communities 

A lot of current search engines also provide an alternative to searching by 

queries, they enable us to input a web page and want the engines to find similar pages to 

the input page.  

To achieve the desired result, the search engines often use the web-graph 

structure. The main idea is that highly similar pages would very likely be close to each 

other in the web graph.  

For this purpose it is possible to employ the HITS algorithm. In this case the 

start set is the set of input pages. We then just run the algorithm and sort the pages by 

authority score in descending order and output the first k pages that were not part of the 

input set (k is the desired number of output pages). However usage of HITS algorithm 

for this purpose is even less feasible than the query-sensitive ranking. The input set 

would often be relatively small so the topic drift occurs more probably. 

The problem of finding communities is similar to the above mentioned 

approach. The goal in finding communities is to find pages that are thematically highly 

related to the given input set of pages. It has been shown such pages are often highly 

connected and so this task can be efficiently solved using the web-graph structure.  

6.1 Flake's max-flow based algorithm 

In an approach proposed by Flake et al. in [61] they assume that the input is a set 

of seed pages and the result of their algorithm is the approximate community composed 

of the seed pages and some of their neighbour pages. Their method uses a maximum 

flow, minimum s-t cut (see chapter 3.7) based approach to find a dense subgraph 

containing the seed pages and regards it as the approximate community.  

In their approach they use a graph G=(V, E) such that the set V is composed of 

sets S,P and Q, where S is the set of seed (input) pages; P is the set of all pages that 

contain a link to or are linked from any page in S; and Q is the set of all pages linked 

from pages in P. The set of edges E contains all links from pages in S to pages in S ∪ P 

and all the links from pages in P to pages in S ∪ P ∪ Q.  

We then add virtual source s and sink t to G. For each x∈S we add a virtual edge 

(s,x) to E' and for each x∈V we add a virtual edge (x,t) to E. Let G'=(V',E') be the 
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resulting graph, formally V' = V ∪ {s} ∪ {t} and E' = E ∪ {(s,x) | x ∈ S} ∪ {(x,t) | x∈V 

}. 

The capacity c(e) of each edge e∈E' is set as follows: c(e) = � for e = (s,x); c(e) 

= 1 for e = (x,t); and c(e) = k for each e∈E, where k = |S| i.e. k equals to the number of 

seed pages. 

The result of the construction phase is the graph G'=(V',E') and capacity function 

c. 

The algorithm then works as follows. For i=1 to l (where l = 4 in the [61]) we do 

the following procedures. 

1. We compute the minimum s-t cut C of network Gi' (where G0' = G') such that 

C is nearest to s. Let X denote the connected component of Gi'\C containing s. 

2. if i<l, then we find a vertex u of maximum degree in X \ (Si ∪ {s}). I.e. vertex 

u with maximum d(u) in X such that u is not one of the seed vertices, where d(u) 

denotes the sum of the in and out degree. We set Si+1 = Si + {u}, construct G'i+1 and 

increment i. 

3. if i=l we output X \ {s}as an approximate community. 
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Picture 7 Example of G' constructed for finding communities 

In their experiments Flake et al. pointed a few problems and also easy solutions 

to these problems. First to avoid topic drift (adding pages with different topics) they 

adopted the assumption that if a page has more than q (e.g. 50) links they regard it as a 

portal and totally ignore it. Second, to avoid only adding pages reachable from S0 to the 

final community they regard all edges between vertices in P and S a bi-directed even if 

there exist only an edge in one direction. Third, to avoid adding all pages of all sites 

(hosts) they ignore all intra-site (intra-host) links. 
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This approach was found very effective for finding communities even though it 

does not consider the content of the pages at all. However, several papers noted several 

problems and improvements to this algorithm. 

6.2 Improvements  

Asano et al. [62] presented a site-based approach that tries to improve the Flake's 

algorithm by pointing out several problems and providing solutions to these problems.  

