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ABSTRAKT 

Financni derivaty jsou financni instrumenty jez umoznuji investorum i dluznikum 
optimalizovat sva portfolia podle individualmch potreb a miry akceptovatelneho rizika. 
Jejich vyznam na fmancnfch trzi'ch v poslednich deseti letech enormne stoupl a objemy 
zobchodovanych instruments neprestavaji rust. Derivaty urokovych mer tvofi velkou 
podskupinu, jejich ocenovani tvori ve financni matematice ch'ky zvlastnim 
charakteristikam dynamiky vynosove a diskontni kfivky samostatnou kapitolu. Tato 
prace se v prvni casti zabyva zakladnimi principy ocenovani derivatu urokovych mer 
vychazejici z teorie o bezarbitrazi a predstavenim nejbeznejsich modelu dynamiky 
vynosove krivky. Druha cast se zabyva otazkou kalibrace v ramci "LIBOR Market 
Modelu" s jednim az tfemi faktory rizika. Tyto tri inodely jsou pouzity k oceneni swapci 
pomoci Monte Carlo simulace v ramci teorie o bezarbitrazi predstavene v prvni casti. 
Vysledlcem prace je zjisteni, ze nejlepe jsou swapce oceneny pomoci modelu s pouze 
jednim faktorem rizika. 

ABSTRACT 

Financial derivatives are financial instruments which enable investor or a debtor to 
optimize his/her asset/debt portfolios according to individual needs and acceptable scale 
of risk. Their importance in financial markets rose enormously n past ten years as well 
as did their traded volumes. Interest rate derivatives form a large sub-group of financial 
derivatives, their valuation is a large self-contained chapter within financial 
mathematics thanks to the unique characteristics of yield- and discount-curve dynamics. 
In the first part of my thesis I derive the fundamental pricing principles stemming from 
no-arbitrage pricing theory and introduce the most common approaches in yield curve 
modeling. In the second part I discuss issues of calibration in a "LIBOR Market Model" 
with one to three risk factors. These models are used to price swaptions with Monte 
Carlo simulation within the no-arbitrage framework introduced in the first part. The 
result of the thesis is that one factor model performs the best in pricing swaptions. 
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1 In t roduc t ion 
The popularity of interest rate derivatives has dramaticaly increased in past 
couple of years. To a great extend this was possible because of big improve-
ments in financial modelling in the last decade. New and revolutionary concepts 
tha t were developed (such as the Heath, Jarrow and Morton framework and es-
pecially the market models) provided new insights into understanding of yield 
curve dynamics, which enabled the banks to develop sophisticated evaluating, 
trading and hedging mechanisms. Thanks to this progress new product ideas 
could be realized and they met with big popularity among customers. Thanks 
to various structured swaps the customers from the liability sector can manage 
their debt more actively, which is the case of not only big and strong compa-
nies, but also of sovereign bodies like cities and states. On the other side of 
the customer spectrum, asset products enable big fonds, insurance companies 
and other investors to buy more interesting fixed income products where they 
can bet on certain market view about future developement of interest rates and 
thus enhance their profit. 

To make an example, a company which has to pay fixed payments for it's debt 
can enter into so called range accrual swap with a third party. It pays a low fixed 
and receives a portion of higher rate, which (portion) depends on the amount 
of days that say a 3-month Euribor fixed on daily basis lies within a specified 
range. If the company is correct about the range, the portion is near one and 
it generates profit which helps lowering its debt costs. 

Other example would be an investor, who buys a bond which can be called by 
the issuer if rates fall. Callable bond is also paying higher cupon as the investor 
basically sells right to cancel the trade if rates are developing in an unfavourable 
way for the issuer. Such trade involves three parties, an investor, an issuer and 
a counterparty for a swap, say an investment bank. Issuer receives investor's 
money and deposits them on an interbank market for a floating rate. These 
floating payments are swaped with an investment bank for a fixed payment 
which is passed on a regulary basis to an investor. In addition, the issuer sells 
an investment bank a swaption, or a right to enter into a swap which provides 
exactly the opposite flows of payments as the original swap, i.e. issuer would be 
obliged to exchange a fix rate for a floating rate if such swaption was exercised. 
If a swaption is exercised, the payments of the two swaps cancel out (bond is 
called). The sold option created a value to the issuer which translates into a 
higher fixed payments which he passes (with a discount) to an investor. In such 
scenario the issuer is basically an intermediary and it is the investment bank 
who is canceling the contract. 

In both examples there are interest rate derivative products involved and the 
extend to which the deal is favourable for the buyer of the product depends on 
the derivative's price. Both example demonstrate that there is a big motiva-
tion and economic interest in a knowledge of pricing these derivative products. 
Specificaly, in the second example we would be interested to know what is the 
value of the sold swaption. In order to find out we have to make an assumption 
about the dynamics of the yield curve. A model has to be built which simu-
lates possible evolutions of the interest rates so that we had an idea about the 
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probabilities, with which such scenario occures where a swaption that we sold 
will be excercised. How exactly the model should be constructed and how they 
value of derivative product should be calculated is a topic of this thesis. 

In the first section, no-arbitrage pricing mechanisms will be introduced to pro-
vide a framework for pricing derivatives. In the second section, various interest 
rates will be defined and notation will be introduced which will be used used 
throughout the thesis. The third section introduces various interest rate mod-
els that can be considered for yield curve simulations. It will be shown how 
the market prices (quotes) the most common interest rate derivatives, namely 
swaptions or options on a swap rate and caps or options 011 interest rate. It will 
be argued, that so called market models are very convenient for pricing prod-
ucts like caps and options because they aim to model directly the underlying 
quantitie, i.e. the swap rate in case of a swaption and a Libor rate in case of a 
cap. 

Finally, in the last two sections a Libor market model will be built and calibrated 
with help of both market and historic data. It will be subsequently used for yield 
curve simulations which will allow to price swaptions on basis of the introduced 
no-arbitrage pricing framework. Furthermore, three models will be used to price 
swaptions, models with one, two and three risk factors. A hypothesis will be 
tested, wheather the three factor model which captures the evolution of a yield 
curve in the most realistic way, delivers the best results in pricing swaptions. 
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2 Financia l Derivatives and No-Arbi t rage Pricing 

Derivatives are financial instruments, who's payoff at certain time in the future 
depends on an evolution of some underlying. Such underlying can be a tradeable 
asset such as stock or bond or it can be a non-tradable variable such as interst 
rate, swap rate but also amount of rain in a year. A typical exampe of a 
derivative instrument is a call option. It is defined by an underlying asset, say 
5 , strike price K and expiry time T. The payoff of a call option at expiry time 
T is the following function of a value of it's underlying asset S at time T: 

max {S(T) — K, 0}. (1) 

In order to determine the price of such contract it is necessary to examine the 
charactaristics of the underlying asset's dynamics. It is intuitive, that at current 
time t < T for a given strike price K (let's say K » S(t)) the call option's 
value will be higher if the volatility of the underlying asset is high and therefore 
if chances are greater that the underlying's value will exceed the strike price at 
option's expiry time T. As will be shown later, the underlying's volatility plays 
an essential role in determining option's price. 

2.1 Dynamics of financial assets 
The following formula describes a general dynamics of an underlying, say stock S: 

dS{t) = n{t, S(t))dt + cr(t, S(t))dW{t). (2) 

It can interpreted as follows: an infinitezimal change of stock S at time t consist 
of a deterministic term /zdfc called drift and a stochastic term ad\V(t) called 
diffusion. a(t,S(t)) is then volatility function of the process and both n and 
a are functions of time and stock itself (meaning the drift as well as volatil-
ity depend on the level of S). Finally, dW(t) is an infinitezimal change of a 
stochastic process called Wiener Process1 which is normally distributed with 
zero expected value and variance of dt under the real world probability mea-
sure - P. This is the risk factor entailed in the equation of underlying's dynamics. 

The first step in pricing a derivative is to specify the form and parameteres of 
the in derivative's underlying, especially (as will be shown later on) those of the 
volatility function. The key point which leads to the famous Black and Scholes2 

formula is to assume a linear form of drift and volatility functions, 

dS(t) = ixS{t)dt + aS{t)dW{t). (3) 

Here // and cr are constant coeffitients. The equation can be solved for S(T) by 
showing, that the process of logarithm of S(t) can be written as3 

dln{S(t)) = (m - l°2)dt + adW{t). (4) 
z 

' See Bjork (2004). 
2See Black and Scholes (1973). 
3See Ito's Lemma in text below. 
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Now there is no state variable S(t) on the right side and the process can thus 
be integrated to obtain value of ln(S) at time T, 

ln(S(T)) = ln(S(L)) + ^ - dt + jT adW(t). (5) 

Because the integrated functions are constants, the first integral is equal {n -
0.5 a2)(T-t) and the second is equal aW[T). Taking exponentials of both sides 
we obtain: 

S(T) = (6) 

where we assume that W{t) is zero. Because the exponent of 6 follows a nor-
mal distribution ( W ( T ) is distributed normaly), by deffinition, stock S(T) is 
distr ibuted log-norrnaly, which is the crucial assumption for evaluating options 
in Black-Scholes scenario. Further, the process describing dynamics of stock -
equation 3 - is called Geometrical Brownian Motion or simply GBM. The coef-
fitient /i can than be interpreted as a local rate of return. This can be easily 
understood dividing equation 3 by S(T): 

dS(t) 
= ndt + <rdW(t). 

Here it is obvious that the fraction dS(t)/S(t) is to be interpreted as a percent-
age growth. The expected infinitezimal percentage growth of stock S is fidt, 
because the expected value of Wiener process is zero. A care must be how-
ever taken here, we cannot substitute dS(t)/S(t) by dlnS(t), for process S(t) is 
stchochastic and Ito's Lemma must be used as shown below. Such process with 
only deterministic coeffitients is called Aritmetical Brownian Motion or ABM 
and it is normally distributed. 

Here a question can be raised if indeed the underlying stock is log-normally 
distr ibuted implying that the returns are distributed normally, but that is a 
subject of different discussion. At this point we can however ask a question of 
how to estimate the volatility parameter in equation 3 - a.4 Basicaly we have 
two choices, either we can estimate volatility from historical data or we can ac-
cept a guess of our own, of some expert or that of a market. In the second part 
of the thesis it will be shown how the markets' assumption about volatility can 
be extracted from market data and how it plays a key role in model calibration. 

Now let's consider such capital market which consists of n traded securities 
with one common risk factor W(t) and a possibility to deposit money in a bank 
at a constant risk-free interest rate r.5 If we assume that all securities follow 
GBM, buying any one of these, our investment at time t will have the following 
dynamics: 

dSi(t)=mSi{t)dt + criSi{t)dW{t), for i = l , . . . , n . (7) 

4 Late r in the thesis it will be shown that the drift parameter /i doesn't play in role in 
derivatives evaluation. 

s T h i s assumption is made for simplicity, risk-free interest rate can also be made stochastic 
which wouldn't change anything in the agumentation below. 
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If instead we decide to deposit B(t) units of money into a bank account, our 
investment will accrue according to the differential equation 

dD(t) = B(t)rdt, (8) 

where D(t) stands for money market account. We can see that in equation 
8 there appears no stochastic term which means that the dynamics of money 
market account is deterministic or risk-less. It is easy to see that if the initial 
investment at time t,0 is one, the balance of our deposit in T > t0 will be: 

B(T) = er(T~to\ (9) 

This can be obtained by solving the differential equation 8 with initial condition 
B(to) = 1. 

2.2 Deriving the no-arbitrage condition 
Now I will show that assuming only one risk factor (the same Wiener process 
W(t) is present in dynamics of all traded assets), we can take any two of the n 
securities and find the unique quantities needed to form a portfolio, which will 
be localy riskless. The dynamics of securities S, and Sj at current time t will 
be: 

dSi(t) = niSi(t)dt + cTiSi{t)dW{t) 
dSj (t) = /j,jSj(t)dt + ffjSj(t)dW(t) 

and buying quantities a(t) and (3(t) of securities Sj and Sj the value of our 
portfolio V(t) at current time will be: 

V(0 = a ( 0 $ ( t ) + / 3 ( 0 < S j W - (10) 

Knowing dynamics of stochastic variables X\ and X2 one can derive dynamics 
of their function Y(X 1 ,^2) using the famous Jto's Lemma: 

dY dY 1 d2Y 1 d2Y 
dY(XuX2) = —dXl + —dX2 + - ^ v o l ( d X l ) + - ^ v o l ( d X 2 ) + 

f)1y , , 
+ Q ^ J X 2 V v o l ( d X l ) V v o l ( d X 2 ) . (11) 

Appendix A proves Ito's Lemma for one variable case, two- and n-variable case 
is analogous. 

We follow formula 11 to derive dynamics of our portfolio V in equation 10. 
Because V is linear in Ss, second derivations are zero and we obtain the following 
expression: 

dV[t) =a(t)dSi{t) + f3{t)dSj(t). 

Substituting for dSi(t) and Sj(t) and putting dt and dW(t) terms together we 
obtain: 

dV(t) = [a{t)Si{t)m + P(t)Sj(t)nj}dt + 
[a(t)Si(t)o-i + mSj(t)aj\ dW(t). (12) 
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This stochastic diferential equation says that the dynamics of our portfolio V 
is dependent on the level of S{ and S j at time t and on the quantities a and p. 
We can however choose 

aM=f„. A v m a n d W = (a, - aj)Si(t) w - arfSjit) 

and substituting these quantities into dynamics 12 we obtain: 

dV(t) = W - W d t , (13) <7; - di 

We can see that the above choice of quantities a and p causes that the W(t) 
factor falls out which makes the above portfolio dynamics riskless just like the 
money market account 8 and to prevent presence of arbitrage, the drift param-
eters of dynamics 8 and 13 must be set equal. Rearranging we obtain: 

CTiHj - CJjUi 
- — = r 

(Tj — Oj 
ffiHj - rcji = ajUi - raj 

^ = 0 L Z I = A. (14) 
(Tj (Tj 

This fundamental result can be interpreted as follows: higher excess return over 
risk-less interest rate must be compensated by higher volatility. The resulting 
ratio A is called market price of risk and if the market is free of arbitrage, it 
must be equal for all traded securities. 

2.3 Deriving the fundamental Black-Scholes PDE 
Let us now return to our call-option C and express its dynamics at time t with 
the following general differential equation: 

dC(t) = nc(t, C(t))dt + <rc(t, C{t))d,W{t). (15) 

If we assume that this call-option is as well traded on the market, the above no 
arbitrage condition 14 must apply to our option's dynamics as well: 

Mc(t,C(t)) _ 
c 

oc(t,C(t)) 
C 

= A. (16) 

Further wo know that the payoff of the option C at the expiry time is a function 
of its underlying, say security Si and therefore the options's current price must 
as well be a function of this underlying's current price - C(t,Si(t)). Assuming 
the underlying's dynamics 7 we can rewrite options dynamics using Ito's Lemma 
as: 

dC(t,Si{t)) = |'-dl + H ^ ) + 2 gsfVolidSM). 

