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Abstract 
The main focus of the thesis is the introduction of new method for interpretation of fractality 
aspects of financial time series together with its application. We begin with description of 
various techniques of estimation of Hurst exponent – rescaled range, modified rescaled range 
and detrended fluctuation analysis. Further on, we present original theoretical results based on 
simulations of three mentioned procedures which have not been presented in literature yet. 
The results are then used in the new method of time-dependent Hurst exponent with 
confidence intervals developed in this thesis. Moreover, we show important advantage of 
using the mentioned techniques together to clearly distinguish between independent, trending, 
short-term dependent and long-term dependent properties of the time series. We eventually 
apply the proposed procedure on 13 different world stock indices and come to interesting 
results. To the author’s best knowledge, the thesis presents the broadest application of time-
dependent Hurst exponent on stock indices yet. 
 
Keywords: fractality, time-dependent Hurst exponent, long-term memory, time series 
analysis, market efficiency 
 
JEL Classification: G1, G10, G14, G15  
 

Abstrakt 
Tato práce se zaměřuje na prezentaci nové metody pro popis fraktality finančních časových 
řad. Popisujeme nejvíce používané techniky pro určení Hurstova exponentu – R/S, M-R/S a 
DFA. Dále prezentujeme vlastní simulace pro dané metody, které nebyly dříve uvedeny 
v literatuře. Výsledky jsou pak použity v nové metodě časově závislého Hurstova exponentu 
s konfidenčními intervaly. Navíc poukazujeme na výhody použití všech třech postupů 
najednou pro důsledné rozlišení mezi nezávislými procesy, procesy s trendy, procesy 
s krátkou pamětí a procesy s dlouhou pamětí. Nakonec aplikujeme navrženou metodu na 13 
různých světových akciových indexů a přicházíme k zajímavým výsledkům. Podle autorova 
nejlepšího vědomí práce prezentuje zatím nejširší aplikaci časově závislého Hurstova 
exponentu na akciové indexy.   
 
Klíčová slova: fraktalita, časově závislý Hurstův exponent, procesy s dlouhou pamětí, 
analýza časových řad, tržní efektivita 
 
JEL klasifikace: G1, G10, G14, G15 
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 Introduction 
Mainstream financial literature has been based on the assumption of normality of 

returns (Osborne, 1964). Even though this property has been questionable from the very 

beginning of the theory development (Mandelbrot, 1960; and Mandelbrot, 1963b), the 

efficient markets hypothesis won its first important battle in 1960s and defeated the theories 

based on different distributions mainly because of its easy application in the models 

(Markowitz, 1952; Sharpe, 1964; and Lintner, 1965). However, the years have passed and the 

hypothesis has been tackled on many fronts (Malkiel, 2003; Lo, 2008). Despite the fact that 

the efficient market hypothesis has survived, several competing theories have evolved and are 

ready to overtake the place of the mainstream paradigm. 

One of the defeated theories from the 1960s was the theory of Benoît Mandelbrot 

which described the financial market as a system with fat tails, stable distributions and 

persistence (Mandelbrot, 1960; Mandelbrot, 1963a; Mandelbrot, 1963b; Mandelbrot, 1966; 

and Mandelbrot, 1967). The theory of Mandelbrot has evolved since 1960s but has retained 

the most important assumptions and was summarized by Edgar Peters as the fractal market 

hypothesis in early 1990s (Peters, 1994). Financial market is depicted as a complex dynamic 

system which can hardly be described by linear methods of efficient market theories. The 

complexity of the system consists of heterogeneous agents on the market who are not fully 

rational; moreover, they apply available information differently, invest at different investment 

horizons and react gradually to the information. The theory implicitly says that the dynamics 

of the system is fractal and therefore self-similar. Stock markets are stable as long as the 

returns of different investment horizons are self-similar in their distributions and thus there is 

no preferred investment horizon. When the market does not keep the self-similarity, it can 

easily break down (Peters, 1994). 

For the fractality measurement, Hurst exponent is used in literature (Samorodnitsky, 

2007) with respect to Edwin Hurst who developed basic tools for detecting long-term memory 

in the time series of water flows of the Nile River in 1950s (Hurst, 1951). As long-term 

memory is one of “symptoms” of fractality of the time series (Rose, 1996), the method was in 

turn applied in financial theory. Even though the long-term memory processes were out of the 

mainstream financial theory (Lo, 2008), they have gone through interesting development 

which was mostly recognized during 1990s and 2000s when lot of authors (e.g. Lo, 1991; 

Peters, 1994; Taqqu, Teverovky & Willinger, 1995; and Lillo & Farmer, 2004) applied the 

methods and found several interesting results of long-term memory processes in stock prices, 
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FX returns and bond returns. In the last 15 years, there have been a lot of research papers 

which contradict the classic financial theory as a presence of long-term memory in the time 

series rejects a random walk hypothesis which is an important part of efficient markets theory 

(e.g. Peters, 1994; Matos et al., 2008; Di Matteo, Aste & Dacorogna, 2005; and Los, 2008). 

However, as the theory is relatively new and the methods are not fully developed, majority of 

the papers solve the problems only partially.  

The main purpose of this thesis is to compare the results of different authors and 

develop new method which avoids the shortcomings of the recent papers. The method uses 

time-dependent Hurst exponent, which was applied by several researchers recently (e.g. 

Grech & Mazur, 2004; Grech & Mazur, 2005; and Matos et al., 2008), together with 

confidence intervals based on our original simulations for random time series. With this 

method, we are able to test the hypothesis that the market behaves independently (Weron, 

2002). The alternative hypothesis states that market is dependent. For the purposes of 

detection of specific type of dependence, we use different methods of estimation of Hurst 

exponent. Rescaled range analysis (Hurst, 1951) is used as the first one as it provides the 

basic detection tool for dependence in the time series. Modified rescaled range (Lo, 1991) is 

used to distinguish between long-term and short-term dependence. The separation of two 

types of dependence is important as their implications are different. Short-term dependence 

implies that information about recent past of the time series is significant for the current state 

(Rose, 1996). On the other hand, long-term dependence indicates that even the information of 

far past is significant for the present state (Beran, 1994). Detrended fluctuation analysis (Peng 

et al., 1993; and Peng et al., 1994) is finally applied to check for significant trends in the time 

series which may bias both previously presented methods (Alvarez-Ramirez et al., 2008). 

Therefore, we are able to estimate whether the time series is independent, short-term 

dependent, long-term dependent or only trending. 

The first part of the thesis presents the definitions of self-similarity and fractality 

together with the implications for the examination of the time series. Efficient markets 

hypothesis (Fama, 1970) and fractal markets hypothesis (Peters, 1994) together with 

preceding theories of Larrain’s KZ model (Larrain, 1991) and coherent markets hypothesis 

(Vaga, 1990) are presented. The description of the theories focuses on the most important 

aspects which are comparable with fractal markets hypothesis and with the application of 

Hurst exponent on the financial time series. 

The second part describes the commonly used methods of estimation of Hurst 

exponent. Rescaled range analysis of Edwin Hurst (Hurst, 1951) and modified rescaled range 
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analysis of Andrew Lo (Lo, 1991) are presented as these methods are the most applied and 

tested ones. Detrended fluctuation analysis of Peng (Peng et al., 1994) is presented as it is the 

most used method from the range of methods which are resistant to non-stationarities in the 

time series (Alvarez-Ramirez et al., 2008). 

The third part of the thesis focuses on finite sample properties of all used methods as 

they are theoretically developed for infinite time series. The real world time series are finite 

and therefore, the implications of the methods must be tested. We simulate random time series 

for different lengths and test the properties of estimated Hurst exponents for each method. 

This way, we construct confidence intervals for each method which are further used for 

testing of hypothesis of random walk and martingale. 

The fourth part applies all presented aspects of long-term memory processes on wide 

portfolio of world stock indices. The method we use is novel in the fact that we compare time-

dependent Hurst exponent with estimated confidence intervals for specific time series length 

and thus test whether the time series follows martingale, random walk or is dependent. The 

important part of the method is the fact that not only we test the dependence of the time series 

but we also examine the changes of dynamics of the system as stock markets develop through 

time. 

The last part concludes the most important results uncovered. We show that 

confidence intervals for time series with less than thousand observations are wide and thus the 

hypothesis of independence is rejected only for extreme values of Hurst exponent. Further on, 

R/S overestimates Hurst exponent compared to DFA methods. However, the confidence 

intervals for both methods have similar width. In the applied part, we show that indices of the 

Central Europe experienced very different evolution. WIG20 and BUX show no periods 

where long-term dependence is significantly present. On the other hand, ATX and PX show 

clear trend from a long-term dependent to an independent behavior. SAX shows very different 

behavior compared to all indices as it experienced rather reverse evolution when compared to 

ATX and PX. As for the Western Europe, DAX, CAC40 and FTSE show very similar 

behavior with almost two years on boundary between independent and anti-persistent 

behavior for FTSE and CAC40. The indices of the USA show no significant long-term 

dependence during whole examined period. NIKKEI is shown to be similar to the indices of 

Western Europe with all the attributes and SSEC shows stable path to an independent market.    
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Chapter 1 Fractals in finance 
 

 
“When the number of fixes in recipes exceeds a certain number, 

that recipe collapses under its own weight and the need arises 
for a new start.” 

 
Benoît Mandelbrot1 

 

 

In this chapter, we present the basic definitions of fractal and self-similar processes. 

As the definitions vary across the literature (compare Samorodnitsky & Taqqu, 1994; and Di 

Matteo, 2007), we provide those best suitable to the time series analysis. We follow the 

definitions with descriptions of efficient markets hypothesis and fractal markets hypothesis 

together with preceding models which mostly contributed to formation of fractal markets 

hypothesis. Let us start with definitions of self-similar and fractal processes. 

1.1 Definitions of fractality and self-similarity 

Fractality and self-similarity are two concepts which are confused in majority of the 

literature. However, they are not equal – self-similarity is a special case of fractality 

(Mandelbrot, Fisher & Calvet, 1997). We start with the definition of a self-similar process as 

it is widely used in literature (Samorodnitsky & Taqqu, 1994).  

The simplest way of defining self-similar process is based on distributions 

(Samorodnitsky, 2006): 

 
Definition 1-1 Self-similarity in distribution 
Process ( )∞<<−∞= tXX t ,  is called self-similar if 

( ) ( )tXaatX H→      (1.1) 
for a positive factor a and non-negative self-similarity parameter H . 
 

To avoid confusion with self-affinity, we present the definitions of self-affinity of 

Mandelbrot & van Ness (1968) and Mandelbrot, Fisher & Calvet (1997), respectively: 

 
Definition 1-2 Self-affinity of increments in distribution 
The increments of process ( )∞<<−∞= tXX t ,  are said to be self-affine if 

( ) ( ) ( ) ( )( )o
H tXhtXhtXtX −+→−+ − ττ 000   (1.2) 

for any t0, a positive factor h, a positive time scale τ and a non-negative parameter H . 

                                                 
1 Mandelbrot (2005), p. 195 
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Definition 1-3 Self-affinity in distribution 
Process ( )∞<<−∞= tXX t , , ( ) 00 =X  is called self-affine if 

( ) ( ){ } ( ) ( ){ }k
HH

k tXctXcctXctX ,...,,..., 11 →     (1.3) 
for non-negative factors c and k, periods t1, …, tk and a positive parameter H . 
 

Self-affinity in distribution is thus a special case of self-similarity in distribution and 

should not be confused as these are often interchanged in literature (for comparison, see 

Mandelbrot, Fisher & Calvet, 1997; and Samorodnitsky & Taqqu, 1994). Let us return to self-

similarity. 

Self-similarity parameter H is called Hurst exponent after water engineer Harold 

Edwin Hurst who developed it for examining the behavior of the Nile River water flows to 

build appropriate reservoir that would never overflow and never become empty (Hurst, 1951). 

Notation H was given to the exponent by Benoît Mandelbrot (Mandelbrot & van Ness, 1968) 

who contributed mostly to self-similarity and fractals in not only physics and finance in 

pioneering years of the fractal theory (e.g. Mandelbrot & Wallis, 1969; Mandelbrot, 1970; and 

Mandelbrot, 1972). 

However, more important implications of self-similarity for the time series are not 

based on distributions but on dynamic properties of the time series which are most basically 

defined by the autocorrelation function γ(k) which we define as follows (Eichner et al., 2007): 

 
Definition 1-4 Autocorrelation function 
Let ( )TtXX t ,...,1,0, ==  be a covariance stationary stochastic process with mean μ and 
variance σ2. Autocorrelation function ( ) 0, ≥kkγ  dependent on number of lags k is then 

( )
( )( )

( )kT

XX
k

kT

t
ktt

−

−−
=
∑
−

=
+

2
0

σ

μμ
γ .    (1.4) 

 
Self-similar processes according to Definition 1-1 have autocorrelation function which 

is defined exactly and asymptotically by following propositions based on Beran (1994) and 

Embrechts & Maejima (2002), respectively, who provide proofs as well:  

 
Proposition 1-1 Autocorrelation function of self-similar process (1) 
Let ( )TtXX t ,...,1,0, ==  be self-similar process with 10 << H  and finite variance ∞<2σ . 
Then the correlations are given by autocorrelation function    

( ) ( ) ( )
2

121 222 HHH kkkk −+−+
=γ     (1.5)  

for 0≥k , where H is Hurst exponent. 
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Proposition 1-2 Autocorrelation function of self-similar process (2) 
Let ( )TtXX t ,...,1,0, ==  be self-similar process with 10 << H  and finite variance ∞<2σ . 
Then the correlations are asymptotically given by autocorrelation function    

( ) ( ) 22*12 −−≈ HkHHkγ      (1.6) 
for ∞→k , where H is Hurst exponent. 
 

The dividing value of Hurst exponent is 0.5 and indicates two possible processes. On 

the basis of Proposition 1-1, H being equal to 0.5 means an independent process (Beran, 

1994). On the other hand, Proposition 1-2 suggests that if H of the process is 0.5, we have 

either an independent process, if Proposition 1-1 holds as well, or a short-term dependent 

process, if Proposition 1-1 is not valid (Lillo & Farmer, 2004). Thus, independent process is 

the one with zero correlations at all non-zero lags. On the other hand, short-term dependent 

process has significantly non-zero correlations at low lags but zero correlations at high lags2. 

Let us now follow with two cases which are more important for this thesis. 

If 5.0>H , the process has significantly positive correlations at all lags and is said to 

be long-range dependent with positive correlations (Embrechts & Maejima, 2002). Note that 

there are several different notations for such process. The mostly used terms are used by 

Beran (1994), who employs a notion of “long-range dependence”, Lillo & Farmer (2004), 

who calls the process as the one with “long-memory”, Panas (2001) and Mandelbrot & van 

Ness (1968), who say that the process is “persistent”, and Peters (1994), who marks the 

process as “black noise”. The process has hyperbolically decaying correlations which are non-

summable and  ( ) ∞=∑∞

=0k
kγ  (Beran, 1994). 