They consider the ignored link problem to be the major weakness of the 

algorithm proposed by Flake and demonstrate how this can be avoided by using the site 

as unit of information. The following picture illustrates the ignored link problem as 

defined in [62]. 

b

a
c

page site

Site A Site B

 
Picture 8 Ignored link problem illustration 

This picture demonstrates that ignoring the intra-site links can lead to loosing 

valuable inter-site links because of inability to get to different page in a site that 

contains this link. In the picture above we can see that if we get to page a in site A by 

ignoring the intra-site links in A we loose the information about the link from page b in 

A to page c in B.  

Asano et al. showed that the ignored link problem occurs relatively often and 

propose solving this problem by using the site as the element in the graph. In their 

approach they propose constructing the inter-site graph G'=(V',E') in a similar way as 

the host-graph in chapter 5.1.5.1 I.e. the vertices represent hosts (sites) and there is an 

edge between site S1 and S2 if there exists a page a∈S1 containing a link to page b∈ S2. 

Intuitively this framework disposes of the ignored link problem.  

They also showed that a major loss of precision is caused by the capacity 

problem. They showed that because of the uniform edge capacities setting to |S| the 

following two situations may occur if the graph G' does not contain "too many" links 

between vertices within sets P and Q. First a vertex v∈Q that only has only one 
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incoming edge (u,v) might become a member of the community if u∈ X 	 P. Second if 

a vertex v has incoming edges from all vertices in S, v would not become a member of 

the community when outd(v) > |S|. These two cases are intuitively wrong, because a 

vertex with only one link from the community is highly unlikely to be a good member 

of the community, while a vertex connected to all pages in the seed set would be 

expected to belong to the community.  

To solve such special cases Asano et al. tested setting the parameter k (see 

algorithm definition in chapter 6.1) to various values. The best results were achieved 

when k was set in the range {10, .., 15}. 

Such an assignment can remind us of an idea of not setting the edge capacities 

constant, but choosing another criteria. This idea was explored in detail by Imafuji et al. 

in [63]. As the result of their study their proposed improving Flake's algorithm by using 

HITS (see chapter 5.3.1) score based edge capacities. In their approach they proposed to 

set edge capacity c for edge (u,v) as follows: 

dist(u)

h(u) + a(v)
c(u,v) =  + 1

2
 

Where h and a mean the hub and authority score of a vertex respectively and 

dist(u) represents the distance of page u from any of the seed pages. Their results 

showed a considerable improvement in the precision of the community pages 

assignment.  

To the best of our knowledge, no study has explored incorporating the site-based 

approach with the HITS score based capacity assignment, which might surely be an 

interesting study. 

6.3 Summary 

In the subchapters above we presented algorithms for finding web communities. 

All of the experiments above only focused on improving the precision of the resulting 

communities. However to be able to facilitate these algorithms we need to be able to 

compute the results in a reasonable time. The run-time of these algorithms is influenced 

by two main factors, the construction of graph G' and the computation of the minimum 

s-t cut. The most of time needed for the graph construction phase is spent loading the 

information from the disk (if we assume web-scale use). It might be interesting to find 

out how different storage techniques would influence the run-time however we did not 

concentrate on this part.  
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The second part of the algorithm is influenced by the choice of algorithm for 

finding the maximum-flow and the minimum cut. Even though it might not look to be 

important to try to optimize this part of computation because of the graph size it might 

not be absolutely true. Given the fact that average number of out-links on a page is 10-

20 gives us approximately 30 edges to other pages for each page. So if we consider size 

of seed approximately 30 we need to compute minimum s-t cut on a dense graph with 

about 5-20 thousand vertices (when considering..). This is significantly less than in the 

case of PageRank computation however if we have to take into account that algorithms 

for finding communities are also intended for instant use then each saved mili-second is 

valuable. The size of this graph enables us to store it into the main memory, so we 

should only concentrate on minimizing the number of operations. 