This result is easily obtained substituting into equation 11 and realizing, that 
t ime variable t is deterministic and therefore has zero variance which causes the 
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second derivatives with t to fall out. Now we can substitute for S< and after 
rearranging we obtain: 

dC(t,Si(t)) = 
ac oc i a 2 c „ , , , 

d t + ^ a i S i d W ( t ) . (17) 

It can be seen that the drift function /Lc{t,C(t)) from the general option's dy-
namics equation 15 is equal to the term in square brakets in the above equation 
17 and the volatility function ac(t, C(t)) is equal to the expression before d\V(t) 
term in equation 17. If we substitute these into equation 16 which guarantees 
absence of arbitrage, after rearranging we obtain the following expression: 

8C 8C L, . , , 1 d2C 2r<2 
C r = W + fls^-^ + a a s f * 

We can notice that in absence of arbitrage (equation 14) the term in square 
brackets can be substituted by r and adding the payoff function of a call option 
at maturity T (equation 1) as a boundary condition we obtain the famous 
Black-Scholes option pricing equation: 

C(t,S(t))r = ^ + g rS,(i) + ^ « r ? S ? ( t ) (18) 

C(T, Si(T)) = max[Si{T)-K]. (19) 

We can be however quite general as far as the boundary condition 19 is concerned 
and replacing the call option payoff at its expiry time T we can price any 
derivative who's payoff is a function of its underlying at T: 

C(T,Si(T)) = 4>(S(T)). (20) 

2.4 Feynman-Kac stochastic representation formula 
Solving the above differential equation 18 with boundary condition 19 or 20 
gives us a price of a derivative at time t assuming lognormal distribution of its 
underlying Sj. One way of solving equation 18 is analytically by lengthy compu-
tations. The other way is employing a Feij7iman-Kac stochastic representation 
formula,6 which says, that having a boundary value problem 

F(t,X(t))r = d^{t,X{t)) + ^ { t , X { t ) ) + \ ^ y ( t , X { t ) ) (21) 

F(T,X(T)) = <t>{X(T)), (22) 

where some integrability conditions for ^~a(t,X(t)) are fulfilled7 and where 
dynamics of X is expressed by stochastic differential equation 

dX{t) = //(«, X(t))ds + <r(i, X(t))dW{t), 

then the solution to problem 21 - 22 is 

F(t,X(t)) = e~r^E[^(X(T)}. (23) 

The proof is presented in Appendix B. 
8 See for instance Bjork (2004). 
7So E [ ( I f 1 d s < oo, see Bjork (2004). 
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2.5 Change of probability measure and fundamental pric-
ing formula 

We can see that our task to solve derivative-pricing equation 18 is almost iden-
tical to the problem presented in Feynman-Kac's formula, except for the drift-
function fi(t,Si(t)) in the underlying's dynamics 7, which doesn't correspond to 
rSi(t) from eqn. 18, but to HiSi(t) . A very handy fix is provided by Girsanov 
Theorem,8 which allows us to change the probability measure which governs 
the process S{(t) (or W{t) more precisely) in such way, that the drift changes 
according to our needs while the diffusion remains the same. We can thus define 
a probability measure Q such, that: 

dSi(t) = rSi(t)dt + aiSi(t)dW{t) for i = l,...,n, (24) 

where dW(t) is a Wiener proces under newly defined measure Q, which is called 
equivalent probability measure9 to measure P. Two important points should 
be made here. First it is necessary to realize that the new process 24 doesn't 
describe real behaviour of securitity S*, instead it is an artificial auxiliary process 
to help us solve equation 18. Second, it can be shown, that the two Wiener 
processes dW(t) and W(t) are linked by the following symbolical relationship:10 

dW(t) = dW(t) - \dt = dW(t) - ^ ^ d t , (25) 

where A is the market price of risk from equation 14. Therefore by substituting 
relationship 25 for dW(t) into equation 7 for any security i, the drift term /ij 
falls out and we obtain a new drift term rSidt as in equation 24. This can be 
interpreted so, that under the probability measure Q, all traded instruments 
have the same drift r if the market is free of arbitrage. The Q measure is also 
called a risk-neutral measure and the fact that its existence guarantees absence 
of arbitrage was shown by Harrison and Pliska.11 

Having switched from measure P to measure Q our problem to solve the derivative-
pricing equation becomes identical with the Feynman-Kac formula and we ob-
tain the following result as a solution to equation 18 with boundary condition 
20: 

C(t,S(t)) = e-r(T-»E[<l>(S(T)}, (26) 

or 

M = , B(to) = 1, 

where E means expected value under the risk-neutral measure Q and B(T)~l 

is the inverse of money market account with initial investment of one (equation 
9) which can be interpreted as a continuous deterministic discounting factor. 

8 See for instance Brigo and Mercurio (2001). 
"Two measures are equivalent, if they share te same sets of null probability. See for instance 

Brigo and Mercurio (2001). 
1 0 See for instance Brigo and Mercurio (2001). 
1 1 See Harrison and Pliska (1981). 
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This important result says that if the market is free of arbitrage, the unique 
price of derivative C at any time t < T is equal to the discounted risk-neutral 
expectations of the instrument's payoff at expirty T. 

In order to achieve the solution 26 it was assumed, that the underlying of a 
derivative C follows a GBM and the risk-less rate of return r over time T - t 
is constant. Harrison and Pliska have however prooved, that this result can be 
generalized to the case where we allow the risk-less interest rate r to be stochastic 
and at the same time loosen the lognormality-of-underlying assumption. The 
price of a derivative is than expressed by: 

C{t,S(t)) ~ m r n ) 
B(T) B(to) = 1. (27) 

This result says that using money market account as a nummeraire, the dis-
counted price of a derivative C at time t is equal to the risk-neutral expectation 
of its discounted payoff at its expiry T. We can say that the discounted process 
(by money market account) of a derivative C is a martingale under Q or that 
it is equal to it's Q-expectations.12 

Let's repeat at this point, that the Q-probability measure was defined so, that 
any traded instrument Sj had a local rate of return equal r. We can equivalently 
define this Q-measure by requiring, that the process of any discounted security 
(by money market account) which is traded on market is Q-martingale. As men-
tioned before, the existence of such measure Q is a guarantee, that the market 
is free of arbitrage. This definition will be used in the following paragraph. 

As will be shown later in the thesis, it is often handy to use different nummeraire 
than the money market account B(t). We can define a Qx measure so, that 
the process of any discounted (traded) security is a martingale under Qx, when 
security X is used as a nummeraire.13 Additionaly, we have to require that this 
nummeraire X is a non-negative asset with no intermediate payments during 
the life of evaluated derivative. This is expressed by the following fundamental 
condition: 

X(t) 
Y(T) 

[X (T) 

where Y is any traded instrument and E x denotes expected value under Qx-
measure. In case we derive a price of a derivative, wc obtain a derivative-pricing 
condition 

C(t,S(t)) _ 

~ m ~ - E x 

m n 
X(T) 

(28) 

Analogous to 27 the interpretation of this result is, that under absence of ar-
bitrage on the market, a unique price of a derivative C(t) discounted be the 
known value at t of nummeraire X can be assessed as discounted expectations 
under measure Qx of the derivative's payoff at its maturity T. Furthermore, 

12Simplified definition of martingale is X(t0) = £[X(T)] , under the relevant probability 
measure. For full definition including necessary assumptions see Bjork (2004). 

1 3See Brigo and Mercurio (2004). 
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the process of any tradable security discounted by a nummeraire X must be a 
martingale under Qx should the market be free of arbitrage. This result will 
be extensively used in the remainder of the thesis and will be refered to as a 
fundamental pricing formula. 
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3 Defini t ions and Nota t ions 

Having introduced the fundementals of stochastics of financial assets and no-
arbitrage pricing in the previous section, this section will go on with basic 
definitions, showing different ways of defining the term structure of interest 
rates and the most basic interest rate derivatives. 

3.1 Term Structure of Interest Rates 
3 .1 .1 Money-market account 

First definition is that of a money-market account or a bank account mentioned 
already in the first section, repeated here for completeness. The investment of 
one unit of currency at time 0 will at time t have the dynamics 

dB(t) = r{t)B(t)dt. (29) 

where r(L) can be either deterministic or stochastic function of time. In both 
cases it can be solved for B(t) by dividing 29 by B(t), realizing that dB(t)/B(t) 
is equal to d\nB(t)u and integrating the resulting equation we have: 

In B(t) = [ r(s)ds. 
Jo 

Taking exponential of the expression yields 

B(t) = etir{s)ds. 

This is the value of investment assuming stochastic interst rate at time t. In 
case r is deterministic we obtain expression 9 from the previous section. 

3.1 .2 Zero-cupon bond 

A T-matur i ty zero-cupon bond is a contract that guarantees its holder a payment 
of one unit of currency at contract's expiry time T with no intermediate pay-
ments. The value of zero-cupon bond at time t < T is P(t, T) with P(T, T) = 1. 
It is worth noting that zero-cupon bond price is not directly observable on the 
market, it can be either stripped from traded government bonds or calculated 
from products traded in the interbank sector such as swaps or futures. Zero-
cupon bonds are however basic quantities in interest rate theory, they are used 
to define and derive all interest rates as shown below. To do this one only has 
to specify the compounding type, the point in the future when accruing begins 
and when it ends. 

3 .1 .3 Spot interest rates 

For the following definitions, t will denote the current time instant. In order to 
specify the time fraction between the current time instant and the future expirty 
time T, the notation r(t,, T) will be used meaning the year fraction between t 

l 4 I t o ' s Lemma doesn't have to be used on this place as no stochastic term dW(t) appears 
in dynamics of 29. Even though r( t ) might be stochastic, its value at time t is known, the 
process is localy deterministic and dB{t)/B(t) can thus be substituted by d l n f l ( t ) . 
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and T using chosen day-count convention.15 

A continuously-compounded spot interest rate is than defined as the constant 
rate R(t, T) which fulfilles the following equation given a price of a '/'-maturity 
zero-cupon bond: 

and solving for R(t, T) yields 

Similarily, simply-compounded spot interest rate is the constant rate L(t,T) 
which solves 

P(t,T)= 1 

1 +r(t,T)L(t,TY 

with the solution given by 

' " ' " ' W S f i ' ( 3 1 ) 

This way of compounding is used by banks to set the daily inter-bank refer-
ence rates which are used on the inter-bank deposit market. They are called 
LIBOR rates which explains the letter L in notation. 

Finally, the annually-compounded spot interest rate is the constant rate Y(t,T) 
which solves 

P(l'T)= (i + Y(t,T))T^'T)' 

with the solution given by 

/ 1 \ 
Y { t > T ) = { p m ) (32) 

Subsequently we can define a short rate r(L) as the annual rate at which we can 
deposit money at current time for an infinitezimally short period ( r ( t , T ) —> 0). 
This rate cannot be observed on the market, it is however a handy variable to 
model in order to price interest rate derivatives as will be shown later. The 
following can be shown:16 

r(t)= lim R(t,T) — lim L{t,T) = lim Y{t,T). (33) v ' m . . - I . rr> , * 4 - T . / + 

1 5 Depending on the day-count convention, the fraction of time measured in years between 
t and T can vary. For details, see for instance Deutsch (2004). 

1 6See for instance Brigo and Mercurio (2004). 
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3 .1 .4 Interest rate curves 

Collecting the data of iterest rates for all maturities, we can plot a cuve which 
informs us about the term structure of interest rates. The most used such 
curve is indeed the zero-cupon curve or the yield curve, which is defined as the 
following real function of maturity T: 

T ( L(t,T), t<r<t+ 1 (years) 
\Y(t,T), T>t+ 1 (years). {M> 

It can be noticed, that the very left point of the yield curve is the short rate 
defined above. 

T h e other very important curve is thezero-bond curve or the discounting fimction 
which is defined as the following function of maturity T: 

T —> P(t, T) , T>t. 

It gives us the value of certain payment of one at given maturity T and is thus 
used to discount certain payments in the future. These two curves contain the 
same information about the structure of interest rates as can be seen in the 
previous sub-section where the interest rates are defined. Thus knowing one 
of them the other can be easily derived. It is the uncertainty of evolution of 
these curves in time which gives motivation to the existence of interest rates 
derivatives. 

3 .1 .5 Forward interest rates 

As opposed to spot rates, which are used to accrue deposits at current time t, 
forward rates are interest rates that can be locked in today for an investment 
in the future. They can be defined using the forward rate agreement contract 
or simply FRA, which enables the investor to lock his/her interest payments 
between T and S at rate K. F R A ( t , T , S ) is a traded intrument defined by 
its strike price K, maturity T and a time instant S > T, at which it has the 
following payoff on a unit nominal: 

T(T,S)[K-L(T,S)\. 

We can substitute for L(T,S) from definition 31 which delivers 

1 - P(T, S) 
r(T,S) I< -

P(T,S)t(T,S) J 

We can notice that all these values are known at time T and the payoff is thus 
certain at this moment. Thus we can discount it by P(T, S) to obtain the value 
of this payoff at time T: 

P(T,S)t(T,S)K-1 + P(T,S). 

Now the value of zero cupon bond P{T, S) at current time t is clearly P(t, S) 
and the current t-value of certain payment - 1 at time T is -P(t,T). Thus the 
contract 's value today is 

F R A ( t , T , S) = P ( t , S)T(T, S)K - P(T, T) + P ( t , 5 ) . (35) 

15 



If we look for the rate K which makes this contract fair, setting it equal to zero 
and rearranging we obtain the following expression: 

r , P(t,T)-P(t,S) 1 
P(t,S) T ( T , S ) = F ^ W 

where F(t, T, S) denotes the simply compomided forward rate between T and S 
at current time. Looking back at equation 36 we can see that a portflio consisting 
of an amount l / r ( T , S) of zero cupon bond P{t,T) long and the same amount 
of P(t,S) short is a traded instrument. Thus using P(t,S) as a nummeraire, 
the discounted portfolio must be a martingale under measure <2p((,s), or simply 
Qs, should the market be free of arbitrage, as argued at the end of the previous 
section. It is clear from equation 36, that the discounted portfolio is exactly 
equal to our forward rate F(t,T,S) which means that F(t,T,S) is a martingale 
under measure Qs. This result will be used in the next section when talking 
abou t the LIBOR market model. The last point to be made here is that the 
evolution of F(t,T,S) stops at time t = T when the forward rate F(T,T,S) 
becomes L(T, S) which means tha t 

Es[L(T,S)\t] = Es[F(T,T,S)\t] = F(t,T,S). 

In line with the above definitions of spot interest rates, starting with the known 
price of zero-cupon bonds P(t,T) and P(t,S) we can equivalently define simply 
compounded forward rate as the constant rate F(t,T,S) which solves equation 

=
 1

 (37) 
P(t,T) 1 + F(t, T, S)T(T, S) V ' 

T h e solution is expression 36. Similarily we can define a continuously-compounded 
forward rate as the constant rate G(t,T,S) which solves equation 

P(L,S) 
P(t,T) 

and the solution is 

= e-G(t,T,S)r(T,S) 

g ( . , T , g ) = ' n P ( ' ' ^ - y ( ' ' s ) . (38) 

Now we can define instantaneous forward rate f(t,T) as: 

/ ( t , T ) = lim G(t, T, S) = lim F{t,T,S). 1 v ' ' S-+T+ S—*T+ 

Subst i tu t ing for G(t, T, S) from 38 we can see that the obtained result is exactly 
the definition of derivation of logarithm of zero-bond curve In P(t, X) around 
X = T : 

.. l n P ( f , T ) - In P( t , S) _dlnP(t,T)_ 
T p J ) 9T ' [ i J ) 

S—*T+ 
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An important point to be repeated here is, that if we wish to model evolu-
tion of the term structure of interest rates, we have the choose which quantity 
we want to model. Among the many posibilities we have are different forward 
rates, instantaneous forward rates, spot rates or a discount function. All of 
these rates contain the same information about the markets' anticipation about 
the future rates. The different approaches of pricing derivatives with interest 
rates as an underlying choose different quantities as their starting point. Each 
of the choices has certain advantages and disadvantages. These will be briefly 
presented in the next section. Before doing so, some basic interest rate producs 
will be defined. 

3.2 Basic interest rates derivatives 
3.2 .1 Forward rate agreement - F R A 

The first derivative product was already defined in the previous section - the 
forward rate agreement or FRA. It is defined by its strike price K and by tiine-
instants T and S with T < S. FRA contract obliges its holder to exchange a 
payment of at time t uncertain simply compounded interest rate L(T, S) for a 
fix rate K at time S. The contract's payoff at time S is 

FRA(S, T, S, I<) = r(T, S) [K - L(T, S)] , 

where the first argument denotes time instant of FRA's evaluation, second ar-
gument denotes FRA's expiry, third denotes time when exchange of payments 
takes place and fourth is FRA's strike price.17 The value of this payoff is certain 
at t ime T and can be thus discounted to obtain: 

FRA(T, T, S, I<) = P(T, 5)r(T, S) [K - L(T, 5)] 

If we try to evaluate this uncertain time T FRA value, this time using the fun-
damental pricing formula from section one and using zero-cupon bond P(T, S) 
as nummeraire, according to 28 we obtain 

FRA(t,T,S,K) = eS P(T, S)t(T,S) [K-L{T,S)\ 
P(T,S) P(t,S) 

and the no-arbitrage value of this contract is thus 

FRA(t,T, S,I<) = P(t,S)r(S,T)Es[K-L(T,S)}. (40) 

As stated above, L(T, S) is a martingale under measure Qs and E[L(T, S)] is 
thus equal F(t,T,S): 

FRA(t, T, S) = P[T, S)T(S, T) [K - F(T, T, 5)]. (41) 

Substituting now for F(t,T,S) from definition 31, we obtain the expression 35 
which is the FRA value at time t. Further it was said, that the forward rate 

1 7Clearly if first argument is equal to the second, it denotes discounted payoff, if it is equal 
to the third, it denotes actual payoff. 
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F{t, T, S, K) is such, tha t when substituted into FRA for K the contract is equal 
zero. This is the case only if 

0 = Es [K - L(T, 5)] 

K = E S [ L ( T , 5 ) ] 

F(t,T,S) = Es [L(T, S)}. 