On the other hand, if 5.0<H , it has similar properties to the previous case as it has 

significantly negative correlations at all lags and the process is said to be long-range 

dependent with negative correlations (Embrechts & Maejima, 2002). Again, the process is 

called differently across literature. Beran (1994) uses term “short-range dependence”, Panas 

(2001) and Mendelbrot & van Ness (1968) call the process “anti-persistent”, Barkoulas, Baum 

& Travlos (2000) mark the process as the one with “intermediate memory” and Peters (1994) 

labels the process as “pink noise”. Similarly to the previous case, the process has 

hyperbolically decaying correlations. However, the correlations are summable and thus 

( ) ∞<< ∑∞

=0
0

k
kγ  (Embrechts & Maejima, 2002). 

                                                 
2 Kantelhardt (2008) specifies the autocorrelation function of short-term dependent process as ( ) ( )xtkk −≈ expγ  

where tx is a characteristic time decay. The author further notes that e.g. for AR(1) process ttt xx εϕ += −1*  , it 

holds that ϕlog1−=xt . Note that the relationship holds for non-explosive processes with 1<ϕ  and only for 

positively autocorrelated processes with 0>ϕ . 
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As it has been mentioned, there are several notations used in the literature and some 

might cause confusion. To avoid this, we stick to terms “persistent” and “anti-persistent” 

throughout the following text. The persistent process implies that a positive movement is 

statistically more likely to be followed by another positive movement or vice versa. On the 

other hand, anti-persistent process implies that a positive movement is more statistically 

probable to be followed by a negative movement and vice versa (Vandewalle, Ausloos & 

Boveroux, 1997). 

Let us turn to the definition of a fractal process. We present the most common 

definition3 of the process of Mandelbrot, Fisher & Calvet (1997) with separation between 

multi-fractal and uni-fractal processes of Lux (2003): 

 
Definition 1-5 Fractality in distribution 
Process ( )∞<<−∞= tXX t ,  is called fractal if 

( ) ( ) ( )tXcctX cH→      (1.7) 
for a positive  factor c and an arbitrary non-negative function H(c). If ( ) HcH = is a constant 
function, the process is said to be uni-fractal. Otherwise, the process is said to be multi-
fractal. 
 

The fractal process is called persistent, anti-persistent and independent with respect to 

the same values of H(c) as for self-similar processes mentioned in the text above (von 

Seggern, 1993). The multi-fractal process is appealing mainly due to its ability to describe the 

process in more complex way and allow the distributions to follow more complicated 

functions of rescaling which is closer to the real world observations (Cont, 2001). 

The processes then have following relations. A self-affine process is a special case of a 

self-similar process which is in turn a special case of a fractal process. All types of mentioned 

processes are connected by parameter H and its properties that show peristent, anti-persitent, 

short-term dependent and independent processes. The different values help us distinguish 

between specific definitions of efficient markets and fractal markets which are both discussed 

in the following subchapter 

Before we turn to definitions of different markets hypotheses, we define the family of 

stable distributions which are also called “fractal” because of their self-similar properties 

(Mandelbrot, 1964b): 

 

                                                 
3 For alternative definitions, see Fillol (2003) and Di Matteo (2007). 
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Definition 1-6 Stable distributions 
Stable distributions are determined by characteristic function, natural logarithm of which is 
defined as  

( )
2

tan1 παβδφ α

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

t
ticttit     (1.8) 

 for 1≠α   and  

( ) ticttit ln21 ⎟
⎠
⎞

⎜
⎝
⎛ +−=

π
βδφ α     (1.9) 

 for 1=α , where 20 ≤< α  is a characteristic exponent determining peakedness, 1≤β  is a 
skewness parameter, ∞<<∞− δ  is a location parameter and ∞<≤ c0  is a scale 
parameter. 
 

There are several special cases of Stable distributions with important properties. If 

0,2 == βα , we arrive at normal (Gaussian) distribution with 22σ=c . If moreover 0=δ , 

we have standardized normal distribution with zero mean and unit variance. If 0,1 == βα , 

we have Cauchy distribution which has infinite variance and mean. The parameter α is crucial 

for an existence of variance. For 21 << α , the distribution has infinite or undefined second 

moment and thus population variance. Moreover, for 10 ≤< α , the distribution has infinite 

mean as well (Peters, 1994). 

The self-similar process is connected to stable distribution of the process by the 

relation between Hurst exponent and α (Panas, 2001): 

H
1=α      (1.10) 

This relation is very important for further testing of hypotheses which we further 

describe in Section 1.3. Let us now turn to the process of forming of fractal market hypothesis 

in the following subchapter. 

1.2 From efficient to fractal markets 

Fractal market hypothesis (FMH) by Peters (1994) is inspired by two hypotheses – 

Larrain’s K-Z model (Larrain, 1991) and coherent market hypothesis (Vaga, 1990). 

Therefore, we present basic ideas of both theories and then turn to FMH itself. Moreover, we 

present the crucial points of efficient markets hypothesis (EMH) as it has been the theory of 

the mainstream for several decades and other hypotheses are the ones to oppose EMH or 

complement it. Let us start with EMH.  
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1.2.1 Efficient markets hypothesis 

Efficient markets hypothesis was simultaneously developed by Eugene Fama (Fama, 

1965a; Fama, 1965b; and Fama, 1970) and Paul Samuelson (Samuelson, 1965) during 1960s. 

Even though each author worked EMH out on different basis, both came to same implications 

(Lo, 2008). As EMH is well discussed in majority of finance textbooks (e.g. Reilly & Brown, 

2002), we present only the most important implications of the theory. 

The hypothesis of efficient markets was firstly summed by Fama (1970) who 

presented theory and empirical findings. The efficient market is described as “…a market in 

which … investors can choose among securities … under the assumption that security prices 

at any time ‘fully reflect’ all available information.”4 Fama (1970) presented three basic 

models – a fair game model, a martingale model and a random walk model. We will use 

martingale and random walk models as thresholds for efficiency as it is proposed by 

Samuelson (1965) and Fama (1965a), respectively. Let us move to the definitions. 

Martingale process is defined on basis of semi-martingales. We provide the definition 

of Los (2008) where Φs is an information set at time s and E is an expected value operator: 

 
Definition 1-7 Semi-martingale and martingale processes 
A random process ( )( ),...2,1:, =ttX tφ  is called a submartingale if 

( ){ } ∞<tXE       (1.11) 
and 

( ){ } ( ) tssXtXE s <≥ ,φ     (1.12) 
and a supermartingale if, instead, 

( ){ } ( ) tssXtXE s <≤ ,φ     (1.13) 
and is a martingale if the process is both a submartinagel and a supermartingale. 
 

Before we present the definition of random walk, we provide definitions of a Markov 

process (Kijima, 1997) and an independent process (Los, 2008). 

 
Definition 1-8 Markov process 
A random process ( )( ),...2,1: =ttX  is called a Markov process if, for each n and every 

ℵ∈jii no ,,..., , 
{ } { }nnnnnon iXjXPiXiXjXP ====== ++ 101 ,...,   (1.14) 

where P{.|.} denotes conditional probability.  
 

                                                 
4 Fama (1970), pp. 383. 
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Definition 1-9 Independent process 
Let ( ){ },...2,1: =ttX  be a sequence of random variables on a given probability space 
( )PG,,Ω  with ( ){ } 0=tXE  and { },...2,1: =tGt  a current of σ-algebras on the measurable 
space ( )G,Ω , where Ω is the complete universe of all possible events. Then ( ){ }tX  is a 
sequence of independent random variables with respect to ( ){ }tG  if X(t) is measurable with 
respect to Gt and is independent of Gt-1 for all ,...2,1=t  
 

Now that we have defined Markov process and independence, we can define a random 

walk process. We define random walk (RW) and geometric Brownian motion (GBM) 

according to Los (2008) as follows: 

 
Definition 1-10 Random Walk 
A Random Walk is a Markov process with independent innovations 

( ) ( ) ( )ttXtX ε=−− 1 ,     (2.15) 
where ( ) IIDt ≈ε , which stands for independent and identically distributed process.  
 
Definition 1-11 Geometric Brownian Motion 
A Geometric Brownian Motion is a random walk of natural logarithm of the original process 
X(t), where ( ) ( )tXtx ln= , so that 

( ) ( ) ( ) ( )ttxtxtx ε=−−=Δ 1 ,    (2.16) 
where ( ) IIDt ≈ε  

 
Note that martingale is more general than random walk since semi-martingales allow 

for dependence in the process. Random walk thus implies martingale but martingale does not 

imply random walk in the process. With definitions of a martingale, independence and a 

random walk, we can follow with division of efficient markets hypothesis. Efficient markets 

are divided into three basic forms based on different information sets. Weak form states that 

only historical prices of stocks are available for current price formation. Semi-strong form 

broadens the information set by all publicly available information. Strong form includes 

insider information into the information set (Fama, 1970). Market is then said to be weakly 

efficient if investors cannot reach above-average risk-adjusted returns based on historical 

prices and similarly for the other forms (Malkiel, 2003). 

The most problematic part of EMH is the fact that it can be hardly, if at all, tested as 

the “full” reflection of information in prices is hard to define5. The hypothesis was tackled on 

methodological basis quite early after its publication in LeRoy (1976). The author criticized 

all presented definitions of EMH by Fama (1970) and argued that all of them are rather 

tautologies and therefore impossible to test.  

                                                 
5 The problem was mentioned by Fama himself in Fama (1970). 
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More importantly and critically, the biggest complication of EMH is joint-hypothesis 

problem which is touched by Fama himself in Fama (1991). The problem is that even when 

the potential inefficiency of the market is uncovered, it can be due to wrongly chosen asset-

pricing model. Therefore, it is impossible to reject EMH in general and if one still wants to 

test EMH, he or she must state under which conditions (Lo, 2008). 

Therefore, we present two approaches to the definition of efficiency which are 

testable. One is shown by Fama (1965a) and asserts that a market is weakly efficient if it 

follows a random walk process (Definition 1-9). Let us call this type of efficiency F65. The 

other one is presented by Samuelson (1965) and says that market is efficient if it follows a 

martingale process (Definition 1-7). Let us call this type of efficiency S65. Note that most 

recent researchers stick to the martingale process condition which is more general than 

random walk and allows for dependence in the process (Los, 2008)6. When we mention that 

market is efficient, we do so with regard to both S65 and F65. If the market is efficient only in 

the sense of one type, we stress the specific type of efficiency.  

Implications of EMH are far-reaching and are basis for classical financial theory. The 

most important for our purposes are (Elton et al., 2003): 

• Homogeneity of investors based on their rationality7; 

• Normal distribution of returns8; 

• Standard deviation as a measure of volatility and thus risk9; 

• Tradeoff between risk and return10; 

• Unpredictability of future returns11. 

We will return to interconnection between EMH and fractal processes in the last part 

of the following chapter. Let us now turn to preceding models of FMH. 

1.2.2 Larrain’s K-Z model 

Larrain’s K-Z model (LKZ) is named after its creator Maurice Larrain who published 

the theory and empirical results in Larrain (1991). LKZ is a model of real interest rates but it 

                                                 
6 E.g. AR(1) process does not follow random walk but is a semi-martingale. 
7 If all investors are rational and have the access to the same information, they necessarily arrive at the same 
expectations and are therefore homogeneous. 
8 Random walk can be represented by AR(1) process in the form of Pt  = Pt-1 + εt which simply implies that rt = 
Pt – Pt-1 = εt where εt = N(0,σ) is independent normally distributed variable. 
9 As returns are normally distributed, it implies that standard deviation is stable and finite (Mandelbrot, 1963) 
and thus is a good measure of volatility. 
10 As standard deviation is stable and finite, there is a relationship between risk and return based on non-satiation 
and risk-aversion of the investors (Markowitz, 1952). 
11 As returns follow random walk, the known information is already incorporated in the prices and thus their 
prediction is impossible. 
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is presented here for the the idea that a system can be created by two separate mechanisms – 

one based on past behavior and the other based on interconnection with other fundamental 

variables. 

The behavior of future real interest rates is based on two separate relationships: 

( )ntt rfr −+ =1       (1.17) 

( )Zgrt =+1       (1.18) 

The first equation represents the assertion that future real interest rates rt+1 are 

dependent on present and past real interest rates rt, rt-1 , .., rt-n. The second equation states that 

future real interest rates rt+1 are dependent on fundamental variables represented by Z. The 

addition was made to (1.17) and it was reformulated to 

( )ttt rrcar −−=+ 1**1 ,    (1.19) 

where a is an arbitrary constant and 0>c  is a constant.  

Finally, after putting (1.18) and (1.19) together, we obtain 

( ) ( )Zgrrcar ttt +−−=+ 1**1 .   (1.20) 

Larrain (1991) also empirically tested the model and came to very strong results. All 

fundamental variables – real GNP, nominal money supply, consumer price index, real 

personal income and real personal consumption – had significant coefficients as well as the 

one of the past real interest rate. The result has an important implication that is used in FHM – 

both past prices and fundamental variables are important for the system and thus 

fundamentalists and technicians can be part of the market and both can influence the behavior 

of prices. Fundamentalists base their estimates on changes of expected cash-flows. On the 

other hand, technicians base their trading strategy on crowd behavior, short-term effects or 

past behavior of stock prices. This implication strongly contradicts two assumption of EMH – 

homogeneity of the investors and unusefulness of past prices for future prices prediction. 

For more theory behind K-Z model, see already mentioned paper of Larrain (1991) or 

Peters (1991b).  

1.2.3 Coherent market hypothesis 

Coherent market hypothesis was developed by Tonis Vaga (Vaga, 1990) and is based 

on the theory of coherent systems in natural sciences (Peters, 1991b). The theory is based on a 

system with an order parameter which sums all external forces driving the system. The whole 

idea is based on Ising model of ferromagnetism where molecules behave randomly (their 

movement is normally distributed) up till order parameter (temperature of an iron bar in the 
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original case) reaches certain level where molecules start to cluster and behave chaotically 

(Niss, 2004). The theory is in turn applied to behavior of social groups and finally to behavior 

of investors (Schöbel & Veith, 2006). 

Vaga (1990) proposes following, quite complicated, probability formula for 

annualized return f(q) and additional equations 

( ) ( )
( )
( )

c
eqQqf

q

dy
yQ
yK

∫
=

− 2/1

2

*     (1.21) 

( ) ( ) ( )hqkqhqkqK +−+= *cosh*2*sinh    (1.22) 

( ) ( ) ( )hqkq
n

hqkqQ +−
+

= *sinh*2*cosh    (1.23) 

( )
( )
( )

∫
−

−−
∫

= −

2/1

2/1

2
11 2/1* dqeqQc

q

dy
yQ
yK

.   (1.24) 

Variables n, k and h stand for a number of degrees of freedom (market participants), a 

degree of crowd behavior and a fundamental bias, respectively. There are five types of 

markets with respect to varying parameters k and h (Schöbel & Veith, 2006): 

• Efficient market ( 0,0 =<<≤ hkk critical ) where investors act independently of one 

another and a random walk is present; 

• Coherent market ( 00, >>∨<<≈ hhkk critical ) where crowd behavior is in conjunction 

with strong bullish or bearish fundamentals and creates coherent market where 

traditional risk-return tradeoff is inverted and investors can earn above-average returns 

while facing below-average risk; 

• Chaotic market ( 0, ≈≈ hkk critical ) where crowd behavior is in conjunction with only 

weak bearish or bullish fundamentals and creates the situation of low returns with 

above-average risk; 

• Repelling market ( 0,0 =< hk ) where opposite of crowd  behavior is present, 

investors try to avoid having the same opinion as the majority; 

• Unstable transitions consist of all market states that cannot be assigned to any of the 

former states. 