For such graph sizes the most common implementation – the Ford-Fulkerson 

algorithm would probably not be the best performing because these graphs contain lots 

of paths between source and sink and improving one at a time would require a lot of 

run-time. Hence, we would emphasize using the Pre-flow Push (push re-label) 

algorithm which would very probably work very well in this kind of graph. We assume 

that it would be able to compute the maximum flow in very few iteration because of the 

small distance between the source (or sink) and all other vertices. The shortest distance 

between source and sink is 3 and so the algorithm would need at most 6 iterations till 

returning the flow value. In each iteration we would run a scan through (at most) all 

edges so the resulting time complexity of this algorithm would be less than 6m, which is 

a fairly good result.  
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7. Other examples of graph theory in IR 

7.1 Other uses of Web-graph Analysis 

As we showed the analysis of the link structure of the web can be a valuable 

source of information. In the last two chapters we have shown using it to provide us 

with document ranking and for helping us to find communities. However there are 

several other applications. 

7.1.1 Web Crawling 

The web crawler (also known as Web spider or Web robot) is a program that 

browses the web in a predefined manner. The crawlers are mostly used to provide a 

snapshot of the web, which can be used for generating index. The basic crawlers are 

usually based on the BFS algorithm. Common crawlers generate three files, the web 

page archive, web-page index file and the web-graph file. They can work in the 

following way.  

The algorithm gets a set of start pages Q as the input. It then repeats the 

following iteration until an end condition is reached.  

Choose a page p from Q, download it, create its page index record and store it to 

the archive. Check if pages linked from p have already been indexed. If not add these 

pages to Q. Remove p from Q. 

As the crawlers are an important part of all search engines they were in focus of 

various studies. Some of these studies [64] tried to improve the crawlers in a way that 

would ensure that they crawl most of the important pages while avoiding the irrelevant 

ones. Some [65] aimed to create a topic-driven crawler that would be able to download 

web pages relevant to a given topic and thus provide complex information about the 

topic.  

7.1.2 Mirrored hosts 

Two hosts H1 and H2 are mirrors if and only if for every document on H1 there is 

a highly similar document on H2. Mirrors have very similar hyperlink structure both 

within and out of the host. Mirrors waste space in the index data structure and can lead 

to duplicate results. Combining the IP address analysis, URL analysis, the text analysis 

and the link structure analysis can help us to detect many near-mirrors [66]. It is 

however important to note that even though the link structure can provide us with a 

good heuristic in finding mirrors the present state-of-the-art algorithms for near-
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duplicate web-page finding do not use it at all. The reason for this is that the problem 

can be explicitly solved by text analyzing tools and computing the heuristic provided by 

exploiting the link structure consumes more time than it saves. 

7.1.3 Web sampling 

Web-graph analysis can also be useful tool for computing statistics about groups 

of Web pages, like their average length, average number of links, the percentage of web 

pages that are in Slovak etc. PageRank based random walks can provide us with almost 

uniformly distributed samples of the web. These almost random samples can then be 

used to measure various properties of the web pages but also to compare the number of 

the pages indexed by various search engines. More about the use of web sampling can 

be found in [67] 

7.1.4 Geographical scope 

Whether a page is globally interesting, or is only of interest of a small region or 

nation might be interesting information about the page content (e.g. the official site of 

the Czech Hydro meteorological Institute chmu.cz is mostly interesting only for Czech 

citizens). This information can be very useful for search engines providing personalized 

rankings. The information about the geographical position of the user might be detected 

from the regional settings of his browser, or it can be supposed that if user is using 

regional version of the search engine rather than the global one, he is located in that 

region (E.g. use of google.cz instead of google.com implies being located in the Czech 

Republic).  

The information about the range of interest of a page can again be computed 

using the hyperlink analysis. The intuition is that local pages are mostly linked from 

pages from the same region, while globally interesting pages are assumed to have a 

regionally uniform distribution of pages linking to them. More details about this subject 

can be found in [68] 

 

7.2 Other graphs in IR 

7.2.1 Clustering 

A very important part of the information retrieval starts a long time before a user 

queries the system. We first need to store the documents. There are lots of possibilities 

in organizing the stored documents. As already mentioned in Chapter 3, the most 

expensive (measured in time spent) operations are the I/O operations. A significant part 
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of an I/O operation is the disks seek time. So when storing the documents we need to 

think of a structure that would minimize the average number of seeks for a query. This 

problem is often handled by the document (text) clustering algorithms. Most of these 

algorithms are graph-based and use the maximum flow – minimum cut theory for 

clustering the documents in such a way, that the documents in one cluster are highly 

similar, so there is a high probability that when one document is relevant to a given 

query, all the others would be. The common definition of a good clustering requires that 

nodes assigned to the same cluster should be highly similar while points in different 

clusters should be highly dissimilar.  