This result is often misleadingly interpreted, that the forward rates are expec-
ta t ions of the spot rates in the future. We can see that the true interpretation 
is t h a t forward rate F(t, T, S) is Q s-expectat ion of the future spot rate L(T, S). 
These expectations are the same under the assumption of risk-neutrality of the 
market , which is however not the case in the real world where risk-aversion is 
present. 

3 .2 .2 Interes t rate swaps - IRS 

There are different types of interest rate swap contracts. Let's consider a set 
of fixed time instants lo , i i , . . . ,<n in the future. Swap is a contract, which pro-
vides a payoff at times ti,t2,---,tn and each of these payoffs dependends on 
a L IBOR rate reset a times to, t\,..., t „_ i respectively. We assume that year 
fract ions r(to, ti),T(t\, £2), •••, T(tn-\, tn) are all equal r . Then a forward start 
receiver swap or RFS obliges its holder to exchange a floating payment (pay 
float) L(ti-i,ti) • t for a fix payment (receive fix) K • r at times tit where 
i — 1, ...,n. R.FS provides the same payoff as a portfolio of n FRA contracts 
long with the same strike price K and its value at current time t can thus be 
wri t ten as: 

n 

RFS(t,t0,tn,K) = i,k,K) (42) 
i=l 
n 

= y , i p ^ t K -pft ^-1) + 
i=l 

n 

= P ( M n ) - f ( M o ) + tfr£P(Mi). (43) 
i=l 

A forward rate payer swap or PFS is a similar contract, its holder is however 
obliged to exchange fix payment (pay fix) I< • r for a floating payment (receive 
float) L(ti-i,U) • t at times U. This contract is equivalent to a portfolio of n 
F R A contracts short with the same strike price I< and its value at current time 
t is therefore: 

n 

PFS(t, <q, tn, K) = P ( M o ) - - P ( M n ) - t f r £ P ( M i ) . (44) 
i= 1 

3 . 2 . 3 S w a p rate 

Set t ing any of RFS or PFS equal to zero and solving for K, we obtain the 
forward swap rate S(t,to,tn): 
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Dividing the by P(t, t0) we get 

1 _ EMA 
S ^ o , t n ) = ^ , (46) 

which can be rewritten in terms of simply compounded forward rates as follows 
(se equation 37): 

= ( 4 7 ) r 1 1 = l l+TF(t,t0,t3) 

This expression will be used when talking about modelling swaption payoff in 
section four. 

Similarily as in the forward rate case, portfolio, say A, consisting of 1 / r portion 
of P{t, t0) bond long and the same portion of P(t,tn) bond short is traded. If 
we use another portfolio, say B, consisting of bonds P{l,li) for i = 1,2, ...,n, 
as a nummeraire, the discounted portfolio A/B has to be a martingale under 
the measure Qg. Again, it is straightforward that this discounted portfolio is 
exactly equal to the swap rate, which means, that the swap rate is a martingale 
under the measure Qb• This result will be used in the next section when talking 
about the swap market model. 

Another very useful expression for the swap rate can be derived when we sub-
st i tute 41 into equation 42, set the value of the swap equal zero as done in the 
second step in the derivation below and subsequently solve for K = S(t,to, tn): 

n 

RFS(t,t0,tn,K) = (48) 
i=l 

S ( M o , t n ) " £n
k=1P(t,tk) 

S(t,to,tn) = Y l ^ n pn > N-F(Mi-l^i) 

i = 1 z_vfc=1 °k) 

n 
S(t,to,tn) = ^WiF^ti-uti). (49) 

i=l 
In the last step we have substituted the fraction with w{. Clearly the sum of 
all ws is equal to one and they can be therefore interpreted as weights. In 
light of this restatement the forward swap rate spanning between t0 and tn can 
be interprated as a weighted average of forward rates F over this period of time. 

Finally, we can also express the interest rate swap in terms of a swap rate which 
will come handy when talking about swaptions. Starting with equation 48 we 
can subtract a swap (which spannes over the same period of time) who's fix leg 
K is equal to the swap rate and which is thus by definition zero: 

n 

i=l 
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i=l 
n 

= ( S ( M 0 , i n ) - A - ) T £ p ( t , t i ) . (50) 
i=l 

From the expression 50 it is nicely seen, that the the value of a payer swap is 
equal zero if K = S(t, t0, tn) it is positive if K < S(t, t0, t„) and it is negative if 
K > S(t,t0,tn). 

Having t < t0 the first forward rate resetting point is a time instant in the 
fu ture . If we set t0 = t, the first resetting date will be the current time instant 
t and thus the first payment at time t\ will be known and there is uncer-
ta inty only about the value of the next payments which depend on the future 
value of spot, rates. Furthermore, if we enter into a reciever swap with t0 = t 
and K = S(t,t,tn), it can be shown that this first payment will be positive 
if the yield curve is upward sloping and negative if the yield curve is down-
ward sloping (inverted) and vice-versa for a payer swap. The reason for this is, 
tha t the received fixed leg is a weighted average of the one-period forward rates 
F(t, t, £i) = L(t, ti),F(t, t\, t2),F(t, t2, <3) . . . and these are increasing if the yield 
curve is upward sloping. 

3 . 2 . 4 C a p s and Floors 

A call option with an interest rate as an underlying is called a caplet. It is 
defined by the underlying forward rate F(t,T, S) and the strike price K. Caplet 
expires at t ime T and as opposed to an ordinary stock option, it provides a 
payoff at t ime S: 

Cpl{S, T, S, K) = r (T , S) max [F(T, T, S) - K, 0], 

where the first argument denotes time instant of caplet's evaluation, second 
a rgument denotes option's expiry, third denotes time when payment takes place 
and fourth caplet's strike price.18 F(T,T,S) is equal to L(T,S). Clearly, the 
value of caplet 's payoff is known at time T: 

Cpl(T,T, S, K) = P(T, S)T{T, S) m a x [ F ( T , T, S) - K, 0] 

and the current market price of a caplet can be denoted as Cpl(t, T, S, K). Fur-
thermore , a caplet is called at-the-money (ATM) if F(t,T,S) = K or Cpl = 
Cpl(t,T,S,F(t,T,S)), in-the-money (ITM) if F(t,T,S) > K and out-of-the-
money (OTM) if F{t,,T,S) < K. 

A pu t option on an interest rate is called a floorlet an it provides the following 
payoff at time S: 

Frl(S, T, S, K) = r (T , S) max [K - F(T, T, 5), 0]. 

A floorlet is called at-the-money (ATM) if F(t,T,S) = K, in-the-money (ITM) 
if F(t, T, S) < I< and out-of-the-money (OTM) if F(t, T, S) > K. 

1 8Clearly if first argument is equal to the second, it denotes discounted payoff, if it is equal 
to the third, it denotes actual payoff. 
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Let 's consider a set of fixed time instants t0,tu...,tn in the future. A cap is 
defined as a portfolio of n caplets with the same strike price K, each having a 
forward LIBOR rate spanning between the fixed time instants as an underlying. 
Thus the cap provides a payoff at times tut2,...,tn which is known already at 
t imes t0, ti,..., t „_ i . The time period which spans between t0 and t„ is called a 
tenor of a cap. Cap's current time t-market value is: 

n 
Cap{t, t0, tn, K) = Y j U-x,U, K). 

i= 1 

Similarity a floor is defined as a series of n floorlets with the same strike price 
K and the following market value: 

n 
Floor(t, t0, tn,K) = YFrKUi-utitK). 

i— 1 

In reality, however, one observes prices of caps and floors and the prices of 
caplets and floorlets must be stripped. It can be noticed that the payoff of a 
cap is the same as a payoff of a PFS where the payment takes place only if it is 
positive. 

Cap as well as floor are called ATM when S(t, to, tn) = K, ITM when Sa ,n{^o) > 
K for cap and S(t, t0, tn) < K for floor and opposite inequalities hold for OTM 
definition. Furthermore, the first resetting time can also be the current time 
ins tant , or to = t. 

T h e derivation of the closed formulas for FRA and swap values above was a 
result of an assumption of absence of arbitrage on the market. No assumption 
was taken about the dynamics of the yield curve. This is not the case when we 
want to find a value of a caplet. An option's value generaly depends on our view 
of dynamics of its underlying and thus on our view of probability distribution 
of the underlying at option's expiry time. There can be as many different 
views about the concrete shape of this distribution as the number of market-
par t ic ipants and thus no single fair value of option is available. Thus no closed 
formula of a caplet /cap or floorlet/floor can be stated unless an assumptions on 
a yield curve dynamics are made. 

3 .2 .5 S w a p t i o n s 

A call option who's underlying is a swap rate is called a swaption. It is basically 
a right bu t not an obligation to enter into a swap contract at time t0 with a 
fixed leg of K. This right will be executed if the value of a swap is positive. 
Let ' s s ta r t with the expression 50 for a payer swap. The payoff of a swaption 
at a t its expiry time t0 is the following in case of a payer swaption (payer swap 
is an underlying) or a call swaption-. 

CSwaption(t0,t0, tn, K) = max ( S ( M o , t „ ) - * 0 T X > ( M i ) , 0 , (51) 
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whereas the payoff of a receiver swaption (receiver swap is an underlying) or a 
pxd swaption is: 

PSwapt,ion(t0, t0,tn, K) = max 
i = l 

(52) 

The market prices are denoted CSwaption(t, to, tn, K) and PSwaption(t, t0, f„. K). 
Similarity to a cap, receiver as well as payer swaptions are ATM when S(t, to, tn) = K, 
swaption is ITM when S(t,to,tn) > K for payer swaption and S(t,to,tn) < I< 
for a receiver swaption. Opposite inequalities hold for OTM definitions. 
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4 In te res t R a t e Models 

In the previous section it was shown, that the same term structure of interest 
rates can be described using different quantities. In order to price an inter-
est rate derivative, we have to build a model which describes dynamics of one 
of these quantities. Some of the important aspects one has to consider when 
choosing one particular model are presented below. 

Choice of quantity to model 

The first choice is about the variable which is to be modeled. One can either 
try to model dynamics of a traded instrument like a bond, or an evolution of 
certain interest rate. More complex way is to model the whole yield curve. 

D i s c r e t e versus continuous dynamics 

Designing the dynamics of chosen variable, one can describe the model using 
continuous notification in the form of equation 2, or a discrete setup specifying 
the length of each time period (one hour, one day, one week etc.). However, if 
one specifies dynamics of some variable in a continuous way and if a simulation 
of a future developement is to be done according to this specification, one has 
to resort to discretizing the model anyway. In this brief introduction to only 
continuous model specification will be used. 

F i t t i n g the observed term structure 

There are models where the observed term structure is set exogenously as a 
start ing point. Other models try to capture dynamics of one state variable and 
the term structure at the starting point comes endogeneously from the concrete 
drift and volatility specification. 

N u m b e r of factors 

By number of factors the sources of risk or soruces of volatility are meant. 
Volatility of yield curve can be decomposed into three most significant fac-
tors. First factor contributes to parallel shifts of the whole curve, second one 
contributes to change of slope and the third one contributes to change of curva-
ture.1 9 . These factors can be expressed by adding extra non-correlated Wiener 
processes in the diffusion equation (2). This choice is very important. Adding 
the third factor, which might account for only 1-2 percent of total volatility20, 
might seem senceless when pricing a caplet. There are however positions who's 
value is insensitive to a parallel shift in the yield curve, who's value is however 
sensitive to change of curvature (such as sale of medium-term zero cupon bond 
and a duration weighted investment into cash and a long term zero-cupon bond). 

There are three groups of models that are mostly used in practice: the short 
rate models, Heath Jarrow Morton (HJM) models and the market models. Each 

1 9 See Gibson, Lhabitant and Talay (2001). 
2 0 See Gibson, Lhabitant and Talay (2001). 
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group of models has strengths and weaknesses. In order to decide which model 
to use we have to s ta te the purpose of the model and look at the features which 
the models have. For instance our goal might be to price a simple derivative, 
who's payoff is contingent upon the state of only one point of the yield curve 
in the fu ture (like a single caplet). Or we are interested in pricing a complex 
product , which provides multiple payoffs in the future, each depending on a 
different point of the yield curve and each entailing some other condition like 
for instance an activation (knock-in) or deactivation (knock-out) mechanism 
(like a knock-in swaption). It is clear that in the first case we will choose a 
model which realisticaly captures the evolution of the single relevant rate. Such 
model can however imply an unrealistic evolution of the whole yield curve and 
might therefore be completely unsuitable for pricing the other complex product. 
T h e following text will briefly introduce the above mentioned models. 

4.1 Short Rate Models 
One of the oldest approaches to express interest rate dynamics is via dynamics 
of t he short rate. In the most general form it can be written as: 

dr{t) = n(t, r(t))dt + a(t, r(t))dW(t), (53) 

where the drift function ii(t,r(t)) as well as the volatility function a(t,r(t)) 
can be any function of time and state variable and dW(t) is a Wiener process 
under the real probability measure. The concrete specification of these func-
tions determines the shape of the whole yield curve as well as the probability 
dis t r ibut ion of interest rates which will be shown below. 

4 . 1 . 1 D y n a m i c s under the Rea l Measure and Market Pr ice of Risk 

T h e problem with this framework is that it assumes only one traded instrument 
which is the money market account from which stochasticity of the short rate 
s tems . 2 1 The basic assumption about no-arbitrage pricing is that we can take 
any two traded instruments and create such self-financing trading strategy (no 
addi t ional payments or withdrawal of money during the strategy life) that an 
a rb i t ra ry payoff of a derivative can be achieved. The initial investment that we 
need for sett ing this strategy forth is then equal to the value of the derivative. 
Assuming only one risk factor, such model that provides dynamics of at least 
two t raded instruments is called complete.22 Our model provides dynamics of 
only one instrument and therefore additional information is needed to make 
the model complete. This information is the market price of risk X. Taking 
relat ionship 25 into account, equation 53 can than be rewritten as follows: 

dr(t) = \p(t, r(Q) - Aff(i, r(t))]«« + <r(t, r(t))dW(t). 

Knowing dynamics of short rate under the risk neutral measure, contingent 
claims can be prized using the fundemantal pricing equation. The most basic 
derivative in the short rate model framework is the zero-cupon bond, which 

2 1 T h e deposit is riskless, though only for an infinitesimal time period. The offer and demand 
of deposi ts sets the equilibrium interest rate for the next infinitesimal period. 

2 2 See Branger and Schlag (2004). 
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provides a payoff of one at its maturity T and can thus be priced as follows 
using MMA as a nummeraire: 

(54) 

Given the dynamics of r(t) the integral in the formula above can be computed 
for well behaved drift and volatility functions of the short rate and calculation of 
expected value is than straighforward employing basic stochastic calculus. This 
obtained price is the short-rate-model-implied no-arbirage price of zero cupon 
bond which is a (theoreticaly) tradable asset. Our model is now complete and 
self-financing strategies can be created. 

Furthermore, if prices of all zero-cupon bonds are computed we obtain the dis-
count function from which all spot rates as well as forward rates can be derived. 
This model-implied term structure of interest rates is not necessarily the one 
which is observed on the market. To obtain the real term structure, the result-
ing expression for zero-cupon bond has to be set equal to the observed value and 
inverting the equation one can solve for the parameters of the drift and volatil-
ity functions and for A. It is obvious that we can only fit as many observed 
points of the yield curve as the number of parameters we have in our short rate 
dynamics (equation 53). The solution to this problem will be shown later on. 

4.1 .2 D y n a m i c s under the Risk Neutral Measure 

An alternative and for derivative-pricing purposes more convenient way is to 
model dynamics of short rate directly under the risk-neutral probability mea-
sure: 

where the volatility function stays the same 2 3 while the drift function changes. 
Within such specification no additional information is needed to derive prices 
of zero-cupon bonds. These can be then inverted in order to calibrate to the 
observed term strcture of interest rates. 

4 .1 .3 Examples of short rate dynamics 

The big advantage of short rate models is that they are very flexible as to the 
exact formulation of drift and volatility functions. There is a big choice of 
functions one can employ and thus there are big chances one can capture the 
dynamics of short rate in a realistic way. One can include features like jumps, 
stochastic volatility, shift factors which allow for exact calibration etc.24 The 
most known models will now be introduced. 