For our purposes, the most important implication for FMH is very similar to those of 

LKZ – markets can exhibit various stages of behavior by combining fundamental and 

sentiment influences which again contradict assumptions of EMH (homogeneity of investors, 
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independent identically distributed returns and risk-return tradeoff). Let us now follow with 

fractal markets hypothesis. 

1.2.4 Fractal market hypothesis 

Fractal markets hypothesis was originally presented by Peters (1994). The theory was 

based on criticism of efficient markets hypothesis and suggested that investors were 

heterogeneous with different investment horizons and reacted gradually to the information. 

Moreover, the normality of the returns was omited and the distribution was only suggested to 

be stable (Definition 1.6). However, it lacked formal definitions which were presented later 

by Rachev, Weron & Weron (1999) and which we present now. 

 
Definition 1-12 FMH1 
The market consists of many individuals with many different investment horizons. 
 

FMH1 reacts to the fact that market consists of different types of investors with 

respect to their investment horizon. The market consists of the investors with investment 

horizon from several minutes (noise-traders) up to several years (pension funds). 

 
Definition 1-13 FMH2 
Information has a different impact on different investment horizons. 
 
 Investors with short investment horizon focus on technical information and crowd 

behavior of other market participants. On the other hand, investors with long investment 

horizon base their decisions on fundamental information and care little about crowd behavior. 

FMH1 and FM2 thus emphasize the heterogeneity of investors. Not only have investors 

different investment horizons but the information have different effects on investors in 

forming of expectations which is in contrary to EMH.  

 
Definition 1-14 FMH3 
The stability of the market is predominantly a matter of liquidity. Liquidity is available if 
FMH1 holds. 
 
 Liquidity is brought to market by many investors with many different investment 

horizons. If short-term investor experiences relatively high loss, it is a buying opportunity for 

a long-term investor and vice versa. If market switches to the place of many investors of 

several, or extremely only one, investment horizons, the trading becomes stuck and unstable. 

Single negative information can turn market into a downward spiral. 
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Definition 1-15 FMH4 
Prices reflect a combination of short-term trading (technicians) and long-term valuation 
(fundamentalists). 
 
 Two basic cases of investors – technicians and fundamentalists – evaluate the market 

price absolutely differently. Of course, this division into two groups is only a simplification. 

There are literally thousands of possible trading rules for technicians with different trading 

horizons. On the other hand, fundamentalists have different investment horizons and put 

different weights to fundamental information.  

 
Definition 1-16 FMH5 
If a security has no bond with the economic cycle, there will be no long-term trend. Trading, 
liquidity and short-term information will be dominant. 
 
 The last assertion is an implication of FMH4 as if there is no bond of the stock to the 

fundamentals, there will be no fundamentalists and technicians will dominate. This kind of 

market is bound to be very volatile. However, if investors with many different investment 

horizons remain in the market, it will remain liquid and stable. 

 The main aim of FMH is to fit the real market. EMH works well if markets are stable 

and close to equilibrium. However, if market is close to or in turbulence, the models cease to 

work. One of important generalizations is that FMH does not restrict the data process to be 

of any specific distribution contrary to EMH which restricts the process to be normal 

(Osborne, 1964). 

 One important statement has not been made yet. FMH has “fractal” in its name 

because the distributions of different investment horizons are supposed to be self-similar and 

thus fractal (Section 1.1). If distributions of different time scales or investment horizons 

remain self-similar, FMH1-FMH3 are valid and market remains stable. FMH4 and FMH5 are 

rather empirical findings than theoretical assumptions. Let us now proceed with Hurst 

exponent estimation methods, which are followed with the implications between H, EMH and 

FMH.   



Chapter 2    Hurst exponent estimation methods 
 

 16  

Chapter 2 Hurst exponent estimation methods 
 
 

“Statistics: The only science that enables different experts using the 
same figures to draw different conclusions” 

 
Esar’s Comic Dictionary 

 

 

As we have shown, Hurst exponent is a crucial parameter of self-similar and fractal 

processes. There are several estimation methods which are used in the literature. We present 

the most used ones in the following text. The rescaled range analysis (Hurst, 1951) is 

introduced together with modified rescaled range analysis (Lo, 1991) as two interconnected 

methods which are together able to distinguish between short-term and long-term dependence 

in the process. Detrended fluctuation analysis (Peng et al., 1994) is presented as method for 

non-stationary time series. In the last subchapter, we show the interconnections between Hurst 

exponent, efficient markets hypothesis and fractal markets hypothesis. 

2.1 Rescaled range (R/S) and Modified Rescaled range (M-R/S) 

Rescaled range method is the oldest one of the Hurst exponent estimation methods and 

was developed by Edwin Hurst while working as an engineer in Egypt (Hurst, 1951). As it 

was already mentioned in Section 1.1, the method was developed for the construction of ideal 

reservoir of water which would never become empty and never overflow. The method was 

later applied to financial time series by Mandelbrot (1970). We provide a detailed description 

of the method together with discussion of its weaknesses in the following subchapters. 

2.1.1 Procedure 

The guide to the R/S method is well reviewed by Edgar Peters (Peters, 1994) and we 

use the reference for definition of the method12,13: 

• Step 1: Transform the original price series ( )TT PPPP ,,...,, 110 −  to a series of logarithmic 

(continuous) returns ( )TT rrrr ,,...,, 121 − , where 

1loglog −−= iii PPr , for Ti ,...,2,1= .     (2.1) 

                                                 
12 Note that the procedure slightly differs across literature, for the discussion see Di Matteo (2007). 
13 For more thorough theory behind R/S analysis, we suggest Samorodnitsky (2007) 
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• Step 2: Divide time period T into N adjacent sub-periods of length υ while TN =∗υ . 

Each sub-period is to be labeled as In with Nn ,...,2,1= . Moreover, each element in In 

is labeled rk,n with υ,...,2,1=k . 

• Step 3: For each sub-period, calculate the average value as 

∑
=

=
υ

υ 1
,

1
k

nkn rr      (2.2) 

where nr is the average value of ri present in sub-period In of length υ. 

• Step 4: Calculate new series of accumulated deviations from the arithmetic mean 

values (profile) for each sub-period as 

( )∑
=

−=
k

i
nnink rrX

1
,, .    (2.3). 

• Step 5: Calculate the range defined as a difference between maximum and minimum 

value of Xk,n for each sub-period as 

( ) ( )nknkI XXR
n ,, minmax −= .    (2.4) 

• Step 6: Calculate the sample standard deviation of the profile as 

( )
2

1
,.

1∑
=

−=
υ

υ k
nknkI XXS

n
    (2.5) 

where nkX , is an arithmetic mean of the profile. 

• Step 7: Each range
nIR is standardized by corresponding standard deviation

nIS and 

forms the rescaled range 

( )
n

n

n
I

I
I S

R
SR =/ .     (2.6) 

• Step 8: We repeat the process for each sub-period of length υ and get the average 

rescaled range as 

( ) ( )∑
=

=
N

n
In

SR
N

SR
1

/1/ υ .     (2.7) 

• Step 9: The length υ is increased and the whole process is repeated14.  

                                                 
14 The length υ is usually set as a divisor of T, which yields number of different lengths υ equal to the number of 
divisors (used in Peters, 1994). However, we use the procedure used in e.g. Weron (2002), so that we use the 
length υ equal to the power of a set integer value (the method is based on the theory of multiplicative cascades 
which are used for a construction of fractal time series, for more details see Lux, 2007, and Borland et al., 2005). 
Thus, we set a basis b and a maximum power pmax so that we get sub-periods of length max2 ,...,, pbbb=υ  and 
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• Step 10: We get average rescaled ranges (R/S)υ for corresponding sub-interval lengths 

υ. Rescaled range then scales as15 

( ) HcSR υυ ∗≈/ ,     (2.8) 

where c is a positive finite constant independent of υ (Taqqu, Teverovsky & Willinger, 

1995).  

The linear relationship in double-logarithmic scale indicates the power scaling 

(Weron, 2002). To uncover the scaling law, we use a simple ordinary least squares regression 

on logarithms of each side of the previous equation. We suggest using logarithm with basis 

equal to b. Thus, we get 

( ) υυ bbb HcSR loglog/log +≈ ,    (2.9) 

where H is Hurst exponent.  

2.1.2 Comments 

Before we turn to the most problematic issues of R/S analysis, we present several 

recommendations of the use of optimal scales. Since the R/S analysis is based on range 

statistic (equation 2.4) and standard deviation (eqaution 2.5), the estimates of Hurst exponent 

can be biased. At low scales, sample standard deviation can strongly bias the final rescaled 

range as e.g. the standard deviation based on two observations can be equal to zero (for two 

same values) which implies infinite rescaled range. On the other hand, range statistic is very 

sensitive to outliers and its estimate can strongly bias the final rescaled range at high scales as 

the outliers are not averaged out (equation 2.8) as it is case at low scales (Di Matteo, 2007). 

Millen & Beard (2003) propose to use a minimum scale of at least 10 observations and a 

maximum scale of a half of the time series length. Weron (2002) suggests using a minimum 

scale of at least 50 trading days. However, Weron notes that if the time series is as short as 

256 trading days, it is more suitable to use a minimum scale of 16 trading days as the 

estimates of Hurst exponent based on only three averaged rescaled ranges are quite volatile. 

Let us now turn to the issues of R/S analysis. 

As the R/S analysis is known for a long time, it has been a subject to a lot of testing 

and criticism. The method is mostly criticized for its problematic use for heteroskedastic time 

series (Di Matteo, 2007) and for the series with short-term memory (Lo & MacKinlay, 1999; 

and Alfi et al., 2008). 
                                                                                                                                                         

Tb p ≤max . Moreover, we set a minimum power pmin because small sub-periods can strongly bias rescaled 
range (Peters, 1991a). After implementation of pmin, we get max1minmin ,...,, ppp bbb +=υ . 
15 See DiMatteo, 2007 
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The complicated use for heteroskedastic time series which is due to use of sample 

standard deviation (see equation 2.5) together with a filtration of a constant trend (see 

equation 2.3) makes R/S analysis sensitive to non-stationarities in the underlying process.  

Dealing with the non-stationarity problem means to move R/S analysis closer to detrended 

fluctuation analysis (DFA) methodology which we discuss later in the chapter. In this 

approach, one filters the profile not just from a constant trend but also from a trend of higher 

polynomials as linear and quadratic. However, the approach is not used in the literature and 

authors prefer methods which are developed for non-stationary time series such as already 

mentioned DFA (Peng et al., 1994). To deal with short-term dependence in the time series, 

modified rescaled range (M-R/S) is the mostly used technique. 

M-R/S presented by Lo (1991) differs only slightly from the original R/S and that is in 

the calculation of 
nIS . Nevertheless, it deals with both heteroskedasticity and short-term 

memory by modified definition of standard deviation. The new equation (compare with 

equation 2.5) is defined with a use of auto-covariance γ of the selected sub-interval In up to 

the lag ξ as follows 

∑
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Thus, R/S turns into a special case of M-R/S with 0=ξ  (Dülger & Ozdemir, 2005). 

The most problematic and also the crucial issue of the new standard deviation measure is the 

number of lags which are used for its estimation (Wang et al., 2006). If the chosen lag is too 

low, it omits lags which may be significant and therefore still biases estimated Hurst exponent 

by the short-term memory in the time series. On the other hand, if the used lag is too high, the 

finite-sample distribution (which is the case of the samples we use) deviates significantly 

from its asymptotic limit (Teverovsky, Taqqu & Willinger, 1999). 

There are two estimators of optimal lag suggested in the literature16. The first one 

proposed by Lo (1991) and Andrews (1991) is the more complicated and still the most used 

one. The optimal lag is based on the first-order autocorrelation coefficient ( )1ρ̂ : 

( )
( )( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
⎟
⎠
⎞

⎜
⎝
⎛=∗

3
2

2

3
1

1ˆ1
1ˆ2

2
3

ρ
ρυξ      (2.11) 

                                                 
16 Note that majority of authors does not deal with the optimal lag choice and set several different lags which 
they use and examine the differences of the results (e.g. Zhuang, Gree & Maggioni, 2000; and Alptekin, 2006).  
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The second one by Chin (2008) is based on the length of the sub-interval only and sets 

the optimal lag as 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=∗ 9

2

100
4 υξ .      (2.12) 

Note that optimal lag ξ* is recalculated for each length of specific sub-period υ. 

Optimal lags for different sub-period lengths are shown in Chart 2-1. 

 

0

5

10

15

20

25

30

1 10 100 1000 10000 100000

sub-period lenght

op
tim

al
 la

g

Lo0.1 Lo0.2 Lo0.3 Chin
 

Chart 2-1 Comparison of different optimal lags for M-R/S 
“Lo0.1”, “Lo0.2” and “Lo0.3” stand for the first method with serial 
autocorrelations 0.1, 0.2 and 0.3, respectively, and “Chin” stands for the second 
method. 

 
 The method based on serial autocorrelations differs significantly with the changing 

correlations. In the case of low serial autocorrelations around 0.1, ξ* is lower than the other 

method up to 162=υ . However, if serial autocorrelation is doubled to 0.2 or even increased to 

0.3, the differences between suggested lags ξ* become significant. Couillard & Davison 

(2005) and Teverovsky, Taqqu & Willinger (1999) show that M-R/S is biased towards 

rejecting any long-term memory in the process when high number of lags is used17. It implies 

that in the case of significant short-term memory in the process, the method of Lo would lead 

to biased estimates of H. Moreover, if the short-term memory is not significant or low, the 

method of Lo does not significantly differ from the method of Chin. It is visible from Chart 2-

1 that for sub-period lengths up to 500, which is the highest one used in the applied part of the 

thesis, there is no difference between both methods with the autoccorelation of 0.2 and only a 

difference of one lag for the autocorrelation of 0.3. Therefore, the use of rather complicated 

                                                 
17 Method of Lo (1991) sets the optimal lag correctly only if the underlying process is AR(1) (Andreou & 
Zombanakis, 2006). 
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version with serial autocorrelations does not differ significantly for the most used time series 

lenghts. Furthermore, for the purposes of simulations which are performed in Section 3.2, the 

use of the method of Lo would not lead us to strong results as the first order auto-correlation 

of an independent process is equal to zero, the suggested optimal lag would be zero as well 

and M-R/S would turn to R/S. Hence, we stick to the method of Chin (2008). 