A simple example of a clustering approach is the Spectral Clustering algorithm. 

It uses a similarity graph where documents are modeled by vertices and edges (edge 

weights) represent the similarity between the documents connected by this edge. The bi-

partitioning (dividing the document into two disjoint sets) problem can be solved by 

finding a minimum cut in this graph, however the eigenvector-based approach is more 

commonly used. The goal of k-way clustering algorithms is to partition the given 

documents to k clusters. One way how to achieve this is using the bi-partitioning 

algorithms repeatedly however the eigenvector based approaches are used more 

commonly, because they are empirically performing better.  

The eigenvector-based algorithm for solving the k-way spectral clustering 

problem can be very briefly described to work as follows. It first builds a reduced space 

from multiple eigenvectors of the adjacency matrix of the similarity graph. Then it uses 

the 3rd eigenvector to further partition the clustering output produced using the 2nd 

eigenvector. 

Lots of studies have focused on solving the clustering problem, however, we do 

not concentrate on the clustering in this paper any further. 

 

7.2.2 Graphs in document classification 

Another interesting example that uses graph theory to improve some 

functionality of the IR systems is document classification. The goal of the text 

document classification algorithms is to assign (predefined) labels to texts and so to 

create directories similar to ODP [40] or Yahoo! directory [41].  

There are two main types of classification. In one we do not have any predefined 

labels and only know the approximate number of categories we want to create. In such 
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case the clustering and communities finding algorithms (see chapters 7.2.1 and 6 

respectively) might be utilized. 

However, the more common case is that we are given a category structure and 

want to assign documents to these categories. This task is usually solved by text-based 

algorithms for document classification that use some kind of artificial intelligence as 

e.g. [43]. In [69] Angelova and Weikum proposed enhancing these algorithms by using 

additional information about the documents gathered from neighbours of the 

documents. In the hyperlink environment this is a very suitable approach because the 

neighbours can easily be found in the web-graph. Information about the neighbour 

documents and the anchor texts surrounding the links can provide valuable additional 

information for the classification.   

As the human made directories are very difficult to create and maintain the 

demand for the automated tools for this task is obvious. The automatically created 

directories would probably not achieve as high quality as the human generated ones in 

the next few years, but are much cheaper to create and much easier to enhance and so 

we think that the text classification algorithms will surely find a broad utilization in the 

upcoming years. 
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8. Conclusion 

The goal of this thesis was to explore and provide an overview of application of 

graph theory in information retrieval, choose an interesting application, explore it in 

detail and provide a test implementation. 

Chapters 4 to 7 provide an exhaustive overview of graph theory usage in 

information retrieval. To the best of our knowledge this is a unique overview and was 

not presented in any previous paper. 

For the detailed inquiry we have chosen the graph-based ranking algorithms as 

they aim to improve the most critical property of the IR systems - their precision. In this 

part we have presented various perspectives to computation of the best known graph-

based ranking - PageRank. We have also described several approaches to both 

optimising the computation, and improving the precision of the ranking. In this chapter 

we have also described our implementation of algorithms for computing the PageRank 

distribution and provided facts and comments about the run time and memory 

consumption of different versions of the algorithm.  

Further we have also presented rankings that are based on a graph structure fully 

independent of the web link structure and so can also be used in traditional IR systems. 

We have also provided ideas, how these rankings can be incorporated into web IR 

systems and gave comments on their realistic usage. 

Another contribution of this thesis is that it provides several subjects for further 

research. E.g. a very interesting study (described in chapter 5.1.6.2) might be to try to 

compute the Topical PageRank described in chapter 5.1.6.2 using the BlockRank 

algorithm described in chapter 5.1.5.2. Another interesting idea for further research 

might be to implement several other PageRank algorithms described in chapters 5.1.4 

and 5.1.5 and compare their performance to our implementation. Chapter 5.2 also 

contains several concepts that might further improve the efficiency of the presented 

implementation. 
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