Vasicek Mode l 

dr(t) = 0(t,r(t))dt + a(t,r(t))dW(t), 

dr(t)=k\e-r(t)]dt + adW(t) , r(t) = r0 , (55) 

2 3 Girsanov ' s Theorem, see the first section. 
2 4 See for instance Musiela and Rutkwski (2005). 
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r0 is t he current short rate level. This form of dynamics first used by Vasicek26 

captures the desired feature of interest rate to revert to certain equilibrium 
level 0 by the pace k, which is a positive constant. The mechanism is easily 
seen realizing, tha t if the short rate r(t) at time t exceeds the level 0, the term 
in the brackets of equation 55 is negative over the next time instant of short 
ra te ' s dynamics. The higher the k term, the faster the short rate reverts to its 
equilibrium level. 

Integrat ing equation 55 over a time period say < t,T > we obtain the following 
value for the short rate at time T: 

r ( T ) = r(t)e-kW-* + 0(1 - b~*(T-0) + a j " e - k ^ d W ( u ) . 

The last te rm is a stochastic integral which is normally distributed with zero 
expected value and variance of CT2 J'(T e~ 2 ' c ( T _ u ' d f 2 6 and thus the short rate in 
Vasicek model is also normally distributed. This is obviously an undesired fea-
ture as the short rate can get into a negative teritory. This creates an arbitrage 
in case we have the opportunity to hold money at home with no iterest, which 
is the case of the real world. 

D o t h a n M o d e l 

dr(t) = ar(t)dW(t), r(t) = r0 , (56) 

where dW(t) is Wiener process under real probability measure. If again we 
subs t i tu te from relationship 25 for dW(t), the following dynamics under risk 
neut ra l probability measure is obtained: 

dr{t) = 8r(t)dt + ar{t)dW(t) , r(t) = r0, 

where 0 = -ACT. Integrating equation 57 over period < t,T > we obtain the 
following value for the short rate at time T: 

r(T) = r(t)exp V ) { T - t ) + a J t cW(a)J . 

Because the stochastic integral (which itegrates simply to W(T) starting with 
W(t) = 0) in the equation above is in the exponent, the short rate r (T) is log-
normally distributed. This is more realistic assumption because the short rate 
cannot be below zero at any point of time. Because this model has k = 0, the 
process reverts to zero which is neither realistic. A combination of Vacicek and 
Do than model can be taken with the following dynamics: 

dr{t) = k[0-r(t)}dt + ar(t)dW[t) , r(t) = r0, (57) 

which is also log-normally distributed or a Cox, Ingersoll and Ross process 
(CIR): 

dr(t) = k[9-r{t)]dt + osfi[i)dW(t) , r(t) = r0, (58) 

2 5 See Vasicek (1977). 
2 6 see Bjork (2004) on moments of stochastic integrals. 
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which follows noncentral x 2 distribution. 

Hul l and W h i t e Model 

As already noted earlier, the common problem of the above specifications of 
short rate processes is that if we want to fit the model to the observed term 
structure, only as many points of the yield curve can be recovered as the number 
of parameters in the model, whereas in reality the yield curve is described by 
infinity of maturities. Hull and White (1990) came with a solution to this 
problem, they introduced time dependence of one of the parameters. Thus the 
whole yield curve can be fitted when inverting the model-implied dicsouut curve 
to solve for the time dependent parameter. The remaining parameters can than 
be adjusted as to recover prices of some liquid derivatives like ATM caps or 
swaptions. As a starting point they used the Vasicek Model, this feature can 
however be used by any other specification and choosing any parameter. The 
Hull and White short rate dynamics has the following form: 

dr(t) = [0(t) - ar(t)]dt + <rdW{t) , r(t) = r0. (59) 

4 .1 .4 Pr ic ing Derivatives and some Disadvantages of Short Rate 
Mode l s 

Short rate models are suitable for pricing complex exotic instruments using 
Monte-Carlo simulation. One carries out a very large number of simulations 
(tens of tousands, millions) of a possible short rate developement using cali-
brated short rate model. The values of a short rate at time instants, which 
influence the instrument's payoff, are recorded, the payoff is evaluated and the 
average of these payoffs resulting from all simulations is discounted to the pres-
ence using the stochastic money market account exp j / (

T r(s)d.s j which is a 
funciton of the by us modelled short rate. This is called the risk neutral val-
uat ion.2 7 To make clear how the payoff is evaluated, let's assume that the 
derivative's payoff is a function of future spot rate L(T,S). If we carry out a 
single simulation of a short rate, we will get its time T value, which implies a 
value of a zero-cupon bond P(T, S) (see equation 54) which in turn implies a 
value for L(T,S) (see equation 31). 

Tn cases of simpler drift and volatility specifications (like the Hull and White 
model)2 8 the fundamental pricing formula implies a closed form analytical for-
mulas for value of simple interest rate derivatives such as an option on a zero 
cupon bond for instance. There is an easy relationship between a put option on 
a zero-cupon bond and a caplet.29 Using formula for a bond option an option 
on interest rate option can thus be evaluated. 

The main disadvantage of short rate models is that if we choose more compli-
cated drift and volatility functions (which might imply a very realistic evolution 

2 7 N o t e tha t the phrase 'risk neutral valuation' doesn't imply anything about the degree of 
risk aversion of the market, it simply means that the fundamental pricing formula is used with 
MMA as a nummeraire. 

2 8 See Brigo and Mercurio (2001). 
2 0 See for instance Branger and Schlag (2004). 
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of short rate) we will be most likely unable to find analytical formulas for simple 
derivatives. The result is that it is often difficult to calibrate such models to the 
current yield curve as there is no formula for zero-cupon bonds available which 
can be inverted. If we find a realistic dynamics for a short rate, even thougth 
we might be able to achive calibration to the observed yield curve, the model 
might imply an undesired evolution of the whole yield curve. Such model will 
therefore be unsuitable for pricing say swaptions, whos payoff is dependent 011 
a swap rate which is a function of the yield curve. Furthermore the resulting 
calibrated parameters often don't have a straightforward meaning which makes 
the model somewhat obscure and difficult to interpret. 

4.2 Heath , Jarrow and Morton Framework 
In 1992 a paper from Heath, Jarrow and Morton was published where a gen-
eral framework for interest rate dynamics was introduced. The dynamics of the 
whole yield curve is modeled with instantaneous forward rates as the fundamen-
tal quantities. Here I will breefly show the main idea. 

4.2 .1 D y n a m i c s under the Real Measure 

In I IJM model the following instantaneous forward rate dynamics with general 
drift and volatility functions is considered: 

where dW(t) is a Wiener process dynamics under the real probability measure 
and /(A, £) is the short rate. In the original paper dW(t) is a vector of n Wiener 
processes, for simplicity only scalar is considered here. The observed instan-
taneous forward rate curve T -> f(t, T) is taken as the starting point and the 
model is thus automaticaly adjusted to the current market term structure. From 
equation 39 we obtain the following relationship for zero cupon bond: 

df(t,T) = fif(t,T)dt + af{t,T)dW{t), (60) 

P(t,T) = e^ nt',)ia (61) 

and using Ito's Lemma we obtain the following dynamics for zero-cupon bond:30 

dP(t,T) = nP{t,T)P(t,T)dt - aP(t,T)P(t,T)dW(t), (62) 

where 

(55) 

3 0 See Heath, Jarrow and Morton (1992) for proof or Branger and Schlag (2004). 
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4.2 .2 D y n a m i c s under the Risk-Neutral Measure 

For an arbitrary T we now have dynamics of traded zero-cupon bond with 
maturi ty T and in order to prevent arbitrage, the no-arbitrage relationship 14 
from the first section must hold true for all T's: 

aP(t,T) (65) 

where the dependence of A on time should ilustrate that the risk aversion of 
markets can change in time. Multiplying 65 by <jp, substituting for hp and 
"P from expressions 63 and 64, and deriving over T the no-arbitrage condition 
becomes: 

lif{t,T)+aP(t,T) • af(t,T) = A(t)af(t,T), 

and rearranging we obtain the following restriction for drift of instantaneous 
forward rates: 

Hj(t, T) = aP{t, T) • af(t, T) - A(t)af(t, T). (66) 

If we substi tute this no-arbitrage drift restriction into our original inst. forward 
dynamics 60 we have 

df(t,T) = [<jP{t,T)-crf(t,T)-\{t)cTf(t,T)}dt + af{t,T)dW{t), 

and switching to a Wiener process und risk neutral probability measure us-
ing expression 25 we obtain the following no-arbitrage risk-neutral dynamics of 
instantaneous forward rates: 

df{L,T) = aP(t,T) • fff(t, T)dt + af(t,T)dW(t). (67) 

The dynamics of zero-cupon bond under the risk-neutral measure will be clearly 

dP(t, T) = f(t, t)P(t, T)dt - aP(t, T)P(t, T)dW(t), 

as the diffusion term doesn't change switching between equivalent probability 
measures and since the local rate of return of any traded instrument must be 
equal to the riskless rate of return, or f(t, t) in our case, to prevent arbitrage 
(see section 2.5). The same result can be obtained applying Ito's Lemma to eq. 
61 using directly dynamics 67. 

4 .2 .3 M o d e l specification 

The equation 67 of risk-neutral dynamics of instantaneous forward rates tells 
us t h a t only the volatility function of instantaneous forward rate crf is needed 
in order to fully specify the model (note that bond volatility function a P is 
a function of forward rate volatility a s ) . In principle any functional form for 
forward rate volatility can be chosen. 

The most simple way is to assume constant volatility for all inst. forward rates 
- af(t,,T) = a. It can be shown that this volatility specification implies short 
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ra te dynamics of a Hull and White model - equation 59 - with constant a equal 
zero. T h e probability distribution of such specified short rate is normal and 
thus probabil i ty of negative short rate is positive. Furthermore, the expected 
level of yield curve is strictly rising with time as well as yield curve's slope, 
which are not very desired properties. 

A litt le more realistic is to assume a parametric form where the volatility of inst. 
forward rate is decreasing with forward maturity T - 07(t, T) = cre~ a ( T~' ' . This 
specification also implies Hull and White dynamics of a short rate, however the 
mean-reversion feature of short rate is preserved which implies that the expected 
level of the yield curve is not rising to infinity. The short rates are however also 
normaly distributed and negative rates are thus possible. 

4 . 2 . 4 P r i c i n g Der ivat ives using H J M 

Pricing derivatives within HJM framework similar to pricing with short rate 
models. One can either resort to pricing via Monte-Carlo simulations, where 
those forward rates are simulated (after being first discretized) which are nec-
essary for evaluating the derivative's payoff. Using the fundamental pricing 
formula one can derive closed form formulas for simple derivatives like futures, 
opt ions on bonds and interest rates. HJM models are very complex and which 
prevented them from coming into more common use. 

4.3 Market Models 
H J M framework as well as short rate models describes evolution of instanta-
neous interest rates tha t are not directly observed on the market. A derivative, 
who's payoff is dependent on an interest rate directly observed on the market 
(say a LIBOR or a swap rate) has to be evaluated by deriving dynamics of the 
observed rate via Ito's Lemma. The obtained dynamics will imply a proba-
bility distr ibution which is then used when evaluating the expected payoff of 
the derivative via fundamental pricing formula. The problem is that the ob-
tained probability distribution will not allways be "nice" and not allways shall 
we ob ta in closed analytical formula for our derivative for all model (volatility) 
specifications. Pricing a derivative using Monte Carlo simulation might neither 
be opt imal within the HJM framework. In this case the derivative's payoff will 
be derived for each single simulation from the instantaneous rate and this will 
make the simulation process very slow. 

An al ternat ive is to model directly the market observed interest rates - thus the 
name "Market Models". This concept, was first introduced by Brace, Gatarek 
and Musiela (1997), Miltersen, Sandmann and Sondermann (1997) and Jamshid-
ian (1997). 

4 . 3 . 1 L I B O R Market Mode l 

T h e s ta r t ing point is the result from the previous section which shows, that 
the s imply compounded forward rate F{t,T,S) is a martingale under the Q 
measure . At time T rate F(T,T,S) becomes L(T,S) which is the interbank 

3 1 See Branger and Schlag (2004) for derivation. 
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reference spot interest rate set daily by a group of banks with largest volumes 
of t r ades on the interbank money market. As a result of the martingale property, 
it is assumed, tha t the forward rate follows a driftless GBM process under the 
QS measure: 

dF(t, T, S) = aF(t, S, T)F(t, T, S)dW(t)s. (68) 

T h e volatility function in this case is linear and the terminal probability distri-
but ion Qs of LIBOR rate L(T, S) is thus lognormal32 with Q s-expected value 
of F(t, T, S). Under this specificatin the forward rate can never become negative. 

P r i c i n g a Caple t in L I B O R Market Model Framework 

Let 's now consider a caplet Cpl(t,T, S, I<) with a payoff Cpl(S,T,S, K) = 
r ( T , S) max [L(T,S) - K, 0] at time S. The value of this payoff is known at 
t ime T - Cpl(T,T, S, K) = P(T,S)Cpl{S,T,S,I<). According to the funda-
mental pricing formula 28 the following must hold in absence of arbitrage: 

\Cpl(T,T,S,K)} Cpl(t,T,S,K) 
P(t,S) P(T,S) 

Cpl(t,T,S,K) = P(t,S)Es[Cpl{S,T,S,K)] 

Cpl(t,T,S,K) = P(t, S)T(T, S)ES [max[L(T, S) - K, 0]]. (69) 

To evaluate an expected value of a maximum of difference of two log-normaly 
d is t r ibuted variables and a zero, the following formula can be used:33 

E[msx[ex - eY], 0 ] = E[ex]N{d) - E[eY]N(d - a), (70) 

where N ( . ) is a standard normal distribution function and 

1 ( . E\e* 1 . I 2 

„2 
Vln — H t t + - s 

E[eY} 2 

= var[X-Y}. 

Because L(T, S) is distributed log-normaly and K can be thought of as a variable 
d is t r ibuted log-normaly with zero variance, this formula can be used for the 
expecta t ion under QS measure ES[...\ in equation 69. The value of our caplet 
thus becomes 

Cpl(t, T, 5', K) = P(t, S)T(T, S) (ES [L(T, S)} N(d) - ES [K] N(d - .s) 

Now we can realize, tha t L(T, S) is a martingale under Qs and therefore the 
expecta t ion under Qs is equal to the today's forward rate F{t, T, S): 

Cpl(t, T, 5, K) = P(t, S)T(T, S) (F(t , T, S) • N(d) - K • N(d - s)), (71) 

with 
I f F(t,T,S) 1, 

s 2 = j\F(s,T,S)2ds. 

3 2See section 2.1. 
3 3See Branger and Schlag (2004). 
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Finally, t h e expression for .s2 is obtained as follows: 

s 2 = mr [ ln L(T, S)-K} = uar[ln L(T, fir)]. 

To derive variance of In L(T, 5) , we first derive dynamics of In F(t, T, 5) using 
I to 's Lemma: 

dIn F(t, T, 5 ) = ^ ^ . g F ( t , T , S )F( t ,T , S),/H/(t) s -

- \ F { l J r ^F(t,T,S)2F(t,T,S)2dt 

= - ^<rF(t, T, S)2dt + <rp(t, T, S)</W(£)s, 

and integrat ing over the forward's life (f, T) we obtain 

i rT rT 

In F(T, T, S) = F(t, T,S) - - j[ oF(s, T, S)2ds + J ^ ( s , T, S)dW(s)s. 

Only t h e last term is a stochastic and it can be shown3'1 that this integral is 
normaly distributed with zero mean and variance of / (

T aF(s, T, S)2ds, which is 
the desired expression. 

B l a c k ' s Formula for a Caplet and Cap 

We can see tha t all variables in our caplet pricing equation 71 are given or 
observed on the market except of the volatility function (meant aF(t,S,T)) 
of forward ra te over time. An assumption has to be made about the future 
volatility in order to price a caplet. As stated in the first section, we can either 
base our assumption on the past developement or on our own view. If we assume, 
tha t t he volatility function is constant over time - crF(f, T, S) = aF(T, S), than 
a'2 in t h e caplet, pricing formula 71 becomes aF(T,S)2(T - t). This result is 
known as the Black's formula35 and the caplet pricing formula can be written 

CplBlack (i, T, S, K, cr) = P(t,Syr(T,S)Bl(K,F(t,T,S),o), (72) 

where 

Bl(K, F(t, T, S), a) = F(t, T, S)N(d) - K • N{d - s) 

5 = ay/T^t. 

If we are given a price of a caplet Cpl(t, T, S, K), we can solve for parameter a, 
which implies this price when substituted as a constant into the forward rate 
dynamics 68. 