The problem of choosing the correct lag can be partly overcome by short-term 

memory filtration (Peters, 1994). It is suggested to apply AR(1) on original (integrated) time 

series and then follow all steps of original procedure with the residuals of the estimated 

autoregressive process. However, two issues of this procedure can be questioned. The 

problem of setting the right lag appears again. AR(1) does not need to be satisfying for short-

term memory filtration. Moreover, ARIMA(p,1,q) procedure can be applied as well. 

Moreover, application of any ARIMA(p,1,q) procedure on long time series ( 10000>T ) can 

be misleading or can be inefficient as a chance that the process retains its features (in sense of 

estimated ARIMA(p,1,q) coefficients) for such a long period is rather small (Mills, 1990). 

Moreover, the use of any filtration on original data before any procedure is applied can 

bias the results to the point where there is no possibility to interpret them. The most 

problematic part is the fact that short-term and long-term memory processes cannot be 

perfectly separated on the basis of estimation as even a little bias in estimated coefficients can 

lead to significant break of long-term memory structure. Let us now turn to the method which 

is resistant to the non-stationarities in the time series – detrended fluctuation analysis.    

2.2 Detrended fluctuation analysis (DFA) 

Detrended fluctuation analysis was firstly proposed by Peng et al. (1994) while 

examining series of DNA nucleotides. Compared to the R/S analysis examined above, the 

DFA focuses on fluctuations around trend rather than a range of signal. Therefore, DFA is 

easily used for non-stationary time series, contrary to R/S and M-R/S. Let us describe the 

procedure of DFA and discussion of its properties in the following subchapters. 

2.2.1 Procedure 

 Starting steps of the procedure are the same as the ones of R/S analysis (Step 1 to Step 

4 of Section 2.1.1) as the whole series is divided into non-overlapping periods of length υ 

which is set on the same basis in the mentioned procedure (see Step 2 of Section 2.1.1). The 

following steps are based on Grech & Mazur (2005): 
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• Step 5: A polynomial fit Xυ,l of the profile is constructed for each sub-period In. The 

choice of order l of the polynomial is rather a rule of thumb. However, a linear or a 

quadratic trend is usually enough and higher degrees of polynomial do not add any 

significant information as of a behavior of Hurst exponent (Vandewalle, Ausloos & 

Boveroux, 1997). The procedure is then labeled as DFA-0, DFA-1 and DFA-2 for a 

constant, a linear and a quadratic trend filtering, respectively (Hu et al., 2001). 

• Step 6: A detrended signal Yυ,l is then constructed as 

( ) ( ) ( )tXtXtY l ,., υυ −= .    (2.13) 

• Step 7: Fluctuation FDFA(υ,l) is calculated as 

( ) ( )∑
=
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lDFA tY
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1

2
,

1, υυ .    (2.14) 

• Step 8: FDFA then scales as follows18 

( ) ( )lH
DFA clF υυ *, ≈ ,    (2.15) 

where again c is a constant independent of υ.  

We then run the ordinary least squares regression on logarithms and estimate Hurst 

exponent H(l) for set l-degree of polynomial trend in same way as for R/S and M-R/S (see 

equation 2.9) as 

( ) ( ) υυ bbDFAb lHclF loglog,log +≈ ,   (2.16) 

where H(l) is Hurst exponent for particular degree of polynomial used for the filtration. 

2.2.2 Comments 

DFA, as mentioned above, can be based on different polynomial fits. Moreover, trend 

can be constructed on a basis of Fourier transforms (Chianca, Ticona & Penna, 2005), 

empirical mode decomposition (Jánosi & Müller, 2005), singular value decomposition 

(Nagarajan, 2006), different types of moving averages (Alessio et al., 2002) and others. 

However, polynomial fit remains the most used method (Oh, Kim & Um, 2006; and Morariu 

et al., 2007). 

As DFA is still quite a new technique, there is not as much statistical testing available 

in recent literature. The most applied work on the use of DFA in financial time series is 

connected with Dariusz Grech and his colleagues (Grech & Mazur, 2004, 2005 and 

Czarnecki, Grech & Pamula, 2008). However, these papers do not provide much statistical 

background. 
                                                 
18 See Weron (2002). 
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Grech & Mazur (2004) state one needs to be careful when choosing the optimal length 

of the time series investigated as well as the maximum scale υmax. Authors propose to use the 

scale of 55 T<<υ . Moreover, a proposition of a method for choosing an optimal T is made. 

For a concrete time series (DJI30 in their paper), one should apply DFA procedure on several 

segments of the time series while using a range of scales. Authors chose 500 segments and 

300140 << T . Then, optimal T is chosen on the basis of minimum standard deviation of 

estimated H. Moreover, authors provide a measure of statistical uncertainty which is defined 

as ( ) ( )HHE TT σ̂  and used for optimal scale choice as well. The optimal T is chosen as the 

one of a local minimum of standard deviation of H as well as of the statistical uncertainty. 

However, the choice of the optimal T still seems quite random as there are several local 

minima and there is no strong argument why the exact one was chosen. Nevertheless, authors 

propose to use 230190 ≤≤ T . Furthermore, the choice of DJI30 as a benchmark seems 

questionable as the analysis does not provide clear threshold for a time series still being 

treated as an independent process as we can’t say whether DJI30 behaves independently or 

not.  

Other authors deal with an optimal time scale as well. Matos et al. (2008) propose to 

use 4max T≈υ , while Alvarez-Ramirez, Rodriguez & Echeverria (2005) go further while 

proposing a minimum range as well – 5min ≈υ and 4max T≈υ . Very similarly, Einstein, Wu & 

Gil (2001) propose to use 4min ≈υ and 4max T≈υ . Quite thorough analysis of DFA is 

presented in Weron (2002)19 who proposes to use 10min ≈υ  for short time series of 256 or 

512 observations and 50min ≈υ  for longer ones. However, the author did not provide any 

suggestion of maximum scale and used all scales up from the minimum one for his estimates. 

Finally, Kantelhardt (2008) proposes to use 4max T≈υ  and suggests being very cautious for 

small ranges as they can significantly overestimate the resulting Hurst exponent. We proceed 

with interconnection between Hurst exponent, efficient and fractal markets hypothesis.  

2.3 EMH, FMH and Hurst exponent 

Hurst exponent has two properties which are important for the description of the 

market and its type – value and stability. Let us start with its stability which is not much 

discussed in the literature and then, we turn to implications of its value. 

                                                 
19 Weron (2002) is more discussed in Section 3.3. 
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Stability of Hurst exponent is connected with the fact that a process is self-similar only 

when H is well defined. However, Hurst exponent can be only estimated and therefore, we 

cannot be sure whether the estimated value is actually the true one (Jagric, Podobnik & 

Kolanovic, 2005). Nonetheless, the stability of H can be examined on the basis of its 

characteristic values – rescaled ranges or fluctuations – as if the value is significantly higher 

for a specific scale, it represents the optimal investment horizon (Lo, 1991). However, the 

existence of optimal investment horizon contradicts both EMH and FMH. Efficient markets 

are challenged because optimal investment horizon implies potential predictability of the 

market. For fractal markets hypothesis, optimal investment horizon implies that self-similar 

structure of the market breaks down and therefore, the market can turn into a spiral. However, 

as we show in Section 3.4, we concentrate on time-dependent Hurst exponent (e.g. Grech & 

Mazur, 2005) for which the examination of different scales solely is not possible. Hence, we 

focus on significant changes in values of Hurst exponent as such a change implies significant 

shift of rescaled ranges or fluctuations at either low or high scales. 

As for the values of Hurst exponent, there are several crucial implications. If H is 

equal to 0.5, the random walk (Definition 1-10) is implied (Karytinos, Andreou & Pavlides, 

2000). Therefore, if we arrive at the value of H of 0.5, we have weakly efficient market of 

F65 type. Moreover, we know from (1.10) that such process has defined and finite second 

moment and thus finite variance which imlies martingale process as well which in turn 

indicates efficient market of S65 type. Let us now turn to more interesting cases – persistent 

and anti-persistent process. 

Persistent process is characterized by Hurst exponent significantly higher than 0.5 and 

implies rejection of independence which in turn rejects random walk and consequently 

efficient market of F65 type (Embrechts & Maejima, 2002). However, the value of 

121 << H  implies 21 << α  which, as it was mentioned in Section 1.1, in turn indicates 

undefined or infinite variance. Such a result implies that also a square root of variance is 

infinite or undefined and thus martingale process is not present which leads to rejection of 

market efficiency of S65 type (Los, 2008). 

On the other hand, anti-persitent processes do not lead to such strong implications. 

Even though the random walk and thus efficiecy of F65 type is rejected in the same way as 

for persistent process (Embrechts & Maejima, 2002), the situation is not so clear for S65 type. 

Hurst exponent which is in interval 210 << H  implies ∞<< α2  and thus the underlying 

distribution is not stable. However, the non-stable distributions are not well examined yet and 
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there is only little literature focusing on them. Nonetheless, the crucial implication which is 

clear from the literature is that the process based on a non-stable distribution is not 

independent with identically distributed innovations (Der & Lee, 2006) and thus F65 

efficiency is rejected. On the other hand, non-stable distributions were shown to have finite 

variance and thus S65 efficiency cannot be rejected (Da Silva et al., 2005). 

To be able to test the hypothesis of either F65 or S65, we need to estimate expected 

values and standard deviations for each method so that critical values can be calculated. The 

estimates are presented in the following chapter. 
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Chapter 3 Finite sample properties of R/S, M-R/S and DFA 
 

 

“I didn’t think; I experimented” 
 

Anthony Burgess 
 

 

The procedures presented in previous chapter work well only for very long (more than 

10000 observations) or infinite time series (Weron, 2002). However, the financial time series 

are usually much shorter and we would need at least forty years of daily prices to reach the 

mentioned threshold. Moreover, we use time-dependent Hurst exponent and thus we would 

need much longer time series to be able to uncover the underlying dynamics. However, only 

several authors deal with the problem of finite samples and their properties (e.g. Grech & 

Mazur, 2005; and Weron, 2002). 

In this chapter, we present the recent findings presented in the research papers for all 

described methods – R/S, M-R/S and DFA methods of different degree of detrending (DFA-0, 

DFA-1 and DFA-2). Moreover, we present our original results for different time series 

lengths. The crucial distinction of our procedure is the use of a minimum scale of 16 trading 

days and a maximum scale of one quarter of the time series length. The application of such 

scales is based on propositions presented in Section 2.1.2, Section 2.2.2 and results which are 

presented in Chapter 4.  

3.1 R/S analysis 

For the R/S analysis, we depict the results presented in recent research papers 

(Couillard & Davison, 2005; Weron, 2002; and Peters, 1994) and then, we turn to the results 

of our simulations. Note that we provide such division for R/S only as there are only several 

papers concerning M-R/S and DFA. 

3.1.1  Recent results 

R/S analysis has one significant advantage compared to the other methods – as it is 

known and tested for over 50 years, the methods for testing have been well developed and 

applied (Peters, 1991b). 
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The condition for a time series to reject long-term dependence is that 5.0=H 20. 

However, it holds only for infinite samples and therefore is an asymptotic limit. The 

correction for finite samples is thoroughly tested in Couillard & Davison (2005). There are 

two methods used and both are based on estimating theoretical ( )υSR / . 

The first method is the one of Anis & Lloyd (1976), which we note AL76, and states 

the expected value of rescaled range as21 
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Peters (1994) proposes “empirical correction”, which we note P94 and defines 

expected rescaled range as 
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Peters (1994) argues that AL76 overestimates rescaled ranges for small υ. That is why 

he added ( ) υυ 212 −  into equation to make it fit better the real data for small υ22. Moreover, 

the gamma functions ( )•Γ  were substituted by υ2  as when beta function ( )•Β 23 is used as 

a substitute of gamma function and Stirling’s approximation is applied, Peters obtains 

( )( ) ( ) υυυ 2221 ≈Γ−Γ . It is needed to mention that Peters used an approximation of an 

approximation when stating the equality. The exact application of Stirling’s approximation 

yields ( )( ) ( ) ( )12221 −≈Γ−Γ υυυ  (Boisvert et al., 2008)24.  

However, Couillard & Davison (2005) tested the assertion and came up with different 

results – AL76 estimates rescaled range for small samples ( 500<υ ) much more accurately 

and underestimates rescaled range for large samples ( 500>υ ) compared to P94. Note that 

the underestimation is insignificant. 

Authors also tested the asymptotic standard deviation of H (we use the same 

notation ( )Hσ̂ ) which is essential for hypothesis testing. They argue that the Peters’ statement 

that ( ) TH 1ˆ ≈σ  is again only an asymptotic limit and is significantly biased for finite 
                                                 
20 See Section 1.1 and Section 1.2.1. 
21 For theory about gamma function ( )•Γ , see Appendix. 
22 Peters further proposes to use the minimum range of 10 trading days which in our case turns to 16 trading days 
as it is the first higher power of base 2. 
23 For theory about beta function ( )•Β , see Appendix. 
24 For detailed transformation and features of gamma and beta functions, see Appendix. 
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number of observations and come to new estimate based on simulations up to 10000=T . The 

estimate states that standard deviation of H behaves as ( ) 31ˆ TeH ≈σ .  

Unfortunately, Couillard & Davison (2005) only tested the estimators up to 1000=υ  

and standard deviations up to 10000=T . However, the time series are often much longer25. 

Therefore, we present the results of our original simulations in following subchapter.   

3.1.2 Original results 

We performed original test26 for time series lengths from 92512 ==T  up to 
172131072 ==T . The lengths of the time series were chosen with respect to the fact that the 

time series of lower lengths were shown to be rather volatile (Weron, 2002). For purposes of 

the thesis, the need for an estimator of a standard deviation of Hurst exponent and the 

exponent itself is much more urgent than the estimators of rescaled ranges. Therefore, the 

simulations are performed for ( )HE  and ( )Hσ̂  only. 

All steps of R/S analysis on 10000 time series drawn from standardized normal 

distribution ( )1,0N  for 51229 ==T  up to 131072217 ==T  were performed. ( )HET  and 

( )HTσ̂  were estimated for each T27,28. 

Nonetheless, R/S estimators were tested against empirically obtained ( )HET . We 

compared the simulated H with the ones estimated by AL76, P94 and corrected P94 procedure 

which is based on exact Stirling’s approximation. We call the corrected procedure P94c 

further on. AL76 contained gamma functions up to 25628 ==υ  and approximation for 

higher ones29. ( )HET  was obtained from rescaled ranges by log-log regression according to 

the power law mentioned in the Step 10 and below of R/S analysis in Section 2.1.  

The results for estimated H based on AL76, P94 and P94c are summed in Table 3-1. 