Caple ts and floorlets are in reality not traded on the market, instead, the caps 
and floors are traded instruments. It is market practice to quote caps and floors 

3 4 See Bjork (2004). 
3 5 See Black 1976. 
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directly in implied volatility - the constant a that recovers the market price of 
a cap Cap(t,t0,tn,K) when used as a constant parameter in the forward rate 
dynamics 68: 

C'apBlack[t, t0, tn, K, a) = ^ 6 > l « ( i , l M , ( i l s ) (73) 

i = l 

This practice is very handy as the forward rates move frequently with the move-
ment of the swap market and thus the caplet prices fluctuate as well. Oposite 
to this the volatilities might stay the same maybe the whole day or more. 

4 .3 .2 S w a p Market Model 

Similarily as LIBOR market model, the Swap market model aims to model a 
ra te directly observed on the market, namely the swap rate. From the previous 
sectin we know, that the swap rate is a martingale under the measure QB, 
where 13 is a portfolio consisting of n bonds, namely P((, tt) for i = 1,2, ...,n. 
It is assumed, tha t the swap rate follows a driftless GBM process under the QB 
measure: 

dS(t, t0, ln) = cjs(t, t0, tn)S(t, t0, tn)dW(t)B. (74) 

Again, the volatility function is linear which implies that the terminal Qb dis-
t r ibut ion of the swap rate S(to,to,tn) is log-normal with Qg-expected value 
equal S(t, t0, tn). 

P r i c i n g a S w a p t i o n in the Swap Market Model Framework 

Deriving the value of a swaption within the swap market model framework is 
very similar as deriving the caplet formula above. The task is to evaluate the 
uncer ta in payoff of a payer swaption at to, formula 51. Using the fundamental 
pricing formula, its today value is: 

CSwaption(t, to, tn, K) _ CSwaption(to, to, tn, K) 

CSwaption(t, t0, tn, K) = TS£j P{t, U)EB [max[S(fo, t0, tn) - K, 0 ]]. 
•= l 

The terminal distribution of the swap rate is log-normal and thus the formula 
70 can be used for the expected value in the equation above, which becomes: 

CSwaption{t, t0, t„, K) = r £ P(t, k) (eb [S(to, t0, tn)]N(d) - K • N(d- s) 
»=i ^ 

We know tha t the swap rate is a martingale under the measure QB and thus the 
Qs-expec ta t ion about the future swap rate S{tQ,t0,ln) is equal to the today's 
swap ra te S{t, t0, tn) and the swaption's price becomes: 

CSwaption(t, t0, tn, K) = r ^ P(*. U) fa' ^ ^ ' » ( d ) " K ' N ( d ~ s ) ) ' ( 7 5 ) 
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with 

d = I f i n ^ l M n ) , 1 2\ 
A K 2 )' 

/

to 

vs(s,t0,tn)2ds. 

All variables in the above swaption pricing formula 75 are given or observed on 
the market , except of the volatility function of the swap rate, which has to be 
again estimated. 

Black's Formula for Swaption 

As in the case of LIBOR market model above, we can assume constant volatility 
for the swap rate volatility function as(t, t0, tn) = as(t0, tn). Doing this we get 
the Black's formula for a payer swaption: 

n 

CSwaptionBlack = r £ P(t, U)Bl{K, S(t, t0, t„), as(t0ltn)), (76) 
i=1 

where 

Bl(K, S(t, t0, tn), 5s(to, £„)) = S(t, t0, tn)N(d) - K • N{d - .s) 

s = as(to,tn)<ST-t. 

Market practice is to quote swaptions directly in implied volatilities. It is im-
por tant to mention, that the market participants don't have to beleive that the 
Black formula is correct (and thus the assumption of lognormality of distribu-
tion of the underlying). The Black formula is just a way of expressing the price. 
The fact that different prices of swaptions are available reflects that there is no 
single dynamics deemed as universaly true. Features such as jumps, stochas-
tic volatility etc. can be added to forward rate dynamics, Black's formula is 
however still used to express the option's price. 

4 .3 .3 Compat ib i l i ty of LIBOR and Swap Market Models 

The main drawback of the two presented frameworks is that they are not mu-
tualy compatible. We can suppose for instance that indeed the dynamics of 
forward rate follow equation 68. As shown in the previous section, the swap 
rate is a function of forward rates (equation 49) and thus the swap rate's dy-
namics can be calculated with help of Ito's Lemma knowing dynamics of forward 
rates. Such derived dynamics will however imply a nontrivial terminal swap rate 
distribution which is contradiction with the log-normal distribution implied by 
the swap-market model in the form presented here. Therefore if we truly beleive 
we have managed to capture the true dynamics of forward rates, to obtain a 
value of a swaption we would rather want to rely on this LIBOR rate model 
than on a swap market model. The next section will deal with this topic. 
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5 Ca l ib r a t i ng LIBOR Market Model 

In the previos chapter it was shown, that the linear form of volatility function 
in the s ta te variable F{t,T,S) (implying its lognormal terminal distribution) 
leads to a Black formula of a caplet/floorlet. The formula was derived under 
the no-arbitrage conditions using fundamental pricing formula, where the ex-
pectations about the instrument's payoff under the Qs measure in equation 69 
was subst i tuted by a formula for expected value of difference of a maximum of 
two log-normaly distributed variables (formula 70). The same result would be 
obtained if we decide to calculate the expected value via Monte Carlo simla-
tion under the relevant probability measure. If we want to price an instrument, 
who's payoff function is more complicated, Monte Carlo simulation will be the 
only way of calculating the expectation in fundamental pricing formula. Fur-
thermore if the evaluated instrument's payoff depends on more than only one 
variable, we will need to simulate evolution of all of these relevant underlyings. 
This is the case of instruments who's payoff depends for instance on a spread 
between two rates. Other example can be say a 1 year to 2 years swaption, an 
option to enter into a swap contract lasting two years starting one year in the 
future. Because the value of such swap one year in the future depends on the 
value of 6-month, 12-month, 18-month and 24-month forward LIBOR rate in 
one year, all four rates have to be simulated so that the swaption's payoff can 
be evaluated. To go ahead with this task one needs to know not only the exact 
shape of volatility functions (cr(t ,S,T)) of all four forward LIBOR rates over 
the period of one year, but also their expected correlation structure. 

Besides the fact, that there is a great variety of products who's payoff depends 
directly on evolution of the market rates (LIBOR rate, swap rate), the main 
reason, why the market models became very popular is the relative ease of the 
model's calibration (finding the right volatility and correlation structures) to 
the prices of caps and floors (in case of LIBOR market model) and swaptions 
(in case of swap market model). These are the most liquid interest rate deriva-
tives and their prices should therefore reflect well the market expectation of the 
future volatility of the relevant rates. 

In the two sections ahead a LIBOR market model will be build and calibrated 
to market da ta from ll t hNovember 2005. Subsequently various swaptions will 
be priced for which market data are available and the model's performance can 
thus be tested. The following chapter will start with deriving the model for 
six month forward rates (six months is the frequency with which the exchange 
of payments takes place in swap contracts underlying the traded swaptions in 
EUR) and the next two chapters in this section will elaborate on the issue of 
calculating the volatility and correlation functions. 

5.1 T h e Model 
The task is to price a set of swaptions with Monte Carlo simulation. To do that 
we need to simulate the evolution of forward rates which determine the value 
of a swap rate in one year of time - see equation 47. In general, each of the 
forward rates can be driven by a different Wiener process, so that we can have 
as many sources of risk as forward rates that are modelled. It is intuitive that 
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these Wiener processes will be correlated, if 6-month forward rate maturing in 
one year moves up it is very likely that a 6-month forward rate maturing in two 
years moves up as well. It might however be argued, that using more than let's 
say three Wiener processes to simulate an evolution of a set of forward rates 
doesn't bring additional benefit in comparison with the increased complexity. 
Later in the chapter it will be shown how the model with n forward rates can be 
compressed to have only a limited number of risk factors included in the model. 

5.1 .1 One Factor Case 

Compression of the model to one factor is straightforward. One simply assumes 
tha t the same Wiener process drives innovation of all modelled forward rates, 
while the magnitude of the change is given by forward rate's individual volatility 
function. The correlation between any two forward rate will then obviously be 
one. First step to be done is to choose a probability measure under which all 
rates will be modeled so that they were all in the same probability space. Under 
the chosen measure at most one forward rate can however be a martingale. 
If we model the evolution of all relevant rates under the measure Q L 0 , only 
forward rate F(t, 0.5,1.0) will be driftless. To simplify notation, let's have 
Fi.o(t) — F{1> 0.5,1.0) and the same for as and /is (which also depend on a 
s tate variable Ftt{L)). The dynamics of n rates will than look as follows: 

dFh0(t) = Odt + ai.oWfi.oW'WW1'0 

dF1A(t) = li1.5{t)dt+ a^F^dWit)1-0 

dF2.0(t) = n2.0(t)dt+ a2.0(t)F2.0(t)dW(t)h0 

(77) 
dFtn (t) = ntn(t)dt+ at7i(t)Ftn(t)dW(t)10 

Note that in line with the notation used in the previous chapters, to = 0.5, 1/2 
year from current moment, t\ = 1.0, 1 year from current moment and so on.36 

As mentioned in the first chapter, if we employ the Girsanov Theorem to switch 
the probability measures, the volatility function remains the same while only 
the drift function changes. It can be shown that the arbitrage-free drift function 
of the forward rates Fi.o, Fn under the probability measure Q10 with one risk 
factor is:37 

for i = 2,..., n (78) 
j—2 *j\J 

5.1 .2 N Factor case 

If we want to be more general, we can allow each of the Wiener process to be 
different from each other. The general dynamics will than be: 

df i .o( t) = 0 dt + ffi.oW^i.oW^i.oW1'0 

d F ^ i t ) = / l l .5(0« f t+ *1.5(Qfl.5(t)<Wl.5(t)1,0 

3 6 T h e forward rate F i o will not be simulated, it is included for completness. Thus to is 
actually equal to one year, which is the first expirty of the swaptions evaluated. 

3 7 See Branger and Schlag (2004) for derivation. 
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dF2.0{t) = //2.o (t)dt+ ff2.o{t)F2.o(t)dW2.o{t)10 

dFtn (t) = Htn(t)dt+ <rln(t)Ftn (t)dWtJt)10 

Let's denote a vector dW(t)T = {dVF10(0, dWlb(t),..., dWln (<)}. Then 

(79) 

d W ^ d W H ) 1 

( dt pi.o,i.bdt ••• pi.0,t„dt \ 
Pi.5,i.odt dt ••• pi.s,t„dt 

\ Pt„,i.odt Ptn,l.5 

(80) 

dt / 

is the transition correlation matrix of the system. All ps in the above matrix 
can be functions of time (and also state variable), for simplicity only constants 
will be considered here. 

Similarity as in the one factor case above, it can be shown, that the arbitrage-free 
drift function of the forward rates Fi 0,..., F„ is:38 

Mt) = °u{t)F{t, tu ti+l) ^ T ' p m {t)' for i = 2 (81) 

From the above dynamics functions it is clear, that the whole model is com-
pletely defined if we know the transition correlation matrix and the volatility 
functions of all simulated forward rates. 

5.1 .3 Reducing Dimensionality of the Model 

The above formulation of the model is not very handy for simulation purposes 
for couple of reasons. First it is akward to have to generate a set of random num-
bers which are correlated according to a prescribed correlation matrix (equation 
80). Second it can be argued that n risk factors are too many and that such 
complexity of the model doesn't bring additional benefit.39 Rebonato shows a 
very handy way, how the model can be reformulated using independent Wiener 
processes.40 Furthermore, this formulation enables to easily reduce the dimen-
sionality of the model. 

First it can be shown, that the system of n equations above can be rewritten 
as follows using n independent Wiener processes denoted Wt(t), all under the 
measure Q10 (appropriate drift term is to be substituted on the begining of 
each forward's dynamics): 

dFl-°W = 0 + a1,i(t)dWi{t)+ cr1}2{t)dW2{t) + ...+ a1>n(t)dWn(t) 
Fi.o(«) 

= ... + £72,1(0^1(0+ a2,2{t)dW2{t) + ...+ <r2,n{t)dWn(l) 

3 8 See Brigo and Mercurio (2001). 
3 9 See for instance Fan et al. (2002). 
4 0 See Rebonato (2004). 
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dF2.0(t) 

F2.o (t) 
+ 03,l{t)dWi(t) + <73,2(0^2(0 + . . .+ 03,n{t)dWn(t) 

• (82) 
dFt It) 
pt = ••• + 1(0^1(0 + (Tn,2{t)dW2(t) + ...+ ffn,n(t)dWn(t). 

T h e goal now is to show that the sigmas in the set of equations 82 can be 
specified in such way, tha t the correlation structure as well as the volatility 
functions of equations 80 is preserved. In order for the volatility to be retrieved 
we use the relationship for addition of two independent stochastic variables -
var(aX + bY) = a2Var(X) + b2Var(Y). Because our new Wiener processes are 
independent from definition, the following relationship has to hold: 

n 

< ^ ( 0 2 = X > m ( 0 2 , (83) 
i=1 

where a t . (t) is from the set of equations 80. This way the volatility of each 
forward from the set of equations 82 is 

n 

Var{dFu) = Y = °tAt?Kdt- (84) 
j= i 

Clearly, o~ijS can be chosen in an infinity of ways so that condition 83 was 
satisfied. Additional restrictions has to be imposed so that correlation matrix 
80 was recovered as well. Instead of trying to recover conditions for individual 
&ijs, we can restate our problem as follows. First we can multiply and divide 
each diffusion term in each equation from the set 82 by the forward's desired 
sigma function: 

= ... + w ( ^ M 0 + ^ f j m ) 
l'i.o(t) \<7i.o(0 0i.o(O 01.0 W / 

= ... + * 1 , ( 0 ( ^ ^ w + S B j g ^ W Fi.5(t) Vff1.5(0 01.5(0 01.5(0 J 
d F M t ) = ^ S * M , i W J t \ + 4- ff3-n{t), 
F2.o(t) \02.o(O 02.0 (0 02.0 (0 / 

Now we can take a square root of the condition 83 and substitute in each of 
the equations above for at.(t) in denominator of each of the terms in brakets. 
Those terms will then take to following form: 

b . . = 1 i M = ^ M (85) 

and the set of equation can be rewritten as follows: 

d F l - ° ® = ... + <7i.0(0 ( 6 i , i d ^ i ( 0 + 6 I , 2 ^ I ( 0 + . . . + VndW' iW) 
Fi.o(t) 
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+ ffi.eW ( 6 2 , 1 ^ 1 ( 0 + <>2,2^1 (*) + ••• + bi^dW^t)) 

+ °2.o(*) (63,1^1 (<)+ 63 ,2^1(0 + - + b3indWx(t)) 

dFi.s(t) 
^1.5 ( 0 

dF2.o(t) 
*2.o(0 

:

 (86) 
dFt, ( 0 / 

F t ( t) = + £ r i „ W ( V i ^ i ( i ) + + 6 „ , „ ( i W ( ( ) ) . 

Looking back at the volatility condition 83, we can restate it by dividing the 
equation by of.(t): 

1 = (87) 

Comparing the result with equation 85 we obtain a refrased volatility condition 

(88) 

j=1 

which ensures, that the volatilities crti (i) of diffusion terms in set of equations 
86 are preserved. 

This formulation of the problem (equations 86) is particulary handy, because it 
decomposes the dynamics into volatility and correlation. It can be appreatiated 
when we write the formula of instantaneous percantage covariance of any two 
forward rates Fti (t) and Ftj (t) and substitute from the above dynamics 86: 

r , fdFti dFt\ C o v { V ^ J 
dFtl dFtj 

Ft 
E 

dF, 
Fu 

E 
dF, 

= E 
dFti dFt, 

K Ft, 
= (Tti{t)<Ttj (t)E [biAbj}1dWx(t)2 + bitlbjfiWi(t)W2{t) + ... + 6i,1^.n(0»ri(0Wr»(0+ 

... + ... + ... +biin(t)bJ,l(t)Wn(t)Wl{t) + ... + 6i,nii,n^n(n)2] . 