 
 
                                                 
25 High-frequency time series can often contain over 100000 observations. 
26 All simulations and estimations were run on TSP 5.0. 
27 Hurst exponent was estimated by log-log regression according to the standard procedure. Approach used in 
majority of literature was applied here as well – averaged rescaled ranges applied in the regression were the ones 
for 24 22 −≤≤ Tυ . The logic behind this step is rather intuitive – very small scales can bias the estimate as standard 
deviations are based on very few observations; on the other hand, large scales can bias the estimate as outliers or 
simply extreme values are not averaged out (Peters, 1994). For details, see crossover detection section for all 
tested indices in Chapter 4 or only Section 4.6 for comments. 
28 Weron (2002) simulated the time series for R/S and found out that the minimum scale of 16 trading days is not 
enough and proceeds with a minimum range of 64 trading days. However, we show further in the text that the 
omission of the highest scales is more important. 
29 This method is used because the problem that was already tackled by Peters (1994) is still valid – gamma 
function for high values of υ can still cause problems to modern analytical software. 
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Table 3-1 Comparison of Anis & Llloyd’s and Peters’ formula for long series 

T AL76 P96 P96c 
512 0,5686 0,5992 0,5858 

1024 0,5611 0,5833 0,5729 
2048 0,5513 0,5708 0,5624 
4096 0,5455 0,5607 0,5540 
8192 0,5411 0,5525 0,5470 

16384 0,5361 0,5458 0,5412 
32768 0,5318 0,5402 0,5363 
65536 0,5282 0,5356 0,5322 

131072 0,5254 0,5316 0,5287 

 
We can see that all estimates are converging to 0.50 with increasing T which is as 

expected. Note that we don’t get very close to asymptotic H even for very high T. However, 

we can’t really say much about estimated Hurst exponents without the simulations. 

The results for ( )HET , ( )HTσ̂  and corresponding descriptive statistics together with 

Jarque-Bera test (Jarque & Bera, 1981) for normality are summed in Table 3-2, probability 

functions are showed in Chart 0-1 in Appendix. 

 
Table 3-2 Descriptive statistics of simulated of H for R/S 

 512 1024 2048 4096 8192 16384 32768 65536 131072 
mean 0,5763 0,5647 0,5570 0,5494 0,5430 0,5380 0,5338 0,5296 0,5267 

SD 0,0551 0,0404 0,0310 0,0246 0,0199 0,0162 0,0138 0,0118 0,0102 
skewness 0,0104 0,0003 -0,0231 -0,0316 -0,0223 -0,0331 -0,0329 0,0068 -0,0762 

excess kurtosis -0,1316 0,0730 -0,0595 -0,0567 0,0220 -0,0271 0,0136 -0,1108 0,0237 
JB statistic 7,4569 2,1800 2,3895 3,0314 1,0196 2,1440 1,8737 5,2405 9,9080 

p-value 0,0240 0,3362 0,3028 0,2197 0,6006 0,3423 0,3919 0,0728 0,0071 

 
We can see that estimates of Hurst exponent are not equal to 0.5 as predicted by 

asymptotic theory. Therefore, one must be careful when accepting or rejecting hypotheses 

about long-term dependence present in time series solely on its divergence from 0.5. This 

statement is most valid for short time series. Chart 3-1 presents the idea together with 

estimations of H based on AL76, P94 and P94c. However, the Jarque-Bera test rejected 

normality of Hurst exponent estimates for time series lengths of 512, 65536 and 131072 and 

therefore, we should use percentiles rather than standard deviations for the estimation of 

confidence intervals (Weron, 2002). Nevertheless, the differences for mentioned estimates not 

normally distributed are only of the order of the tenths of the thousandth and therefore, we 

present confidence intervals based on standard deviations for R/S. 



Chapter 3    Finite sample properties of R/S, M‐R/S and DFA 
 

 30  

0,4500

0,5000

0,5500

0,6000

0,6500

0,7000

512 1024 2048 4096 8192 16384 32768 65536 131072

T

H
ur

st
 e

xp
on

en
t

E(H) Upper CI Lower CI AL76 P96 P96c  
Chart 3-1 Simulated Hurst exponents with confidence intervals (R/S) 
Hurst exponent estimation on simulated random series shows very broad 
95% confidence intervals for short time series. AL76 outperforms P94 and 
P94c for all time series lengths. 

 
From the chart, we can see that 95% confidence intervals are quite wide for short time 

series. Even if time series of 512 observations yields H equal to 0.65, we can’t reject the 

hypothesis of a martingale process. Specific values are present in Table 3-3. The table shows 

that AL76 outperforms (measured by mean squared error - MSE30) both P94 and P94c. 

Interestingly, P94c strongly outperforms P94. Nonetheless, we suggest AL76 for expected 

value of H for different T than we have tested here. 

 
Table 3-3 Simulated Hurst exponents compared with predicted ones for R/S 

 512 1024 2048 4096 8192 16384 32768 65536 131072 MSE 
E(H) 0,5763 0,5647 0,5570 0,5494 0,5430 0,5380 0,5338 0,5296 0,5267 

Upper CI 0,6843 0,6438 0,6178 0,5977 0,5820 0,5698 0,5608 0,5528 0,5466 
Lower CI 0,4684 0,4856 0,4962 0,5011 0,5040 0,5062 0,5068 0,5065 0,5069 

 

AL76 0,5686 0,5611 0,5513 0,5455 0,5411 0,5361 0,5318 0,5282 0,5254 0,000015 
P96 0,5992 0,5833 0,5708 0,5607 0,5525 0,5458 0,5402 0,5356 0,5316 0,000160 

P96c 0,5858 0,5729 0,5624 0,554 0,547 0,5412 0,5363 0,5322 0,5287 0,000028 

                                                 
30 Mean squared error is defined as an average of squared deviations from estimated value for each time series 
length. 
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Standard deviations of Hurst exponent ( )HTσ̂  were also tested and compared with the 

estimations of Peters (1994) and Couillard & Davison (2005). Just for reminder, authors 

propose that ( ) TH 1ˆ ≈σ  and ( ) 31ˆ TeH ≈σ , respectively. Chart 3-2 shows the differences 

between predicted and simulated values31. 
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Chart 3-2 Standard deviation of Hurst exponent for R/S 

“simulated SD” marks standard deviations based on our simulations, “E(SD) – IS” 
stands for an expected standard deviation of an infinite sampe from Peters (1994), 
“E(SD) – FS” stands for an expected standard deviation of a finite sample from 
Couillard & Davison (2005) and “linear fit” marks the ordinary least squares fit on 
double logarithmic scale. 

 
Both estimators underestimate expected standard deviation ( )HTσ̂ . The estimator for 

infinite sample underestimates ( )HTσ̂  more strongly. Therefore, we present new estimate of 

standard deviation, which is presented in Chart 3-2 as a solid line, as ( ) 3.01ˆ TH πσ ≈ . 

Comparison of methods together with MSE is presented in Table 3-432. 

 
Table 3-4 Comparison of standard deviations for R/S 

 512 1024 2048 4096 8192 16384 32768 65536 131072 MSE 
mean 0,5763 0,5647 0,5570 0,5494 0,5430 0,5380 0,5338 0,5296 0,5267 

SD 0,0551 0,0404 0,0310 0,0246 0,0199 0,0162 0,0138 0,0118 0,0102 
 

E(SD) – IS 0,0442 0,0313 0,0221 0,0156 0,0110 0,0078 0,0055 0,0039 0,0028 0,000077
E(SD) – FS 0,04598 0,0365 0,02897 0,02299 0,01825 0,01448 0,0115 0,00912 0,00724 0,000015
E(SD) - AFS 0,04899 0,03979 0,03232 0,02625 0,02132 0,01732 0,01407 0,01143 0,00928 0,000005

 
New method for estimation of expected standard deviation of Hurst exponent is three 

times more efficient than one of Couillard & Davison (2005) and fifteen times more efficient 

than one of Peters (1994) and therefore, we suggest it for estimation of ( )HTσ̂  for any T from 

the tested interval and based on same procedure33. 

                                                 
31 Chart is presented as a log-log plot for more visible differences. 
32 E(SD) – AFS for an adjusted expected standard deviation of a finite sample.  
33 Different procedure can yield rather different results. For example, Weron (2002) estimates Hurst exponent 
using rescaled ranges for scales of at least 50 trading days but does not restrict scales from the top which results 
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Moreover, we have shown that a combination of a minimum scale of 16 trading days 

with a maximum scale of a fourth of the time series length yields Hurst exponent value which 

is very close to all AL76, P94 and P94c methods with standard deviations almost twice lower 

than those of Weron (2002). Therefore, it implies that omitting of high scales is more 

important and efficient than omitting of scales of 16 and 32 trading days for R/S analysis. 

As an implication, we propose AL76 method for an estimation of expected value of H 

with our estimate of standard deviation for a construction of confidence intervals for the real 

world analysis in Chapter 4. Let us follow with M-R/S. 

3.2 M-R/S analysis 

M-R/S analysis is rather different from R/S analysis when the applications are 

compared. R/S analysis is usually based on estimation of Hurst exponent itself (Mandelbrot, 

1970). On the other hand, only V statistics34 is usually constructed for a specific investment 

horizon (scale in our case) and compared to critical values constructed by Lo (1991) in the 

case of M-R/S. The same procedure is then applied in several research papers – e.g. Eitelman 

& Vitanza (2008); Berg & Lyhagen (1998); Lillo & Farmer (2004); and Zhuang, Green & 

Maggioni (2000). However, this procedure can be hardly used for a sliding window as we 

would get multi-dimensional results which would be rather difficult to interpret. Therefore, 

we propose to simply use estimates of H based on M-R/S.  

To make the results robust, we take the same path as for R/S and simulate the same 

random time series35. Unfortunately, there are no theoretical estimates of modified rescaled 

range itself and therefore, we must stick to simulated estimates only. Note that we use the 

method of Chin (2008), which was presented in Section 1.1.2, for estimation of optimal lag as 

it is the only method which bases the optimal lag on sub-period length only compared to the 

method of Lo (1991) which is based on autocorrelations which would imply zero optimal lag 

and would turn M-R/S into R/S and the simulations would be of no additional information. 

The descriptive statistics for simulated random time series are summed in Table 3-5. 

There are several interesting results. The estimates of H based on M-R/S are obviously lower 

                                                                                                                                                         
in standard deviations almost twice a value of estimates presented in this thesis. Furthermore, the author 
proposes the estimates for the time series length of 256 and shows 95% confidence intervals which are almost 
equal extreme values of 0.2 and 0.8 for lower and upper confidence interval for the null hypothesis of 
independence. This implies that if the same procedure is used for the real world time series of a length of 256 
trading days, the interpretation is very close to imposible.   
34 See Section 3.4 for details about V statistics. 
35 We again simulated Hurst exponent for 10000 random time series drawn from standardized Gaussian 
distribution for minimum time series length of 29 and maximum one of 217. The minimum and maximum scales 
are set accordingly to R/S. 
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than those based on R/S. This finding suggests that one must be cautious when making 

conclusions based on comparison of Hurst exponents based on those two methods only. 

Moreover, standard deviations of estimates based on M-R/S are lower than the ones of R/S 

method and therefore, the estimates are more stable. On the other hand, distributions of Hurst 

exponent estimates are not normal for almost all lengths of the time series and therefore, we 

must stick to percentiles rather than standard deviation for the estimation of confidence 

intervals. The distributions are illustrated in Chart 0-1 in Appendix. 

 
Table 3-5 Descriptive statistics of simulated of H for M-R/S 

 512 1024 2048 4096 8192 16384 32768 65536 131072 
mean 0,5393 0,5365 0,5337 0,5304 0,5278 0,5245 0,5223 0,5198 0,5182 

SD 0,0485 0,0360 0,0284 0,0233 0,0192 0,0161 0,0139 0,0117 0,0101 
skewness -0,1088 -0,1048 -0,0393 -0,0693 -0,0824 0,0061 -0,0619 -0,0077 -0,0317

excess kurtosis 0,1919 0,0933 -0,0930 0,1823 0,0068 -0,0187 0,0282 0,1272 -0,0317
JB statistic 34,9582 21,8861 6,2216 21,7428 11,3207 0,2170 6,7039 6,7651 2,1094 

p-value 0,0000 0,0000 0,0446 0,0000 0,0035 0,8972 0,0350 0,0340 0,3483 

 
As the simulated estimates are not normally distributed, we do not present any fits for 

estimated standard deviation as their use would not be of any help. However, we present the 

confidence intervals based on percentiles36 and show them together with confidence intervals 

for H based on R/S for comparison in Chart 3-3. 

 
Chart 3-3 Comparison of confidence intervals of simulated Hurst exponents based on R/S and M-R/S 
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The most obvious result is the fact that the estimates of M-R/S are lower than those of 

R/S. The difference is more profound for upper confidence interval and is very broad at lower 

scales which in turn shows that R/S overestimates H much more than M-R/S while the 

statement is more valid for lower scales. 

                                                 
36 We present 95% confidence intervals and therefore we use 2,5% and 97,5% percentile. 
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As M-R/S has no theoretical models of expected rescaled ranges, we can only 

construct fits for confidence intervals. Nevertheless, we can provide the expected value of H 

as well. Therefore, we provide estimates for 95% two-tailed confidence intervals together 

with expected value of H37: 

( ) 075.0

6361.0
T

THUCI =      (3.3) 

( ) 0519.0

4480.0
T

TH LCI =      (3.4) 

( )[ ] 0189.0

5424.0
T

THE =      (3.5) 

Note that expected Hurst exponent decays rather slowly and does not reach a value of 

0.50 up to very high time series lengths. Nevertheless, we propose the use of above mentioned 

estimates for the detection of significant long-term memory with short-term memory present 

as well and the usage of both R/S and M-R/S for comparison. We present the implications of 

the comparison between the methods in Section 3.4. 

3.3 DFA 

As DFA is still quite a new technique, there have been only several research papers 

concerning its finite sample properties. Let us introduce them.  

Grech & Mazur (2005) tested time series of lengths from 100 to 100000 and for each 

one ran 65000 simulations. In their paper, they present results of DFA-1 for the time series of 

lengths of 1000, 10000 and 30000 with expected values of H close to 0.50 (0.500, 0.499 and 

0.499, respectively) and low standard deviations (0.043, 0.024 and 0.016, respectively). 

Unfortunately, the authors do not provide any further statistics or tests for normality of Hurst 

exponent estimates and thus the usefulness of standard deviations for the construction of the 

confidence intervals might be problematic. More questionably, the authors take only the 

estimates of H which have yielded R2 higher than 0.98 into consideration. Therefore, the 

estimates are only useful for “nicely” behaving estimates of fluctuations F as the “wrongly” 

behaving ones are not taken into consideration. Furthermore, there is no ratio of rejected 

estimates provided which might be useful. Therefore, the question what to do with the results 

which do not fall into “nicely” behaving category remains unanswered. 

Weron (2002) ran 10000 simulations of DFA-1 on random time series of lengths from 

256 to 65536 with minimum scales of 16 and 64. The results show the expected values of H 

                                                 
37 Upper confidence interval, lower confidence interval and expected H, respectively 
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again very close to 0.5 with low standard deviations. As mentioned earlier, the author set no 

restriction on the highest scales. The standard deviation is lower for the lower minimum scale 

for the time length of 256 which shows that estimations of H based on only three points yield 

rather volatile results.  

Unfortunately, there are no research papers dealing with finite sample properties of 

DFA-0 and DFA-2 or higher. Nevertheless, we ran new simulations for DFA-0, DFA-1 and 

DFA-2 based on similar procedure as for R/S such as the minimum range of 16 with the 

maximum scale of a quarter of the time series length (see Section 3.1). The standardized 

normal time series were simulated as they represent a constant trend and for linear and 

quadratic trend, the fact that they are not present in the time series makes no real difference as 

the methods are supposed to detect that. Probability functions for DFA-0, DFA-1 and DFA-2 

are presented in Chart 0-1 in Appendix. We present the results in following subchapters. 

3.3.1 DFA-0 

Results of simulations for DFA-0 are presented in Table 3-6. The expected value of H 

is very close to 0.5, actually it equals to 0.50 if rounded to hundredths for all time series 

lengths. Further, Jarque-Bera statistics rejects normality only for two lowest lengths which 

enables us to use standard deviations for estimation of confidence intervals38. We follow the 

simulations results with DFA-1 in the next subchapter. 

 
Table 3-6 Descriptive statistics of simulated of H for DFA-0 

 512 1024 2048 4096 8192 16384 32768 65536 131072 
mean 0,5027 0,5029 0,5017 0,5018 0,5013 0,5005 0,5008 0,5008 0,5003 

SD 0,0727 0,0532 0,0405 0,0318 0,0255 0,0213 0,0179 0,0153 0,0132 
skewness 0,0913 0,0416 0,0121 -0,0086 -0,0310 -0,0501 -0,0094 -0,0345 -0,0319 

excess kurtosis -0,0521 -0,0980 -0,0419 -0,0292 0,0419 -0,0078 -0,0402 0,0511 0,0233 
JB statistic 15,0477 6,9304 0,9973 0,4922 2,3244 4,2051 0,8411 3,0479 1,9134 

p-value 0,0005 0,0313 0,6074 0,7819 0,3144 0,1221 0,6567 0,2178 0,3841 

3.3.2 DFA-1 

The results of simulations for DFA-1 are summed in Table 3-7. We have very similar 

results to the ones of DFA-0 as expected values of H are between 0.50 and 0.51. The standard 

deviations are lower for DFA-1 than for DFA-0 which supports the fact that linear detrending 

does not significantly bias the estimates even though there are no trends in standardized 

normal series. The comparison of the standard deviations is presented in Section 3.3.4. 

                                                 
38 Estimates of standard deviations are not well described by log-log fit for short time series as shown in the 
section for R/S (Section 3.1) and M-R/S (Section 3.2). Moreover, the difference between confidence intervals 
based on standard deviations and percentiles (Weron, 2002) is of order of thousandths and thus insignificant. 
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Similarly to DFA-0, the estimated Hurst exponents are normally distributed with exception of 

two lowest time series lengths which enables us to use the standard deviations for estimation 

of confidence intervals. 

 
Table 3-7 Descriptive statistics of simulated of H for DFA-1 

 512 1024 2048 4096 8192 16384 32768 65536 131072
Mean 0,5079 0,5062 0,5040 0,5031 0,5025 0,5022 0,5020 0,5015 0,5013 

SD 0,0687 0,0500 0,0386 0,0304 0,0247 0,0202 0,0173 0,0149 0,0126 
skewness 0,1189 0,0630 0,0430 -0,0069 0,0053 -0,0258 -0,0398 -0,0227 -0,0323

excess kurtosis -0,0205 -0,0512 -0,0796 -0,0711 -0,0795 -0,0739 -0,0051 0,0109 -0,0919
JB statistic 23,7407 7,7276 5,7584 2,2171 2,7205 3,4246 2,6580 0,8990 5,3017 

p-value 0,0000 0,0210 0,0562 0,3300 0,2566 0,1804 0,2647 0,6379 0,0706 

 
If we compare the estimates of standard deviation with the ones of Weron (2002), our 

estimates are lower if compared to the ones with the same minimum scale as we use (16 

trading days) which implies that the omitting of the two highest scales makes the estimates 

less volatile. For the ones of the author which use 64 trading days as a minimum range, the 

estimates presented in the paper are more efficient with exception of the ones of the time 

series length of 512 trading days. Nevertheless, the real world data39 and the data with trend 

of a higher polynomial (Xu et al., 2005) show that the two highest scales can cause problems 

and bias the estimates. Let us follow with results for DFA-2. 

3.3.3 DFA-2 

We present the results for DFA-2 in Table 3-8. The results are in hand with previous 

findings. Hurst exponent estimates are slightly higher which was expected as DFA is 

supposed to overestimate the exponent if the method of a higher degree than the actual degree 

of trend is used. Standard deviations, on the other hand, are lower when compared to the ones 

of DFA-1. Moreover, there are again only two time series lengths for which the normality of 

the estimates is rejected. We follow with comparison of all tested DFA methods. 

 
Table 3-8 Descriptive statistics of simulated of H for DFA-2 

 512 1024 2048 4096 8192 16384 32768 65536 131072 
Mean 0,5141 0,5105 0,5080 0,5060 0,5048 0,5036 0,5031 0,5026 0,5022 

SD 0,0601 0,0428 0,0325 0,0255 0,0206 0,0171 0,0144 0,0121 0,0105 
Skewness 0,1184 0,0473 0,0318 0,0286 0,0334 0,0278 -0,0358 -0,0421 -0,0686 

excess kurtosis 0,0025 -0,0651 -0,0579 0,0367 0,0215 0,0401 -0,0465 0,0189 0,0297 
JB statistics 23,3699 5,5289 3,1048 1,9043 2,042 1,9362 3,0599 3,0943 8,1974 

p-value 0,0000 0,0630 0,2117 0,3859 0,3602 0,3798 0,2166 0,2129 0,0166 

                                                 
39 See crossover detection parts in Chapter 4. 
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3.3.4 Comparison of DFA methods 

The most important result is the fact that all methods yield estimates of Hurst exponent 

very close to 0.50 which is in hand with the results of other mentioned authors (Grech & 

Mazur, 2005; and Weron, 2002). However, it does not necessarily mean that DFA methods 

are superior to R/S analysis; it simply means that one must work with finite sample estimates 

of the methods and not with asymptotic limits. 

Nevertheless, all DFA methods showed that almost all of the estimates for various 

time series lengths are normally distributed which enables us to use standard deviation for the 

estimation of confidence intervals and therefore, these standard deviations can be used for 

other scales and time series length. However, one must keep in mind the specifics of the 

procedure we use. 

Chart 3-4 presents the estimated standard deviations of simulated time series40. We 

can see that the standard deviations of DFA-0 and DFA-1 are quite similar, whereas the ones 

of DFA-2 are clearly lower. 
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Chart 3-4Comparison of estimated standard deviations for DFA 
Double logarithmic plot shows that standard deviations of DFA-2 are much 
lower than ones of DFA-0 and DFA-1. Best exponential fits show the same 
dacay of 0.3 with increasing time series length.  

 
When we run the best linear fit to the presented log-log plot, we get the following 

results: 

( ) 3.0,0
4243.0ˆ
T

THDFA =−σ      (3.6) 

( ) 3.0,1
3912.0ˆ
T

THDFA =−σ      (3.7) 

                                                 
40 We again use log-log scale for better clarity. 
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( ) 3.0,2
3581.0ˆ
T

THDFA =−σ      (3.8) 

If we compare the estimates of standard deviations with the one of R/S in Section 3.1, 

we can see that all estimates of standard deviations decay at a rate of 0.3. However, such 

result does not imply any useful conclusions. Let us now move to the presentation of our 

original method. 

3.4  Time series examination procedure 

The theory of Hurst exponent estimation procedures in time series is based on 

asymptotic basis. However, infinite time series are not available for any real world 

phenomena. Moreover, most techniques work best with only weak trends or one trend at time. 

On the other hand, real world financial time series usually show strong trends or more trends 

at the same time (Peters, 1994). These effects can cause a change in scaling behavior at 

specific scale and estimates of Hurst exponent can be in turn strongly biased. The change of 

scaling behavior is called crossover and detection of the scale where it occurs is crucial for 

correct estimation of H. 

McKenzie (2002) proposes a statistic that was firstly used by Hurst to test stability of 

the exponent (Hurst, 1951) and further for M-R/S analysis by Lo & MacKinlay (1991) – V 

statistic defined as 

( )
υ

υ
υ

SR
V

/
= .      (3.9) 

 V statistic defines how rescaled range scales with increasing υ – V statistic is either 

constant for F65 and S65 efficient process or increasing for a persistent process or decreasing 

for an anti-persistent process. If the statistic behaves similarly for the whole tested period, we 

can see no crossovers and therefore the time series scales infinitely41. On the other hand, if the 

statistic changes its behavior (e.g. from increasing behavior to a decreasing or a constant one), 

a crossover is detected. Let us call the scale where the crossover is detected as a maximum 

scale υmax. The maximum scale is the highest one taken into consideration when estimating H 

as the inclusion of higher scales would bias the results. This procedure can be used for R/S 

analysis, modified R/S analysis and DFA as the procedure for estimating H is very similar in 

all three cases. 

                                                 
41 McKenzie (2002) and Peters (1994) uses V statistic to identify cycles in the time series – either periodic or 
non-periodic. However, detection of crossovers is in essence same to the identification of cycles. 
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 Therefore, there are three cases of maximum scales which imply used time series 

length for R/S, M-R/S and DFA: 

• Crossover is identified at 4maxmax T≤υ  and thus T is based on recommendations42 so 

that max4υ=T ; 

• Crossover is identified at 24 maxmaxmax TT ≤≤υ  and thus T is chosen as the highest 

one possible so that maxTT =  and 4maxmax T=υ ; 

• Crossover is not identified and thus T is chosen as the highest one possible and 

therefore maxTT = 43 and 4maxmax T=υ . 

Method of point to point derivatives of rescaled range or DFA fluctuation44 can be 

used as an additional detection tool (Bashan et al., 2008). However, this method is rather 

intuitive and there are no statistical tools developed. Therefore, we use it only as an additional 

tool if the results based on V statistics are not clear.  

After we estimate maximum scales and time series lengths for the methods, we start 

the examination with R/S analysis and therefore use maximum scale and time length proposed 

for R/S. Time-dependent Hurst exponent is constructed for the time series of length T with a 

sliding window procedure applied (e.g. Grech & Mazur, 2004; and Carbone, Castelli & 

Stanley, 2004). However, we do not use the sliding window to construct histograms followed 

by an interpretation (e.g. Bartalozzi et al., 2007) as this procedure is hard to defend when 

tackled on theoretical basis (McCauley et al., 2007 and McCauley, et al., 2008). We present a 

new method instead as we use the confidence intervals constructed in Section 3.1, Section 3.2 

and Section 3.3 and compare them to the estimates of the particular method. If the estimate of 

H based on R/S analysis is out of its confidence interval, the null hypothesis of the random 

walk, and thus F65 efficiency, is rejected. However, as R/S analysis can be biased by short-

term memory45, we compare the Hurst exponent estimates of M-R/S with its confidence 

intervals as well. If the long-term memory is rejected, there is short-term memory present. 

DFA methods are then used if the time series still shows long-term memory. If these methods 

reject long-term dependence, the series is strongly influenced by trends. In case that all 

methods imply that the time series is long-term dependent, we can reject the hypothesis of 

                                                 
42 Tmax is a number of observations and therefore maximal length of examined time series. 
43 The time series length is set as a highest power of set basis possible and thus the closest one to Tmax. Same 
procedure is applied for the previous case. 
44 Point to point derivative is a slope of a line connecting two neighboring points (rescaled ranges or DFA 
fluctuations in our case). 
45 See Section 2.1.2. 
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F65 efficiency46. It is crucial to use the methods in proposed sequence as DFA is also 

vulnerable to short-term memory in the underlying process as it overestimates H similarly to 

R/S (Morariu et al., 2007).  

Note that possibility of R/S analysis to be biased by short-term memory process is 

actually an advantage of the method since we have shown in Section 1.1 that H equal to 0.5 

can mean either independent or short-term dependent process. Therefore, H based on R/S 

which is out of confidence intervals only suggests that the process is dependent since short-

term memory overestimates H. If R/S analysis could not be biased by short-term memory 

process, it would be impossible to say whether an estimate of H=0.5 means independence or 

short-term dependence, it would only reject long-term memory of the process. However, the 

use of both R/S and M-R/S enables us to distinguish between the two types of memory. If 

both methods show significant dependence, the process is long-term dependent. If R/S 

analysis shows significant dependence and M-R/S analysis does not, the process is short-term 

dependent. If R/S analysis shows no significant dependence the process is independent47 and 

thus F65 and S65 efficient.  

As we have already described in Chapter 1, two types of efficiency are connected to 

two types of long-term memory. Persistent behavior implies rejection of both F65 and S65 

efficiency as it implies both dependence and infinite variance. On the other hand, anti-

persistent behavior indicates rejection of F65 efficiency only as the process is dependent with 

finite variance. To sum the possibilities of rejection of null hypothesis, all of significant anti-

persistent, persistent, short-term dependent and trending behavior implies rejection of F65 

efficiency. Additionally, significant persistence leads to rejection of S65 efficiency as well. 

We have also shown that sudden changes in Hurst exponent values indicate change of 

dynamics of the process and thus can be connected with significant changes in the behavior of 

market participants (Section 2.3). Therefore, we focus on such patterns in our analysis as well. 

We apply the proposed method in the following chapter. 

                                                 
46 We use the same maximum scales and time series lengths for all methods where possible as it makes 
interpretation much more straightforward. 
47 If we use R/S and M-R/S separately, we cannot arrive at unambiguous results as R/S analysis can only tell us 
that the time series is either not long-term dependent or not independent and M-R/S analysis can only tell us that 
either the time series is not long-term dependent or it is. However, the rejection of long-term dependence on the 
basis of M-R/S would still leave us with two very different options – independence or short-term dependence.   
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Chapter 4 Fractality of world stock markets 
 

 

“Experience without theory is blind, but theory without 
experience is mere intellectual play.” 

 
Immanuel Kant 

 

 

In this chapter, we connect the findings from previous chapters and apply our new 

method of time-dependent Hurst exponent with confidence intervals. We present the results of 

recent applied literature which takes similar approach to ours and focus on the weak and 

strong points of the used methods. The rest of the chapter shows the results of the applied 

method together with connections between dynamics of Hurst exponent and specific stock 

indices. The interconnection of the markets is presented on the basis of correlations between 

H. As the data set covers the financial crisis of 2008, we introduce the similar reaction of the 

indices to the crisis. Let us start with overview of recent research papers. 