The expected value of sums is equal to the sum of expected values and therefore 
the expected values can be evaluated term by term. The terms with dt2 or 
dldWi(t) tend to zero. All the terms with E [ . . .Wi^W^t) ] where i / j are 
covariances of independent Wiener processes and are therefore also zero. The 
terms where i = j are variances of two Wiener processes and are thus equal 
dt.41 The transition covariance can thus be rewritten as 

Cov ^ ) = atl(t)atj(t) [1biAi + - + bi,nbjin]dt, 
tU tU 

which implies that 

(89) 

(90) bi,lbj,l + ... + bitnbj, n = Pi,j. 

where p t i , t , is a correlation between rates Fti(t) and Ftj(t) - (see the correlation 
matrix 80). 

"11 See Bjork (2004) for moments of independent and dependent stochastic variables or also 
Appendix A. 
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The formulation of dynamics of forward rates with bi%js allows to model sepa-
rately the volatility functions <rt.(t) and correlation matrix by defining the 6 t J s 
in such way, that the volatility condition 88 was satisfied and the desired cor-
relation matrix 80 was recovered if n factors are kept. If we decide to reduce 
the number of factors, we have to accept the fact that the implied correlation 
matr ix will differ from the desired one. Let's say that we want to build a model 
with only two factors. The set of equations will than look as follows: 

bh2dW2(t)) 

b2,2dW2(t)) 

b3,2dW2(t)) 

(91) 

bnadW2(t)) 

One has to then choose the parameters b in such way, that the volatility condi-
tion 88 held and that the difference between the desired correlation matrix was 
minimal. How to specify the volatility functions and how the estimate the b will 
be the subject of next chapters. 

5.2 Volatility Function of Forward Rates 
When determining the volatility function of the forward rates (meant crp(t, 5, T)),42 

As mentioned earlier in the thesis, one has a choice to either make an own guess 
or look at what market implies about volatility in the future. This information 
can be obtained from instruments which are traded oil the market, namely caps 
and floors. The quotes of caps in EUR are given directly in terms of implied 
volatilities (see section 4.3.1) of the ATM Caps with the expiry of first caplet 
equal 6 months. They are called flat volatilities and will be denoted <7f(£„), 
where tn is the expiry of last caplet contained in the cap. There are caps with 
following tenors quoted on the market in EUR: 

Capi (0 ,0 .5 ,1 ,5(0,0 .5 ,1)) , Cap2 (0,0.5,2,5(0,0.5,2)), Cap3 (0,0.5,3,5(0,0.5,3)), 
CaPA (0,0.5,4, 5(0,0.5,4)) , Capb (t, 0.5, 5, 5(0,0.5, 5)), Cap7 (0,0.5, 7,5(0,0.5,7)) , 
Capw (0 ,0 .5 ,10,5(0,0.5,10)) . 

where the strike is a swap rate with relevant tenor one 1/2 year forward. The 
market observed implied volatilities on 11th November 2005 were: 

4 2 T o be exact one should say percentage volatility function when talking about oF{t, S, T). 
To see why, see first section for dynamics of a logarithm of a financial asset, which is basically 
asset 's percentage dynamics. For brevity, by volatility function <rF(t, S, T) will be meant from 
now on as a concrete function of time. 

dFi o(<) 
= - + *i.o(0(&i.i<Wi(0 + 

dFx s(t) 
- j r ^ y = - + ffi , 5 (0 (h.idW^t) + 

dF2.a(t) 

FMV 
= ... + ff2.o(i) [b»,idWi(t) + 

dFt (t) 
J ^ j - = ... + *».(«) (V idWi tO + l 
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Market flat volatilities in %, 11-11-2005 
ffp(l) aF{2) aF{ 3) £rP(4) CTf(5) &f(7) ffF(10) 
18.13 20.74 21.49 21.64 21.47 20.79 19.68 

T h e cap Capx consist of one caplet who's underlying is a 6-month forward rate 
F(0,0.5,1). Cap Cap2 consists of three caplets with underlying forward rates 
F(0,,0.5,1), F(0,1,1.5) and F(0,1.5,2), cap Cap3 consists of five caplets and so 
on. The quote o>(2) is such constant, which recovers the cap price when substi-
tu ted into Black formula for cap, equation 73 -Cap2 = Cap(0 ,0 .5 ,2 ,5(0 ,0 .5 ,2) ,a F (2) ) . 
In other words, a F ( 2 ) is the market-implied constant volatility function of all 
three forward rates, which are underlyings of the caplets contained in Cap2. 

One can make an objection, that the market quotes of flat volatilities are contra-
dictory, when the quote 5^(1) implies a constant volatility of underlying forward 
ra te F(0 ,0 .5 ,1) of 18.13% and at the same time quote d F (2) implies constant 
volatility of underlying forward rate F(0,0.5,1) (and that of F(0,1,1.5)) of 
20.74%. This objection is justified. The Black formula is however just a tool to 
convert the premium (price) in EUR of a cap into flat volatility, which is more 
informative quantity than the price. 

Consistent (constant) market-implied volatilites of forward rates - those implied 
by caplets when substituted in Black pricing formula for a caplet (formula 72) -
crF(ti-i, ti) for i = 0,..., n can however be recovered from the quoted flat volatili-
ties. The first cap Capi (0,0.5,1, I<) with strike K = 5(0,0.5,1) consists of only 
one caplet and thus ffp(l) = &f(0-5, 1). This aF(0.5,1) can be substituted into 
a Black formula of a caplet Cp/(0,0.5,1, K, a) with strike K = 5(0,0.5,1) to 
recover the caplet premium in EUR. The price of a Cap\ 5 consists of premiums 
for two caplets: 

Ca P l . 5 (0 ,0 .5 ,1.5 , I<) = Cpl(0,0.5,1, K) + Cpl{0,1,1.5, K), 

where strike K = 5(0,0.5,1.5). If we make an assumption, that there are no 
smiles43 in the market, we can use the implied volatility 5p(0.5,1) to be substi-
tu ted into Black's formula to back up the premium of Cpl(0,0.5,1,5(0,0.5,1.5)). 
The premium G'p/(0, 0.5,1,5(0,0.5,1)) is known and if there was a quote a F ( l . 5 ) 
available, it could be substituted into a Black formula for cap which would de-
liver the price of cap Capi.5 and the premium Cpl(0,1,1.5,5(0,0.5,1.5)) could 
be easily backed up. This is unfortunately not the case as the "nearest" quote is 
a F ( 2 ) . One can however interpolate the missing flat volatilities, either lineary 
or more optimal using a cubic spline.44 The following table shows the complete 
flat volatilities recovered using natural cubic spline interpolation:45 

4 3 Smile is a plot of option's strike prices on X-axes and implied volatilities on Y-axes. See 
Hull (1993). If the market really beleives, that the underlying asset (forward rate in case of 
a caplet) is log-normaly distributed, than the smile will be a horizontal line. Usually one can 
observe smile-like shape, which implies that the expected underlying's terminal distribution 
has "fatter tails" - more mass on extremes. 

4 4 see Nummerical Recipies (1988 - 1992). 
4 5 Natural cubic spline assumes zero second derivation of the obtained function at the outside 

points. 
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Interpolated flat, volatilities in %, 11-11-2005 

? f ( 1 - 0 ) 18.13 
19.61 

aF(2.0) 20.74 
aF(2.5) 21.29 
aF( 3.0) 21.49 
aF{ 3.5) 21.60 
ctf(4.0) 21.64 
<Tf(4.5) 21.59 
ctf(5.0) 21.47 
aF( 5.5) 21.32 
aF( 6.0) 21.15 
ctf(6.5) 20.98 
aF( 7.0) 20.79 
a F ( 7 . 5 ) 20.60 
aF( 8.0) 20.42 
M 8 - 5 ) 20.23 
<rF(9.0) 20.05 
aF( 9.5) 19.86 

a F (10 .0 ) 19.68 

The quote for a cap Capi,5 is now available and the premium Cpl(0,1,1.5, S(0,0.5,1.5)) 
can be calculated. This method can be used to recover the premiums of the re-
maining caplets. Now using the Black formula for a caplet, one could calculate 
the consistent market implied constant volatilities of forward rates. Unfortu-
nately the Black formula cannot be inverted to solve for a and an iterative 
numerical method has to be employed to solve for relevant caplet's a . 

When writing a programm to recover these volatilities quickly, an alternative 
mehtod can be used which offers an analitical recursive formula which can be 
automated in a typical "for-cycle" code. One can write cap and the relevant 
caplets in dependence of only the underlying forward's volatility as follows: 

n 

Capn(5F{t „)) = YJCpli{aF(ti-uti))^ 
i=1 

One approximates the right side of the above equation using first order Taylor 
expansion around point aF(tn) for each of the caplets in the sum: 

jrcpkiMU-i.ii))« E + ( M u - u h ) - M M ) d C ^ C u t f ] ) ' 

(92) 

The partial derivations, all taken at points fff(ti-i,t<) = oF(tn), are denoted 
vega-Ui. Because by definition (see relationship 73) Capn{aF(tn)) = £ " = i Cpli(aF(tn)), 
the sum of the terms with vegas in 92 has to be approximately zero and from 
here 

^ f - n t \ ~ tt ^CpkiaHU-uti)) a 

1=1 
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i = 1 i=i 

°F(tn) « 
E i = i 

(93) 

The relationship 93 can be easily used to recover the constant volatilities of 
forward rates a F { t i _ u L i ) by first setting a F (0 .5 , l ) = a F ( l ) , then solving for 
crp( 1,1.5) from 

ffF(1.5) = ^ ( 0 - 5 , 1 ) + ^ M U - 5 ) 
Vl + f2 

and so on. 

The formula for caplet's vega can is obtained by deriving Black's formula of 
caplet (equaiton 72) with respect to a (see Appendix C for derivation): 

where d is the same as in Black's formula for caplet (equation 72). 

In order to derive vegas one needs to derive the EUR term structure of interest 
rates. It will also be needed later on when simulating the forwards evolution. 
The EURIBOR rates are published every day in the morning by the European 
Banking Federation (FBE), however only maturities up to 1 year are available. If 
we wish to calculate vegas to derive Black volatilities of forward rates maturing 
in more than one year (as well as simulate the evolution of forward rates), we 
will need much longer yield curve than the one published by FBE. The common 
practice is to derive this term structure from the money market, future and swap 
markets, which is very liquid and thus best reflects the shape of a yield curve. 
The formula for a swap rate (equation 45) shows its relationship with zero bond 
prices. The swaps which are quoted on the swap market start today, or t = to 
in formula 45, and quotes are available for tn = 1,2,..., 9,10,12,15, 20, 25,30 
years. Starting with swap rate 5(0,0, 0.5) and substituting for ts we have 

= = W . 5 ) . 

The EURIBOR rate L(0,0.5) quoted daily can thus be taken as S(0,0,0.5) and 
P(0,0.5) can be derived. Next we take the market quote for S(0,0,1) to back up 
zero bond P(0,1). To recover zero bond P(0,1.5), we need a quote for 8(0,0,1.5), 
which is not available. Here again we can interpolate to recover the missing 
swap rates 1.5, 2.5, ... . Table below shows the interpolated swap rates (again 
using natural cubic spline method) for up to 10 years, the recovered zero bond 
prices and corresponding forward rates: 
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, 11-11-2005 
Year Swap Rate Zero Bond Price Forward Rate 
0.5 2.4760 0.9878 0.0248 
1.0 2.7010 0.9735 0.0293 
1.5 2.8360 0.9586 0.0311 
2.0 2.9140 0.9437 0.0316 
2.5 2.9864 0.9284 0.0329 
3.0 3.0560 0.9128 0.0342 
3.5 3.1156 0.8972 0.0349 
4.0 3.1680 0.8815 0.0356 
4.5 3.2173 0.8657 0.0364 
5.0 3.2640 0.8499 0.0372 
5.5 3.3080 0.8341 0.0379 
6.0 3.3500 0.8182 0.0387 
6.5 3.3908 0.8024 0.0394 
7.0 3.4300 0.7866 0.0401 
7.5 3.4672 0.7710 0.0407 
8.0 3.5030 0.7554 0.0413 
8.5 3.5379 0.7398 0.0420 
9.0 3.5710 0.7245 0.0424 
9.5 3.6013 0.7094 0.0426 
10.0 3.6300 0.6944 0.0430 

Substi tuting the missing variables into the formulas for vegas, the constant per-
centage volatilities of forward rates can be calculated as described above. The 
result for the volatilities on 11 November 2005 is: 

Black volatilities of forwards, 11-11-2005 
ctf(0.5, 1.0) 18.13 
S F (1 .0 , I . 5 ) 20.63 
ctf(1-5, 2.0) 22.28 
ap(2.0, 2.5) 22.38 
a y (2.5,3.0) 21.94 
£7/?(3.0,3.5) 21.89 
<7/?(3.5,4.0) 21.74 
(7^(4.0,4.5) 21.26 
<TF(4.5, 5.0) 20.75 
<7^(5.0,5.5) 20.33 
^ ( 5 . 5 , 6 . 0 ) 19.94 
<7p(6.0,6.5) 19.55 
5-^(6.5,7.0) 19.20 
ap(7.0,7.5) 18.88 
a y (7.5,8.0) 18.57 
ay(8.0,8.5) 18.26 
<7/?(8.5,9.0) 17.94 
a F (9 .0 ,9 .5 ) 17.61 

ctf(9.5,10.0) 17.28 

The above constant volatilities are now consistent. It can be observed, that the 
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volatilities are first rising with the expiry, they reach maximum for the forward 
matur ing m two years and than sink for the remaining rates. This fenomenon 
can be explained by the activities of monetary authorities. On one hand the 
central bank tries to send clear signals about its monetary policy which is trans-
lated into its activity on the money market. Thus the short end of the forward 
rate curve is not very volatile as surprises come rather rarely. On the other hand, 
the volatility of the long end of the forward rate curve is given by the market's 
changing expectations about the future inflation. If the monetary authority is 
credible and the markets trust central bank's explicit or implicit inflation tar-
gets, the volatility of the distant forward rates will be low as well. The greatest 
uncertainty is about the forward rates in the middle maturity spectrum, where 
the expectations about loose or tight monetary policy might change fast as new 
information about the state of economy reach the market. 

When we simulate a forward rate which matures in say five years - F(0,5,5.5), 
it would not be very realistic if we used the constant cap-implied volatility 
a F ( 5 . 0 , 5.5) for the whole time of the forward's life. As discused above, we would 
rather expect that in about two years the volatility of the forward (F(2,5,5.5)), 
will be on its maximum and will than gradualy decrease as the forward matures 
in five years from now - F(5,5,5.5). It should be pointed out, that the market 
doesn' t say anything about the exact shape of the volatility function of a forward 
rate, it only says that the constant aF(5.0,5.5) plugged into the Black formula 
for a caplet recovers the relevant caplet's premium in EUR. If we look back 
at the relationship for a no-arbitrage price of a caplet in the previous section 
(equation 71), we can see that we will get exactly the same result if we allow 
the volatility function to dependend on time as long as 

r5 

/ crF(s,5,5.5)2ds = aF(5.0,5.5)2'5. 
Jo 

By rearranging 

1 r" 
<tf(5.0, 5.5)2 = - / crF(.s,5,5.5)2^, 

5 J o 

we can see that the market-implied constant volatility 0^(5.0,5.5) can be in-
terpreted as a square root of an average percentage variance of a forward rate 
F(0, 5, 5.5). Thus a much more realistic approach would be to choose a suitable 
parametrical form for a forward volatility in line with the above discussion and 
demand that when integrated it satisfies condition 

/'" aF(s,titti+1)2dS = aF(tuti+1)2 • £i- (94) 
Jo 

One such form which allows for a hump in its shape is the following function of 
time to maturi ty (fj — t): 

M t , t i M l ) = l " ' ( . t i - t ) + b } . e - * > - » + d . (95) 

Because exactly four parameters are available, only four caplet prices can be 
recovered exactly. In our case 19 caplet prices are to be recovered and therefore 
the obtained volatility function will not price the market observed cap prices 

45 



exactly. As will be shown later on the discrepancies are however quite small. 
In order to recover the cap prices as well as possible, one has to find such 
paramters a, b, c and d, that the condition 94 is satisfied as well as possible for 
all caplet expiries U in question. One possibility is to minimize the following 
sum of squared residuals: 

/ rt 2 

SSR = Y (°F{tu 1)% - j f ' ([a • {ti - t ) + b ] • e_ c(£ '_ t) + d)2 di^j . 

The integral was calculated with help of MatLab and iterative algorithm was 
created to minimize SSR with respect to a, b, c and d. The table below presents 
the results with exactness of four decimal places. 