4.1 Recent literature 

There have been a lot of applied research papers examining long term memory in the 

financial time series during last several years (Peters, 1994; Di Matteo, Aste & Dacorogna, 

2005; Di Matteo, 2007; Czarnecki, Grech & Pamula, 2008; Grech & Mazur, 2004; Carbone, 

Castelli & Stanley, 2004; Matos et al., 2008; Vandewalle, Ausloos & Boveroux, 1997; and 

Alvarez-Ramirez et al., 2008). Unfortunately, almost each paper separately takes quite 

different approach to the problem. Let us discuss these different approaches. 

Peters (1994) examines DJI30 between years 1888 and 1990 and finds a long-term 

memory process in the time series using R/S analysis while comparing the estimates of 

rescaled ranges with those of P94. As an alternative approach in the case of short-term 

memory presence, Peters suggests to use AR(1) filtering of original integrated data and again 

interprets the results on a basis of comparison with P94. Importantly, persistent behavior 

remains even after the filtration. However, the author does not provide any testing of AR(1)-

filtered time series48. Moreover, the interpretation is based on graphical methods only. 

Therefore, the results must be accepted with caution. Nonetheless, the author provides very 

                                                 
48 The complications of AR(1) filtering were discussed in Section 2.1.2. 
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deep analysis49 of trends in the time series and comparison for different frequencies of returns 

(daily, weekly and monthly) where all support the finding of stable persistent behavior over 

the whole period with a cycle of four trading years. 

Di Matteo, Aste & Dacorogna (2005) examine the whole spectrum of indices (together 

with exchange rates and rates of T-bills) and compare them with respect to their assumed 

efficiency50 while using a method of generalized Hurst exponent (GHE)51. The authors come 

to conclusion that NASDAQ, SP500, NIKKEI, CAC40 and FTSE exhibited a slightly anti-

persistent behavior during 1997-2001 compared to an independent behavior during 1990-

1996. On the other hand, DAX and DJI30 showed independent behavior during both periods. 

WIG20 and BUX show significantly persistent behavior during 1990-1996 in contrast to an 

independent behavior of WIG20 and only slightly persistent behavior of BUX during latter 

period52. Unfortunately, the authors have not used time-dependent method which could have 

uncovered dynamics of the whole system. GHE can be said to be brand new and there is 

therefore a lot of possibilities for further research not only of time-dependent generalized 

Hurst exponent, but also of multi-fractal estimates of the method together with general tests 

and simulations. 

One step closer to time-dependent generalized Hurst exponent was taken by Di Matteo 

(2007) who presents more detailed findings of past work of Di Matteo, Aste & Dacorogna 

(2005) mentioned in the above paragraph. Di Matteo (2007) uses following methodology. The 

examined period of 1990-2001 is divided into ten sub-periods and generalized Hurst exponent 

for each one is estimated. The procedure is used on NASDAQ, NIKKEI and WIG2053 and 

yields quite interesting results. WIG20 and NIKKEI exhibited a behavior much closer to 

independence when compared to NASDAQ. WIG20 also showed evident decreasing trend of 

Hurst exponent from a persistent to an independent or even an anti-persistent behavior. Quite 

interestingly, the US index showed significantly persistent behavior between 1990 and 1991 

and then shifted to significantly anti-persistent behavior. The most problematic issue of the 

used method is the fact that there is no theory or even empirical estimates of generalized 

Hurst exponent for random time series and therefore, the results are based on comparison with 

asymptotic estimate of independent time series – H equal to 0.5. However, we have already 
                                                 
49 Both publications – Peters (1991b) and Peters (1994) – are strongly suggested for deeper understanding of R/S 
analysis. 
50 By assumed efficiency, we mean that developed markets are expected to be more efficient than developing 
markets and therefore showing independent behavior or at least a behavior only slightly dependent. 
51 Method of generalized Hurst exponent is based on a scaling of moments of returns of the time series. For more 
details, see also other works of Di Matteo and his colleagues (for example Di Matteo, 2007).  
52 Note that we only present the results for indices which are important and also examined in this thesis. 
53 Indonesian index JSX was examined as well but is not relevant for the thesis. 
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shown that the estimates for finite samples can be very different for R/S and M-R/S analysis 

and neither Di Matteo (2007) nor Di Matteo, Aste & Dacorogna (2005) provide any proof or 

simulations that would show that generalized Hurst exponent for finite samples is equal or 

even close to 0.5. 

Czarnecki, Grech & Pamula (2008) use DFA to analyze WIG20 and estimate its time-

dependent Hurst exponent during 04/1991-01/2007. Authors use the maximum time series 

length based on findings of Grech & Mazur (2004) which was already tackled in Section 

2.2.254. Consequently, estimates of time-dependent Hurst exponent are very volatile reaching 

values from 0.3 up to almost 1.0. Authors thus chose to use a simple moving average of last 

21 estimates and comment on a relationship between the moving average and potential huge 

swings in the index values. Even though the authors find several conditions which are fulfilled 

before the most important crashes of WIG20 during examined period, these conditions are not 

the sufficient ones as there are huge swings in returns of WIG20 which are not preceded by 

these conditions. 

Grech & Mazur (2004) based their examination on the same basis as already 

mentioned in paragraph above. Authors used DFA on DJI30 for period 1995-2003 and 

constructed time-dependent Hurst exponents. In contrast to Czarnecki, Grech & Pamula 

(2008), the authors used a moving average of 5 last estimates of time-dependent Hurst 

exponent and again try to find patterns in relation between the moving average and huge 

swings in DJI30. Similarly to previous authors, the correlation between significant decreases 

of time-dependent Hurst exponent can be connected with upcoming market crash. However, 

the authors admit that “…correlation range is too short with respect to [time series length]55 

and [time-dependent Hurst exponent] loses its sensitivity to detect [potential crashes]…”56 and 

eventually summarize that “…the prediction of market signal evolution with the use of local 

[Hurst] exponent becomes difficult in the period 1995-2003.”57   

Carbone, Castelli & Stanley (2004) used the time-dependent Hurst exponent approach 

while using detrending moving average (DMA) technique58. The authors examine DAX and 

German government bonds in the period 1996-2002 and show that DAX exhibits interesting 

dynamics. Unfortunately, authors only conclude with the statement that “…a more complex 
                                                 
54 The maximum suggested time series length is based on DJI30 which is rather questionable to be used for 
WIG20 as authors did not provide any comparison for other indices. 
55 Terms in brackets are provided by the author of the thesis as the authors of the paper use different marking and 
terminology. 
56 Grech & Mazur (2004), pp. 142 
57 Grech & Mazur (2004), pp. 143 
58 DMA is based on detrending of the signal by moving averages of different lengths and examining the scaling 
of deviations from the moving averages (for reference, see Xu et al. (2005) and Arianos & Carbone (2007)). 
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evolution dynamics characterizes the financial returns compared to artificial time series 

having the same average value of the Hurst exponent.”59 If we examine the statement more 

closely, we arrive at the conclusion that it contradicts itself in the way that was very 

aggressively criticized by McCauley et al. (2007) – interpretation made on average values and 

standard deviations of local Hurst exponents based on sliding window approach. The 

statement says on one hand that the time series is characterized by a complex dynamics and 

on the other hand sums all the local Hurst exponents into the average one. Therefore, the 

whole dynamics is interpreted on the basis of one number only. However, there already is one 

number that characterizes the dynamics of the time series – a global Hurst exponent. Global 

Hurst exponent is estimated for maximum time series length possible. The estimation of 

global Hurst exponent for the time series has stronger theoretical background and is not as 

controversial as average Hurst exponent based on an average of time-dependent Hurst 

exponents. 

Matos et al. (2008) used DFA method in the form of, as the authors call it, time and 

scale dependent Hurst exponent (TSH). This method not only examines the evolution of Hurst 

exponent in time but also with a change of scale used. The method gets rid of one problem 

that was mentioned when discussing other papers – optimal maximum scale used. The authors 

examined NIKKEI, GSTPSE (Canadian index), Bovespa (Brazilian index) and PSI-20 

(Portuguese index). The results are then interpreted on a basis of contour plot which shows 

dependence between time, scale and Hurst exponent with different shades of grey each 

corresponding to specific value of H. NIKKEI shows results around 0.5 while other indices 

show shift from highly persistent behavior to almost independent one. The interesting part of 

using contour plots is the examination of stripes in it as some of them go through all scales in 

consideration and can be interpreted with respect to significant events such as the “DotCom” 

crash which is visible in NIKKEI contour plot or disorder of high degree in PSI-20. This 

method will surely be further examined and used as it has high potential. 

Vandewalle, Ausloos & Boveroux (1997) applied DFA method as well but used it for 

the most important exchange rates between 1980 and 1996. Even though the exchange rates 

are not part of our research, the authors touch one very important issue in the estimation of 

Hurst exponent – crossovers60. The estimates were calculated after the detection of crossovers 

and the anti-persistent behavior of majority of European exchange rates was based on the 

                                                 
59 Carbone, Castelli & Stanley  (2004), pp. 269 
60 Crossovers are discussed in Section 3.4. 
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scaling behavior up to the point where a crossover emerged. We apply similar procedure to 

estimate the maximum scale and corresponding time series. 

Alvarez-Ramirez et al. (2008) examined long-range dependence of long time series of 

DJI30 (1928-2007) and SP500 (1950-2007) with DFA and focused on the break in Hurst 

exponent trending which collides with the end of Bretton-Woods system in 1972. The authors 

used the linear trends in Hurst exponent behavior and tried to connect the breaks in the trends 

of the exponent with important events which had happened in the market. However, the 

authors used confidence intervals based on standard errors of coefficients of regression which 

is used for the estimation of Hurst exponent. Yet, the confidence intervals of this type are not 

anyhow connected with the random data and thus are of no use for hypothesis testing. 

In the next section, we contribute to the literature and use R/S, M-R/S and DFA with 

approach described in Section 3.4 on a set of 13 stock indices which cover the indices of the 

Central Europe, the indices of the Western Europe, the indices of the USA and the indices of 

Japan and China. We follow with detailed description of the data set.   

4.2 Data set 

We examine daily logarithmic returns of various indexes which are summed up in 

Table 4-1. Altogether we obtained 10 years of daily prices of shown indices with exception of 

WIG20 and BUX which were obtained for shorter time period. 

We divided indices according to their economic, geographic and political properties. 

The countries of the Central Europe have similar recent history as they have reformed from 

centrally planned into market economy which was connected with a recreation of financial 

markets61. Even though the countries have chosen quite different approaches to privatization, 

the initial problems with liquidity of the markets ware widespread as the region was 

considered risky by foreign investors and domestic markets were not able to provide enough 

liquidity (Egert & Kocenda, 2005). For the comparison, we present the most liquid markets of 

the Western Europe together with the indices of the USA. The Western Europe has 

experienced different recent history as the evolution of the market economy was not 

interrupted after the World War II. As the consequence, the situation of Western and Central 

Europe was very different during 1990s when the countries of Central and Eastern Europe just 

started their transition (Bordo, 2000). As for the USA, we present three indices – DJI30, 

SP500 and NASDAQ – as each one is specific62. Out of the Asian region, we present Japan 

                                                 
61 Except of ATX, which is included in the group on the geographical rather than political and economic basis. 
62 We discuss the specifics in Section 4.4.2 which focuses on the US indices. 
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and China as the economy strongly connected to the developed countries and the economy 

which has started to be a strong competitor on the global markets, respectively.   

Hence, the indices were divided into four categories – Central Europe (Czech PX, 

Hungarian BUX, Polish WIG20 and Austrian ATX), Western Europe (British FTSE, German 

DAX and French CAC40), the USA (DJI30, NASDAQ and SP500) and Asia (Japanese 

NIKKEI and Chinese SSEC). We expect that Central European indices experienced persistent 

behavior with decreasing trend towards independent behavior as they started their transition to 

the market economy only 20 years ago and have not caught up to the most developed 

countries yet. Austrian index is included into the Central Europe mainly because of its history 

connected with the whole region. The indices of Germany, France, the UK and the USA are 

expected to be the most efficient ones as their markets are very liquid for long period of time 

and therefore independent behavior is expected for the whole time series. For different US 

indices, we expect similar behavior and differences are most likely to be connected with the 

diversification of each index. DJI30 comprises of only 30 stocks, SP500 includes 500 stocks 

and NASDAQ contains close to 3000 stocks. NASDAQ is thus expected to show the 

smoothest behavior off all US indices and DJI30 the other way around. As for Asian indices, 

we expect NIKKEI to be the most efficient of the region as it is very closely connected to the 

US economy, thus showing an independent behavior. SSEC is conversely expected to show 

decreasing trend similar to the one of the Central European countries as the market of China 

has come through similar economic development to the markets of the Czech Republic, 

Slovakia, Hungary and Poland. 

 
Table 4-1 Summary of examined stock indices 

Country Index Start Date End Date Tmax 
Czech Republic PX 21.1.1999 20.1.2009 2485 

Hungary BUX 26.7.2001 20.1.2009 1839 
Poland WIG20 1.10.2003 20.1.2009 1363 

Slovakia SAX 21.1.1999 20.1.2009 2331 
Austria ATX 21.1.1999 20.1.2009 2474 

Germany DAX 21.1.1999 20.1.2009 2535 
UK FTSE 21.1.1999 20.1.2009 2524 

France CAC40 21.1.1999 20.1.2009 2545 
DJI30 21.1.1999 20.1.2009 2538 

NASDAQ 21.1.1999 20.1.2009 2533 USA 
SP500 21.1.1999 20.1.2009 2532 

Japan NIKKEI 21.1.1999 20.1.2009 2421 
China SSEC 1.3.1999 20.1.2009 2367 

  
We provide the evolution of index values and logarithmic returns of all indices in 

Chart 0-2 – Chart 0-9 in Appendix. Central European indices behave quite differently when 
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compared to each other. Index values of ATX, BUX and PX are very alike; on the other hand, 

SAX behaves diversely. WIG20 behaves similarly to ATX, BUX and PX; however, the 

comparison is quite complicated as the time series for WIG20 is much shorter. Nevertheless, 

all indices, with exception of SAX, show rapid growth up till years 2007 and 2008 where the 

trend ends and slowly changes into very volatile and downward trending times of the financial 

crisis of 2008. SAX, on the other hand, experiences its peak much earlier (03/2005) but is hit 

by the crisis in similar way. On the contrary, indices of the Western Europe show almost the 

same behavior with two peaks in 2000 and 2007 which are connected with strong decreasing 

and strong increasing trend with bottom in 2003. The crisis hits the markets with the similar 

magnitude. The indices of the USA are alike with the ones of the Western Europe. However, 

the trends are not so profound for DJI30 and SP500. Moreover, NASDAQ shows more visible 

peak in 2000 which is followed by much stronger decreasing trend reminding of “DotCom” 

bubble on the US markets (Cooper, Dimitrov & Rau, 2002). As for the Asian markets, 

NIKKEI is again very close to the Western European ones, whereas SSEC shows unique 

behavior with rapid increasing trend peaking at the break of years 2007 and 2008 which is 

followed by similarly rapid fall of the index values. 