Parameters of volatility function, 11th November 2005 
a 0.1619 
b 0.0549 
c 0.5987 
c 0.1128 

SSR 0.0000541321 

The first graph below shows the exact shape of the volatility function and the 
second graph shows percentage difference between market-implied terminal for-
ward volatilities and those implied by the model (% difference between left and 
right side of condition 94). Except of the volatility of forward F(0.0,0.5,1.0) 
no volatilities differ by more than 5%, most of them by no more than 1%. The 
differences are minimal and thus employing the parametrical form of forward 
volatility 95 with the above estimated coeffitiens we are able to recover the ob-
served prices of caplet (caps) on the market. 

Cap-stripped Instantaneous Volatilities o l 6M-Fon*ards, 11th November 2005 
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5.3 Correlations of Forward Rates 
Having est imated the volatility function of the forward rates, one can go ahead 
with Monte-Carlo simulation in a one factor model, where no other parameters 
need to be estimated (see set of equations 77 and expression for drift 78). In 
the next section, three models will be used to model the evolution of a yield 
curve - one factor model, two factor model and three factor model. So that 
we were able to go ahead with this task, correlation matrix has to be modelled 
to provide the missing information in the drift of forward rate dynamics (see 
expresion 81). 

5 .3 .1 Corre la t ions in 2 Factor Model 

As shown in chapter 5.1.3, the problem of modeling correlation matrix under 
the condition, that the cap prices implied by calibrating the volatility function 
to the market quotes are preserved, reduces to estimating the coefitients b in 
set of equat ion 91. This will be automatically truth as long as we choose the bs 
in line with condition 88. In our case of two factors expression 

+ = 1 > for i = 1,..., 19 (96) 

must hold. Rebonato 4 6 has pointed out, that the condition 96 is a definition of 
coordinates of points laying on a circle in a 2D-plane with radius 1. Setting 

^<,2 = cos($i) and 6i , i=s in(0i ) for t = 1,.... 19 (97) 

the condit ion 96 can be rewritten as 

sin2(0j) + cos2(0i) = 1 (98) 

and thus the problem of finding 19x2 arguments bitj for i,j = 1,..., 19 reduces 
to finding 19 arguments for i = 1,..., 19 which can be interpreted as a set of 

4 6 See Rebonato (2004). 
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angles. Each set of 19 angles will correspond to a unique correlation matrix and 
the task is to take a desired correlation matrix and try to find a set of angles so 
tha t the resulting correlation matrix was very similar to the desired one. 

The issue of finding the desired matrix is very complex. The matrix we will try 
to mimic should capture an expected evolution of correlations among modelled 
forward rates in the future. It can (and very likely will be) dependent on time, 
it can be dependent on the actual level/slope/curvature of the yield curve. This 
shows that to determine the desired form of correlation matrix is a very delicate 
task. Some studies are arguing, that the desired matrix should be estmated on 
basis of historical data,47 other studies show methods of estimating correlation 
from the swaption prices.4S The main argument against implied correlation 
matrix is that the swaption and cap markets may not be integrated that well.49 

Also Rebonato00 shows that the information that swaption prices imply about 
correlations might be ambiguous. 

Based on the arguments above, the desired correlation matrix was calculated 
from historical data of swap rates, constant form is considered for the resulting 
matrix. The time period was chosen as one year and the same method was used 
to calculate the daily forward rates as when calculating vega above (interpo-
lated daily swap rates were used to calculate zero bond prices based on which 
the forward rates were computed. The graph below shows the resulting histori-
cal correlation matrix which will be taken as the desired correlation matrix with 
elements denoted p f j s . 

Historical Instantaneous Correlation Matrix ol 6M-For«ard Rales 

0.. 

0.! 

0. 

0. 

0. 
1 

4 7 See for instnace Fan et al. (2003). 
4 8 See for instance Rebonato (2002). 
4 9 See LongstalT et al. (2001) or Collin-Dufresne and Goldstein (2002). 
5 0 See Rebonato (2004). 
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To construct the model correlation matrix one has to find such paramteth-
ers Oi for i - 1,..., 19, that the difereces between the desired matrix and the 
model matr ix were minimal. Using definitions 90 and 97 and some basic rules 
for addition of trigonometric functions, the model correlation between forward 
rates i and j takes the form 

P?f = cos(Oj) cos(0j) 4- sin(Ci) sin(Oj) (99) 
= cos(0; - dj) 

and to find an optimal set of angels one has to minimize some objective 
function such as the following sum of squared residuals: 

1 8 x 

S S R = E E ( p i j - p Z o d ) 2 -
i=l j = l 

T h e sum above containes 19 parameters that have to be optimized, which makes 
the task numerically very demanding. Looking at the desired correlation ma-
tr ix in the above figure one can observe that the correlations with F 8 0 (6-month 
forward maturing in 7.5 years from now) are minimal. Thus a grid of thetas 
per ta ining to forward rates F\.o, i*3.o, fs.o, -fin was created which translates into 
only four nested-in for-cycles and the remaining forward rates were lineary in-
terpolated. The comlexity of the problem is thus significantly decreased. The 
following table shows the results for thetas. 

Parameters of Correlation Function, 11 th November 2005 

0i 
1.963 

02 03 0\ 05 06 0i 
1.865 1.767 1.669 1.571 1.492 1.414 

08 09 
1.335 1.257 

010 
1.178 

On 
1.100 

0\2 0\3 0\A 015 016 017 
1.021 0.942 0.864 0.785 0.844 0.903 

018 019 
0.962 1.021 

SSR 0.429298 

T h e first graph shows the model correlation matrix and the second graph shows 
the differences in percentage from the desired correlation matrix. 

Compar ing the desired and model correlation matrix it can be noticed that 
t he latter is basically smoothing the former one, the parametrical fit is quite 
reasonable. 

5 .3 .2 Corre lat ions in 3 Factor Mode l 

T h e procedure of determining a correlation matrix in a three factor model is 
t he same as in case of two factors. Condition 96 becomes 

6?! + 6?a + 6?,3 = 1 , for t = 1, •••) 19 (100) 

which is a definition of coordinates of points laying on a hypersphere in a 3D-
plane with radius 1. Setting 

bt i = cos {Oi i ) , hi,2 = cos(0i,2) sin(0i,i) and bi)3 = sin(0M) sin(0 i i2) 
for i = 1, ...,19 (101) 
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Model Instantaneous Correction Matrix of 6M-Fo™«td Rales. 2F Model 

Forward i's Malunty 

2 

Fo»wd fs Metuity 

% Difference btw. Model and Hlstonc Inst. Cwretauon Matnces. 2F Model 

condition 100 simplifies to 

sin2(fi,i) +cos2(l9i)1) = 1 

which always holds similarily as 98. Using relationships 90 and and 100, it 
follows that the model correlation is 

p f f = cos(0i,i) cos(^,i) + s in (0 M ) s in^ - i ) cos(0ii2 - 0j}2). 

In order to specify the model correlations one has to find a set of 19x2 thetas 
which minimizes the difference between the desired and resulting correlation 
matrix. It is obvious that minimizing an objective function with respect to 38 
parameters is very complex issue, for computational ease a grid from only four 
thetas pertaining to forward rates F L 0 and / ' \ o , o was created and the remaining 
thetas were lineary interpolated. The same objective function as in the two-
factor case was used. The table below shows the results for thetas. 
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Parameters of Correlation Function, 11th November 2005 

^ ^ ^ o^i Q^ 6l 10 
0.864 0.816 0.768 0.720 0.672 0.624 0.576 0.528 0.480 0.432 

0M2 0U3 01^4 0M5 0i~n OVw 0X i9 
0.384 0.336 0.288 0.240 0.192 0.144 0.096 0.048 0.000 

02/2 0^3 d^n I^c, 02 10 
0.000 0.161 0.323 0.484 0.646 0.807 0.969 1.130 1.292 1.453 
02,11 02,12 02,13 02,14 02,15 02,16 02,17 02,18 02 19 
1.614 1.776 1.937 2.099 2.260 2.422 2.583 2.745 2.906 
SSR 0.354567 

The first, graph shows the model correlation matrix and the second graph shows 
the differences in percentage from the desired correlation matrix. 

Model Instantaneous Correlation Matrix of 6M-Forward Rates. 3F Model 

Because the parametrization of thetas was very rough, the obtained fit is obvi-
ously not the most ideal and a better one could be achieved provided a most 
sophisticated minimization algorithm was available. Yet comparing the squared 
sum of residuals, the parametrization achieved is better than the one in two 
factor case. The next section will show the pricing performance of all three 
models when simulating the swaption prices. 
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6 Pr ic ing Swaptions with Monte Carlo Simula-
t ion 

The previous section talked about possible ways of calibrating the LIBOR mar-
ket model. It was shown, that a reasonable way is to use a combination of 
market and historical data. Furthermore it was explained that correlations of 
forward rates have to be employed when the model includes more than one risk 
factor and how these can be modelled. This section will use the calibration re-
sults from the previous section and show how swaptions prices can be calculated 
using Monte Carlo simulation. 

6.1 Market Quotes of Swaptions 
Swaptions are not traded on the market like swaps, there is no pool of supply 
and demand quotes and no mechanism that would pair the matching offers. 
However there are many brokers who offer indications of swaption prices and 
these do change as the swap market moves. 

The standard quotes that are available as historical time series are those of at-
the-money swaptions with expiries of 1, 3, 6 months, 1, 2, 3, 4 and 5 years (the 
price of ATM receiver swaption is equal to the price of ATM payer swaption). 
To each expiry 1 to 10 years of underlying swap tenors are available. The quotes 
are given in implied volatilities (see section 3) and are measured as the average 
of the last quotations of different brokers in a particular day, middle between 
bid and ask is taken. The fact that these average quotations are calculated and 
made published enables us to evaluate the pricing performance of the estab-
lished models with "market" prices. 

The price of a swaption depends on the exact shape of probability distribu-
tion of underying swap rate. Thus when pricing a swaption Swaption(t,t0,tn) 
with Libor market model, evolution of all forward rates spanning between time 
instants t0 and tn have to be simulated which are than used to calculate the 
swap rate at swaption's expiry time. If we want to calculate a price of swaption 
Swciption(0,5.0,15.0) (right to enter into a ten year swap in five years years from 
now), we have to simulate forward rates F(0,5.0,5.5), F(0,5.5,5.0),..., F(0,14.5,15.0). 
This requires further exrapolation of the cap volatility curve to determine the 
forward volatility function between 10 and 15 years as well as extrapolation of 
the swap curve to determine the levels of forward rate. This is a very delicate 
task as both of the quantities are very sensitive to the change of convexity of 
extrapolated curves and requires very good market experience and especially a 
market view. Thus only those swaptions will be simulated who's underlying is a 
swap with last exchange of payments in ten years from now. The following table 
shows the market volatilities of those swaptions that will be simulated further 
in this section, quoted on 11th November 2005. 
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"Market" Implied Swaption Volatilities in %, 11th November 2005 
E x P i r y " Tenor in Years 

1 2 3 4 5 6 7 8 9 
1 20.7 21.3 21.3 21.1 20.4 19.5 18.9 18.3 17 8 
2 21.3 21.2 20.6 19.9 19.3 18.7 18.2 17.8 -
3 20.5 20.3 19.5 18.8 18.3 17.8 17.4 -
4 19.5 19.3 18.5 17.8 17.4 17 
5 18.5 18.2 17.6 17 16.7 -

Substi tuting these volatilities into the Black's formula for swaptions (equation 
76 in section 3), the market prices can be calculated. The following table shows 
these prices with respect to a nominal of EUR 1000. 

Average Swaption Prices in EUR, Nominal EUR 1000, 11th November 2005 
Expiry 

1 2 3 
Tenor in Years 

4 5 6 7 8 9 
1 2.00 4.27 6.60 8.94 11.05 12.93 14.85 16.61 18.29 
2 3.12 6.37 9.51 12.50 15.43 18.19 20.85 23.40 -

3 3.86 7.82 11.49 15.01 18.50 21.75 24.87 - -

4 4.43 8.92 13.01 16.88 20.74 24.32 - - -

5 4.86 9.68 14.17 18.31 22.45 - - - -

6.2 Discretization of the Forward Rate Dynamics 
The whole theoretical framework of forward rate evolution introduced in pre-
vious chapters was based on an assumption that the underlying set of forward 
rates follow a continuous stochastic process. In reality evolution of all financial 
assets is allways discrete. For instance the Euribor rates are set only once a day 
in the morning and thus the shortest possible time step in Euribor evolution is 
one day. On the other hand if one derives forward rates from future contracts 
on Euribor rate and/or swap contracts (as in our case), these are very liquid and 
the high frequency of realized trades could resemble continuous processes. Yet 
even these processes are discrete. The introduced schemc of continuos evolution 
is used because it is easy to operate with especially when deriving closed formu-
las for simple contracts as shown in section 3. When simulating the evolution 
of underying asset according to an available continuous time prescribtion, one 
has to resort to discretizing the processes. 

Instead of simulating the forward rates in the form given by the equation 80 
where the state variable is present in the volatility function, the process of 
logarithm of forward rate was calculated employing Ito's Lemma (see equation 
5). The state variable after one time step in a three factor case takes the form 

A p r t V t i W ^ W c r t . ( t ) 2 

i n ( F , ( i + A 0 ) = w w ) w o E 1 + 4 ( 0 2 
j—2 

+ <rt,(t)(bi, + 6i.2«2 + bi, 3*3), (102) 

where ati(t) takes the parametrical form derived in the previous section, p^fi 
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is a relevant model correlation derived in the previous section just like the bs 
and es are independent normally distributed random variables under a relevant 
terminal measure Q'> (see next subsection) with zero expected value and vari-
ance At. The dynamics of two factor model is analogous, dynamics of one factor 
model as well except of the fact that all ps are equal one. 

6.3 Simulations 
To calculate prices of swaptions with expiry of one year, 18 forward rates have 
to be simulated, namely FLB , . . . , F10. These forward rates were simulated under 
the measure Q1 '5 , under which only the first rate is a martingale. To calcu-
late prices of swaptions with expiry of two years, 10 forward rates have to be 
simulated, namely F2.5,..., F10. These rates were simulated under the measure 
Q 2 and so on. An alternative would be to simulate all forward rates under the 
measure Q 1 0 0 . The only difference would be that the calculated payoff would 
be discounted by different zero bond price. Both ways would deliver the same 
results. 

The time-step was chosen 1 day and 260 days were taken for one year. The real 
number of business days in each year is smaller, but this number differs from 
year to year and thus a fix number of 260 for all years was chosen. This time 
step is fairly small, in practise usually one week is taken as a minimal time step, 
so the simulation results should be quite precise. 

At the end of years 1, ... , 5, the swap rate was calculated from the simulated 
forward rates (exponential had to be taken first to transpose the simulated log-
ari thm) and a swaption's payoff was evaluated according to a swaption's payoff 
function in equation 51 and discounted by the relevant zero bond price which 
was as well calculated from the resulting forward rates. The discounted payoff 
was recorded and an average was taken at the end. The number of simulations 
made is 100 000, for each simulation 260 x 5 independent standard-normally 
distributed random numbers had to be drawn for the case of one factor model, 
two times and three times as much for two- and three-factor models. In order 
to prevent serial correlations in the rundom numbers drawn, a powerful random 
number generator of Park and Miller with Bays-Durham schuflle mechanism 
was used.51 

The three graphs below show thirty forward curves that were simulated by the 
one-, two- and three- factor models. It can be observed, that the one-factor 
model allows the forward curve to move more or less only horizontaly. Slight 
changes of shape are caused by the fact, that each forward is subject to different 
volatility (see the humped-shaped volatility function from the previous section). 

The second graph shows a sample of simulated forward curves resulting from 
two-factor model. Tt can be noticed that this model allows for more significant 
change of slope and thus models the evolution in more realistic way. 

Additional risk factor added provide even more realistic behaviour. A sample of 
5 1 See Numerical Recipies. 
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simulations presented in the last graph shows that there is a greater variation 
of convexity present in the modelled forward curves. 

6.4 Results 
The graphs above show how the forward curve is modelled by including one to 
three risk factors. It can be seen, that the two latter models capture the evolu-
tion of term structure in more realistic way. One would therefore expect these 
models to perform better in pricing swaptions. The results presented in the 
following tables show however exactly the opposite. The first three tables show 
the Monte-Carlo prices of swaptions using one-, two- and three-factor models in 
nominal of EUR 1000 on 11th November 2005. All results presented are rounded 
to second deciaml place. 

One Factor Model 
MC Swaption Prices in EUR, Nominal EUR 1000, 11th November 2005 

Expiry 
1 2 3 

Tenor in Years 
4 5 6 7 8 9 

1 2.08 4.39 6.61 8.64 10.48 12.16 13.71 15.15 16.50 
2 3.21 6.49 9.57 12.37 14.90 17.21 19.33 21.30 -

3 4.04 8.04 11.73 15.07 18.08 20.81 23.31 - -

4 4.66 9.16 13.29 17.00 20.33 23.33 - - -

5 5.13 10.03 14.47 18.43 21.96 - - - -
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•actor Model 
MC Swaption Prices in EUR, Nominal EUR 1000, 11th November 2005 

Expiry Tenor in Years 
1 2 3 4 5 6 7 8 9 

1 2.09 4.39 6.57 8.52 10.24 11.75 13.07 14.38 15.68 
2 3.19 6.43 9.43 12.09 14.42 16.48 18.35 20.19 _ 
3 4.00 7.93 11.51 14.68 17.46 19.94 22.23 _ _ 
4 4.62 9.06 13.08 16.61 19.73 22.51 _ 
5 5.08 9.89 14.20 17.99 21.32 - - - -

Three Factor Model 
MC Swaption Prices in EUR, Nominal EUR 1000, 11th November 2005 

Expiry Tenor in Years 
1 2 3 4 5 6 7 8 9 

1 2.09 4.38 6.54 8.47 10.17 11.69 13.09 14.39 15.62 
2 3.20 6.45 9.43 12.08 14.43 16.54 18.46 20.25 -

3 4.02 7.95 11.51 14.67 17.47 19.97 22.25 - -

4 4.62 9.05 13.05 16.59 19.72 22.51 - - -

5 5.13 9.98 14.33 18.13 21.47 - - - -

The next three tables show the percentage difference of the simulated Monte-
Carlo prices from the market prices on 11th November 2005. 

One Factor Model 
% Difference of MC Swaption Prices from Market Prices, 11th November 2005 
Expiry 

1 2 3 4 
Tenor in 

5 
Years 

6 7 8 9 
1 -3.29 2.83 2.62 0.44 -1.83 -4.49 -6.19 -7.80 -8.78 
2 3.27 4.88 3.68 1.44 -0.89 -3.35 -5.20 -7.43 -

3 5.15 4.83 3.67 1.42 -1.18 -3.77 -5.70 - -

4 3.67 3.30 2.68 0.18 -2.52 -5.17 - - -

5 2.97 2.50 1.02 -1.07 -3.86 - - - -

Two Factor Model 
% Difference of MC Swaption Prices from Market Prices, 11"' November 2005 
Expiry 

1 2 3 
Tenor in 

4 5 
Years 

6 7 8 9 

1 -2.82 2.76 1.94 -0.96 -4.09 -7.71 -10.54 -12.49 -13.32 
2 2.77 3.88 2.08 -0.86 -4.04 -7.46 -10.00 -12.27 -

3 4.08 3.38 1.70 -1.16 -4.54 -7.79 -10.10 - -

4 2.86 2.14 1.02 -2.11 -5.41 -8.52 - - -

5 1.96 1.11 -0.86 -3.44 -6.69 - - - -
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Three Factor Model 
% Difference of MC Swaption Prices from Market Prices, 11th November 2005 
Expiry 

1 
-2.84 
3.21 
4.51 
2.83 
2.88 

3 
2.63 
4.18 
3.63 
2.04 
2.05 

Tenor in Years 
5 6 

1.55 
2.16 
1.73 
0.85 
0.02 

-1.56 
-0.91 
-1.25 
-2.22 
-2.68 

-4.73 
-4.01 
-4.53 
-5.45 
-6.03 

-8.13 
-7.13 
-7.67 
-8.54 

-10.43 
-9.47 
-9.99 

-12.43 
-12.00 

-13.62 

Prom the presented results above the following comments can be made. The 
one factor model performed the best in general. It managed to recover the 
market swaption prices within a difference of 5 percent in 80 percent of the 
simulated swaption contracts and misspriced never by more than 9 percent. It 
slightly overpriced all swaptions with underlying swaps' tenor from one to four 
years (except of the first option in the table), while it underpriced the swaptions 
with underlying swaps' tenor of up to 9 years. Similar holds true for the two-
and three-factor models. On the other hand, the two-factor model performed 
slightly better than the other two models in pricing swaptions with short under-
lying swaps' tenors, while it underpriced all swaptions with underlying tenors 
of 7, 8 and 9 years by more than 10 percent. 

T h e three factor model didn't perform significantly worse. Even though it cap-
tures the evolution of the yield curve in the most realistic fashion by allowing 
for a change in slope as well as for the change in convexity, it didn't deliver the 
best, results as would be expected. One reason could be, that the libor-market-
model-implied probability distribution might be a different to that considered 
by the swap market participants. Swaptions are mostly priced by swap market 
models where the swap rate is modelled directly assuming a closed form prob-
ability distribution like a lognormal one. As already mentioned in the third 
section, these two market models are thus not compatible. In other words if 
prices of swaptions are computed by brokers say with a swaption market model 
with lognormal distribution, we will not be able to recover these prices with a 
libor market model where the implied swap's probability distribution is different. 

One could indeed achieve better results than the ones presented by using differ-
ent calibration method. The prices would have been recovered better if we chose 
a volatility function of forward rates such, that the model-implied volatility of 
swap rates was lower for the swaps with short tenors and higher for the swaps 
with long tenors. We would however be than calibrating to swaption prices and 
would not recover the market prices of caps. 

It is important to note, that calibrating a libor market model to swaption prices 
can completely make sence even-though we won't recover the prices of caps. The 
purpose of market models is to price much more complicated instruments whos 
payoff depends on Euribor rate in our case or on swap rate in case of swap mar-
ket model. Especially in the past couple of years instruments path-dependent 
instruments like various ladder swaps, or instruments with callable features like 
callable structured swaps or bonds became very popular. If we beleive, that the 
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swaptions provide in fact more realistic view about the forward rate volatilities 
in the future, we can calibrate to swaption prices and use the model to price 
these complicated structures. 

In t h a t perspective, the presented results shouldn't be interpreted right away 
by concluding that adding more risk factors doesn't bring additional benefits in 
general. One could certainly calibrate the presented three factor model so that 
the results delivered were better in pricing swaptions than the one factor model 
by choosing proper correlation and volatility functions. To choose the right 
calibration method is a very complex and sensitive issue. A model calibrated 
in a certain way (say according to cap prices as in our case), which delivers 
good results in pricing certain type of instruments might perform very poorly 
pricing different instruments. In our case if we made a statement that one factor 
model is the best because it is the best in recovering swaption prices, we would 
probably be very disappointed if we used this model to price instruments who's 
payoff depends on say a spread between two swap rates, as it doesn't allow the 
forward curve to change slope much which translates into a smaller volatility 
between two swap rates. It is important to allways keep on mind what the 
model is built for, what kind of instruments it aims to price. 
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7 Conclusion 
In the beginning of the thesis a no-arbitrage approach to pricing financial deriva-
tives was introduced. It was shown how the stochastic calculus can be used in 
expressing dynamics of financial assets and how Ito's formula plays a crucial 
role in deriving more complicated dynamics. With help of the fundamental 
pricing formula presented at the end of the first chapter, prices of basic inter-
est rate derivatives were derived later in the thesis, especialy those of caps and 
swaptions. Both these instruments are very frequent vanilla contracts which are 
extremely important in modern interest rate financial engineering both as basic 
building blocks when creating products with more complicated payoff structres, 
and as hedging instruments. It was described how these instruments are quoted 
using implied volatilities which stem from the famous Black formula. Even 
though markes use the Black formula as a convention for quoting prices of caps 
and swaption, it was explained that it doesn't mean that market participants 
beleive in a constant volatility of forward rates and their lognormal distribution 
which the Black formula implies. Still the Black implied constant volatility is 
a very important source of information when a stochastic model is to be build 
which is used to price more complicated interest rate derivatives. 

In the second part of the thesis Libor market models were built with one, two 
and three risk factors. It was explained in detail how the models can be cali-
brated with help of market prices of caps and how monte carlo simulation cas 
be emloyed to price more complicated payoff. To demonstrate this pricing pro-
cedure a set of swaptions was priced with use of all three models and the three 
sets of prices achieved were compared with market data of swaptions. The 
best results were delivered by a one factor model which managed to price 80% 
of swaptions within a difference of 5 percent. The other two modeles didn't 
perform significantly worse. Furthermore it was argued, that the worse results 
don ' t mean that a one factor model is better in general, it was reasoned that 
there are cases when a more factor model will be more useful than the one factor 
model. 

The topic discussed in this thesis as a very actuall one, interest rate derivatives 
have become very popular in past couple of years by all parties involved in fixed 
income business. Here only the most basic procedure of model calibration and 
of pricing interest rate derivatives was described. The material of this topic is 
however much more voluminous and keeps attracting more and more attention 
of both business and academical spheres. I hope this thesis has provided grounds 
for more deep and thorough analysis. 
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9 A p p e n d i x A - Ito 's Lemma 

Let g : R -> R be a real function twice differentiate on 10,71 and X(t) a 
diffusion on [0,T]: 

dX(t) = n(t, X{t))dt + a(t, X(t))dW(t) , t e [0, T]. 

The task is to find dynamics of g(X) on [0,7'] or dg(X(t)) where t e [0,7']. 
First we can partition the interval (0,£] as 

(°>T1 = U ( s i - i > s i ] with s0 = 0 ,s n = T. (103) 
i=i 

The process g(X) in t is than equal 

n 

g(X(t)) = ,9(X(0)) + ^ [n(X(Si)) - »(*(«_, ) ) ] • (104) 
i=l 

Because g is twice differentiate, we can express g(X(si)) using Taylor expansion 
around g(A r(s i_i)): 

g(X(Si)) = g(X(Si-0) + ff'(-V(si_i)) [X(si) - .V(si-i)] 

+ ^ W ) ) [*(«<)" *(«-!)]'. 

where 6 = XX(s,) + (I - A)A'(si_1) with A e [0,1] is such, that the value 
(/(X(si)) is exactly met and thus all other terms of Taylor expansion can be 
omitted.5 2 Substituting for g(si) in equation 104 we get: 

g(X(t)) = g(X(0)) + Y W M ) [*(«) - + 
i= l • 

+ i f f " ( X ( 0 ) ) [ X ( S i ) - X ( S i _ 1 ) ] 5 (105) 

By incriasing n we make the partitioning 103 finer and it can be shown, that in 
limit 

i = l 

and 

y g'(X(8i-0) \X(Si) - Xfa-x) ] f g'(X(s))dX(s) (106) 
Jo 

j r g"(X(6)) [X(Si) - J* g"(X(S))cr(S, X(s))2dt. (107) 
i= 1 

In the second transition the cr(s, X(s))2dl term is obtained realizing, that 

\dX(t) }2 = 

= \n{t,X{t))dt + o{t,X{t))dW{t)f 

= H2dt2 + v"-dt-dW(t) + c2(dW(t))2, 
5 2 T h e reason why the further terms of Taylor expansion don't appear is, that they are 

approaching zero in limit transition. It can be easily shown using relatinships in table 108 
fur ther in text. 
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where (£, X(t)) was left out for brevity of formula and using the following facts 
from stochastic analysis: 53 

{dt)2 = 0 
dt • dW(t) = 0 (108) 

[dW(t)\2 = dt 

Subst i tut ing 106 and 107 into 105 we obtain 

g(X(t)) = g{X(0)) + f g'(X(t))dX(t) + \ f g"(X(t))a(t, X(t))2dt, 
Jo l Jo 

or in differential form 

dg(X(t)) = g'(X(t))dX(t) + g"(X(t))vol(dX(t)), 

where vol(dX(t)) is <t(.s, s\(s))2dt. This is the Ito's Lemma for one diffusion. 

Itos Lemma where g is a function of two or more diffusions is analogous, little 
care must be taken in Taylor's expansion where cross-derivations of second order 
show up. Ito's Lemma for two diffusions is thus 

dg(XuX2) = ^ d X l ( t ) + ^ d X i ( l ) + \jgsvol(dX1(l)) + 

i^vol(dX2(t)) + j j ^ J v o l i d X t M W v o i m t ) ) . 

5 3 See for instance Bjork (2004). 
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10 Append ix B - Feynman-Kac's stochastic rep-
resenta t ion formula 

Let's assume, that we face a boundary-value problem 

F(t,X(t))r = ~(t,X(t)) + ^ ( t , X ( t ) ) + i ^ f 2 a \ t , X ( t ) ) ( m ) 

F{T, X(T)) = <fi(X(T)), ' ' (no) 

where X(t) is a process which follows stochastic differential equation 

dX(t) = n(t,X(t))ds + X(t))dW(t). 

We can define process Z as 

Z(t,F) = e-rtF(X). ( I l l ) 

Using Ito's Lemma we can derive dynamics of Z(t, F) as 

p. 8Z(t, F) 0Z(t,F),„ 
dZ(t, F) = 

= -r • e~riF(X)dt + e~rtdF(t). 

It is clear that Z(T) is equal its initial value plus increments over [<,T] or 

Z(T, F(T)) = e~rtF(t, X{t)) - J re~rsF(s, X{s))ds + £ e~radF{.% X{s)) 

and multiplying by erT from substitution 111 we get 

F(T,X{T)) = e-r^F(t,X{t)) - erT J re'r'F(s, X{a))ds 

+ erT j\-r°dF(s,X(s)). (112) 

Knowing that F is a function of time t and process X, dF(t, from expres-
sion 112 can be derived by Ito's Lemma. After substitution, the last term of 
equation 112 becomes:2'1 

'l' rT 
erT J^ e-r'dF{s,X{s)) = erT j f e ' 

dF_ dF 1 d^F 2 

~dt+dXtl+ I d X ^ 

rT of 

dt + 

(113) 

where (t,X(t)) was left out for bravity. We can se, however, that the square 
bracket in the first integral of 113 is by assumption equal F{t,X(t))r which 
causes the integral to cross out with the second integral of equation 112. The 
equation 112 can than be rearranged and we obtain: 

fT OF 
F(t, X(t)) = e ' r ^ F ( T , X(T)) - e r t / e~r'—adW(s). (114) 

j t 
5 4 see equation 17 in the thesis. 
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Now taking expected value of 114, the integral becomes zero55 and substituting 
the boundary condition 110 for F(T, X(T)) we obtain: 

F(t,X{t)) = e-'V-i)E[<l>{X{T)) ]. (115) 

™Jg(t)dW(t) is distributecTnormally with expected value 0 and variance / g * ( t ) d t . 

instance BjSrk. 
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11 A p p e n d i x C - Caplet 's Vega 
The Black's formula of a caplet is (see formula 72): 

CplBlack ((, T, S, K, a) = P(t,S)r(T,S)Dl(K,F(t,T,S),a), 

where 

Bl(K, F(t,T, S), a) = F{t, T, S)N(d) - K • N(d - s) 

d = I ( l n m + is2) 

s = os/T - t. 

Thus for vega we can write: 

dN(d-s) „ = = P ( t , S ) T ( T , S ) F ( t , T , S _ P(t,S)r(T, S)K a 
aa OCT 8a 

Leaving out the arguments for brevity and writing the partial derivations as 
derivations of compounded function we obtain 

V=PTF • N ' ( D - PTK • N'(d - s ) ^ - ^ . 
aa da 

Because 7V(.) is a standard normal distribution function, deriving it with respect 
to its argumet we obtain s standard normal density function. 

„ ^ 1 f -d2} dd „ „ (-(d-s)2\ d(d-s) 
V = PTF • - = exp — } — - PTK • exp { K

 n ' ^ — ' - . 
V^r I 2 J da \ 2 J da 

Substituting for s in the second partial derivation and calculating the partial 
derivations above we obtain 

„ = P r F . - ^ e x 
F 1 _2 s/T -1 

a — 

+ PTK • exp ~ ( d ~ s)2 
log-

F 1 \jT — t 
2 J V ° K V T ^ t 2 

Substituting for s and putting common arguments outside of brackets we get 

• - d 2 ' 
v = PT • —= exp < 

s/iir 1 2 
—F I log - ^ - r — a ~ 2 — 

y/T — t 

— K • exp { d • as/T - t -

Ky/T-t 

a2(T - t) log 
F 1 

K^/r-t 
a~ 4" 

sfT^-l 

Substituting for d in the exponential of the second member in square brackets 
the first part simplifies to F further simplification lead to the formula of vega 

1 f -d2 \ \ „ / . F 1 _2 
y/T^t 

= PT 

N K sJT^t 2 

w M ' - f 
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