As we have shown in Section 2.1 and 2.2, R/S and M-R/S are methods constructed for 

stationary time series, while DFA is immune to non-stationarities and thus can be used for 

both stationary and non-stationary data sets. To check whether the time series are stationary, 

we use Augmented Dickey-Fuller (ADF) test with non-zero mean (Dickey & Fuller, 1979) 

and KPSS test (Kwiatkowski et al., 1992). The null hypothesis of ADF is a unit root and thus 

non-stationarity of the time series. On the other hand, the null hypothesis of KPSS is 

stationarity of the time series against the alternative hypothesis of non-stationarity. The results 

for both tests with critical values of 5% confidence level are presented in Table 4-2. The 

rejection of null hypothesis for each test is marked by bold italics of the value. 

 
Table 4-2 Results of ADF and KPSS for stock indices 

  ATX PX BUX WIG20 SAX DAX CAC40 
ADF -28,9039 -29,8903 -25,6288 -21,8626 -28,1588 -30,1393 -32,1223 
  5% critical value -2,86 
KPSS 0,7275 0,4346 0,711 0,6156 0,3089 0,1551 0,2211 
  5% critical value 0,463 

  FTSE DJI30 NASDAQ SP500 NIKKEI SSEC   
ADF -33,5078 -29,8886 -29,9127 -30,0279 -29,2647 -26,3987  
  5% critical value -2,86  
KPSS 0,1189 0,1854 0,1393 0,2128 0,2105 0,4276  
  5% critical value 0,463  
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The results of stationarity tests indicate that ATX, BUX and WIG20 are non-stationary 

and all other indices are stationary. Thus we expect that R/S and M-R/S might be biased for 

three mentioned indices and DFA methods might yield different results. Nevertheless, the 

stationarity does not disqualify the use of DFA as it is useful for both stationary and non-

stationary time series63. Moreover, non-stationarity of the time series implies rejection of F65 

efficiency as the process is not identically distributed and thus is not IID. Thus, even before 

we start long-term memory examination, we reject F65 efficiency for ATX, BUX and 

WIG20. Nevertheless, the indices can still be S65 efficient which will be checked in 

following sections. 

The rest of the chapter is divided into three subchapters, each examining one of the 

above defined groups of indices, while the indices of Western Europe and the USA are 

discussed in one subchapter, and summed up in the last subchapter where the comparison of 

the groups is made.  

4.3 Central European Economies 

We start our analysis with Austrian index and we present the procedure which is 

applied for the rest of the indices as well. For each tested market, we present the results of 

crossover detection on basis of which we set maximum scale and the time series length. We 

follow with results of time-dependent Hurst exponent based on R/S and M-R/S to distinguish 

between long-term and short-term dependence. Potential trends influence is then checked with 

DFA. After the separation between independent and dependent periods, we look for periods 

with interesting patterns of connection between time-dependent Hurst exponent and behavior 

of ATX. After examination of all Central European indices, we compare the results and show 

correlations of Hurst exponents. Last subchapter presents charts of time-dependent Hurst 

exponents for better comparison. Let us now turn to ATX.  

4.3.1 Austria 

We start the analysis with the crossovers and potential cycles detection in the behavior 

of ATX. Chart 0-10 in Appendix sums the V statistics and point to point derivatives of H for 

R/S, M-R/S, DFA-0, DFA-1 and DFA-2. The results are straightforward. Non-detrending 

methods (R/S, M-R/S and DFA-0) show a crossover at the scale of approximately one trading 

year. Detrending methods (DFA-1 and DFA-2) show no crossover. Thus, crossover detection 

showed that there is one year cycle which can be modeled by polynomial fits of the first and 
                                                 
63 See Section 3.2. 
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second order. The results are supported by behavior of point by point derivatives which 

support the proposed method of using one fourth of the time series length as the maximum 

scale used for Hurst exponent estimation as the values of the derivatives for the highest scales 

deviate from others as well as the one with scale equal to 8 trading days64. The implications 

are as follows – we use R/S analysis as a starting point, check for short-term memory bias 

with M-R/S and eventually use DFA-1 to check for non-stationarity bias. We use only DFA-1 

as DFA-0 shows no added value in the sense of a removal of the crossover. DFA-2 does not 

add more information since DFA-1 already filtered the crossover away.  

We follow with the analysis of time-dependent Hurst exponent. We present all results 

for different markets at the end of this chapter so that the markets can be better compared with 

each other (Chart 4-2 in Section 4.3.7). Based on R/S, ATX index showed persistent behavior 

up to 27.6.2006 with couple periods where the hypothesis of martingale behavior cannot be 

rejected. After 27.6.2006, there is no single period where S65 efficiency can be rejected. ATX 

further experienced increasing trend of Hurst exponent up till 14.10.2005. This behavior was 

followed by clear decreasing trend between 14.10.2005 and 1.12.2006 which shows obvious 

transition from periods of alternation between persistent and S65 efficient to clear S65 

efficient behavior. After the decreasing trend, the index stabilizes around constant trend up till 

the end of the examination period. 

However, there are two periods which show visible relationship between Hurst 

exponent and ATX index values. Both patterns are summed in Chart 4-7 in Section 4.3.7. The 

first one is present between 17.10.2005 and 3.11.2005 and shows a strong decreasing trend 

which is followed by a relatively stable period up to 24.11.2005 where an increasing trend 

starts and peaks at 20.2.2006. The period from the bottom to the top of Hurst exponent values 

is connected to a cumulative return of 22.06%. The second one is connected with slow 

decreasing trend of Hurst exponent from 29.7.2003 to 27.11.2003 where the trend turns into 

rather slow increasing trend up till 10.3.2004 where the trend peaks. The trend is again 

accompanied by high accumulated returns of 22.86%. Both of the mentioned patterns are 

quite similar and can be connected with increasing uncertainty of investors which breaks into 

strong following of the trend. Let us now turn to other estimation methods of Hurst exponent. 

The persistent behavior showed by R/S can be due to short-term memory present in 

the process. To check the robustness of the results presented above, we use M-R/S. The 

periods of persistent and independent behavior are very similar. Moreover, the trends of Hurst 

                                                 
64 We, therefore, propose the minimum scale of 16 days for methods used. The results of point to point 
derivatives and their implications are similar for other indices (see sections below). 
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exponent showed by R/S are present as well. Therefore, based on R/S and M-R/S, there were 

periods where ATX exhibited significantly persistent behavior. Let us now turn to the 

detrending method. 

DFA-1 shows some different aspects. Let us start with the common ones. ATX 

showed increasing trend of Hurst exponent for all methods used. The increasing trend was 

followed by a decreasing one. However, that is where common features end. Differences are 

more prevalent and more interesting. The decreasing trend is approximately 350 trading days 

longer for DFA-1 and the trend for the last part of examined period - from 26.6.2008 on - is 

rapidly increasing which indicates the increase of predictability. There were even periods of 

significant persistent behavior. Note that DFA-1 clears the linear trending and therefore the 

market was persistent even when cleared from the potential trends. Therefore, the increase can 

be interpreted as a strong belief in negative returns on the market which were already driving 

the market.  

The Austrian index was persistent up to 14.10.2005 which is connected with an end of 

exponential increase in a value of the index. After this period, market was gradually switching 

into random behavior which is shown by decreasing trend of Hurst exponent. This trend was 

broken and reversed by an arrival of the financial crisis on the global markets. Significant 

increase of Hurst exponent starting on 26.6.2008 shows that mood on the market65 was 

becoming more positive about the widespreadness of the crisis and its negative effect on the 

stocks prices. Moreover, the break which preceded the significant losses can be interpreted by 

strong change of the mood. Further, the decreasing trend of Hurst exponent can be explained 

as increasing nervousness of the investors. Therefore, the increasing uneasiness on the market 

reached its highest point and was turned into ride on the negative prospects of the crisis. 

Dynamics of Hurst exponent during financial crisis is showed in Chart 4-7 in Section 4.3.7. 

The trend of the exponent is quite similar to the ones already mentioned – slow and long 

lasting decreasing trend is present from 8.2.2008 up to 29.5.2008 where strong decreasing 

trend begins. Hurst exponent shows 13 consecutive decreases and hits the bottom at 

16.6.2008. Strong increasing trend of the exponent follows, then, and peaks at 26.11.2008. 

The trend is connected to huge losses of 87.36%. The dynamics can be interpreted as an 

increasing nervousness on the market even though the index was growing. The starting 

decrease of the index value is followed by a downward slide of investors’ mood and hits the 

                                                 
65 Hurst exponent can be also interpreted as a measure of mood on the market. The lower the exponent the more 
nervous the investors are and other way around (Lux, 2007). 
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bottom at already mentioned date of 16.6.2008. Investors were then convinced that the 

decrease is about to endure which was actually true. 

To sum the findings up, ATX experienced significant persistent periods, which imply 

rejection of S65 efficiency. The persistent periods were gradually becoming less significant 

and turned into market of a martingale and thus S65 efficient. This kind of behavior is 

expected for the Central European indices. Note that ATX has been shown to be F65 

inefficient as it is non-stationary. However, we need to examine the other indices of the region 

before we make strong conclusions about appropriateness of inclusion of ATX in the Central 

Europe. More important is the fact that the financial crisis of 2008 had significant impact on 

decreasing randomness of the market. Moreover, the break from nervous to “riding on a 

trend” mood is obvious before the full burst of the financial crisis.  

4.3.2 Czech Republic 

We follow our analysis with PX index. Let us first check the crossovers and potential 

cycles in the behavior of PX. Chart 0-11 in Appendix sums the results for R/S, M-R/S, DFA-

0, DFA-1 and DFA-2. These are quite similar to the ones of ATX – non-detrending methods 

reveal a crossover at the scale of half a trading year and detrending methods do not show any 

significant crossovers and imply that detrended time series scale through the whole examined 

period. Similarly to ATX, we can state that there is a half trading year cycle which can be 

modeled by simple polynomial fits. Note that DFA-1 and DFA-2 again show big potential 

bias for high scales as the point to point derivatives of H jump significantly. Implications are 

the same as for ATX and thus R/S, M-R/S and DFA-1 are used as DFA-1 already cleared all 

potential crossovers and hence DFA-2 would overestimate Hurst exponent. 

 Let us now present the results of time-dependent Hurst exponent which are shown in 

Chart 4-3 in Section 4.3.7. We start with the estimates of R/S and M-R/S. Similarly to ATX, 

there are periods when PX exhibits persistent behavior. However, these periods are strongly 

present only between 2.2.2001 and 4.3.2002; other persistent periods, on the other hand, last 

for couple days only. Nonetheless, the comparison between R/S and M-R/S does not show 

any significant differences and therefore, we can again conclude that short-term memory 

processes are not biasing Hurst exponent estimations. Moreover, both methods show similar 

trends in Hurst exponent behavior. There is a decreasing trend from significantly persistent 

values starting at the beginning of the examination period and taking place up till 12.11.2003. 

This trend is followed by slightly increasing trend ending around 6.1.2006 which is in turn 

followed by either a slowly decreasing trend (R/S) or a constant one (M-R/S). Quite 
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importantly, none of the trends is strong and therefore there can be no strong conclusions 

made. Nonetheless, PX index follows a trend to more efficient behavior in the long-term 

according to both R/S and M-R/S. We need to stress that comparison between R/S and M-R/S 

shows that long-term memory behavior is not caused by short-term process bias. 

DFA-1 shows very similar behavior as R/S and M-R/S. Trends of time-dependent 

Hurst exponent are similar with stronger increasing trend in the second part of the examined 

period. Moreover, Hurst exponent is more volatile during the examined period and shows that 

even DFA-1 can be overestimating the exponent. Nonetheless, the periods of significant 

persistent behavior are again very alike. If the whole time period was divided into more sub-

periods, there would be quite significant increasing trend starting at 24.6.2008 which is 

connected to the start of the financial crisis. Note that the date is very close to the turning 

point of ATX which was 26.6.2008 and therefore we can expect similar turning points for 

other indices. 

However, not only the end of the time series shows possible patterns. The first 

breaking point in all three time series (12.11.2003) is connected with the start of very rapid 

increasing trend. The end of the decreasing trend of Hurst exponent (6.1.2006) is on the other 

hand very close to market turning point which was followed by significant negative trend. 

Therefore, if we put the results together, turning points of trends of time-dependent Hurst 

exponent are connected to significant events on the market. Thus, the decreasing trend 

suggests that something is about to happen and when the trend reverses to the increasing one, 

investors ride on the sentiment of the market. 

Even though R/S analysis does not show any interesting patterns, DFA-1 does. One is 

present between 14.12.2001 and 24.6.2002. The dynamics starts with long lasting decreasing 

trend which hits bottom at 23.4.2002 and reverses to an increasing trend. Even though the 

trends are not connected to any significant gains or losses, the decreasing one shows an 

increasing negative mood in the market or it simply indicates that something significant is 

about to happen. Note that the increase of Hurst exponent is very significant as it starts at a 

value of 0.77 and bottoms at 0.49. 

Other pattern covers behavior of Hurst exponent during financial crisis of 2008. There 

are two very strong trends of Hurst exponent which create V shape between 17.6.2008 and 

22.8.2008 with a bottom at 14.7.2008. However, these significant trends are not connected to 

any strong losses or gains. Nonetheless, the immediately following and not such strong trends 

between 22.8.2008 and 24.11.2008 bottoming at 9.10.2008 are linked with a significant loss 

of 59.80% of PX index value. Therefore, the whole period shows that V shape of Hurst 
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exponent needn’t be joined by significant events on the market. Nevertheless, the erratic 

behavior of the exponent shows that investors were rather unsure about the situation on the 

market. Both patterns are shown in Chart 4-8 in Section 4.3.7. Let us proceed with BUX.   

4.3.3 Hungary 

We proceed with analysis of Hungarian index. Similarly to the previous cases, we 

begin with a crossover detection which is summed in Chart 0-12 in Appendix. The results are 

different in the way that all the methods show no crossover and therefore the statement that 

BUX scales indefinitely cannot be rejected for an examined period. The infinite scaling 

suggests no cycles in the time series. Therefore, suggested maximum time series length is the 

highest possible for the data set – 1024 – corresponding with maximum scale of 256 for all 

used methods. The result of crossover detection has impact on the used methods as well – 

R/S, M-R/S and DFA-1. DFA-1 is used rather than DFA-0 because the latter method is not 

detrending and we want to use at least one method which is robust against non-stationarities 

as BUX is not stationary and DFA-2 shows no added value again.  

Let us turn to time-dependent Hurst exponent estimation which is presented in Chart 

4-4 in Section 4.3.7 for all used methods. We start with R/S analysis which shows quite 

surprising results of an independent behavior for the whole examined period. As no long-term 

memory process is proposed by rescaled range method, there is no need to use M-R/S since 

the interpretation of results could be quite misleading. Let us now turn to DFA-1 as BUX has 

been shown to be non-stationary.  

Even though the independence of BUX cannot be rejected at any period, there is still 

interesting dynamics of Hurst exponent present. The index shows, with respect to R/S, long-

term decreasing trend of its Hurst exponent from the beginning of the examination period up 

till 1.10.2008 where the switch to an increasing trend occurs. Additionally, DFA-1 shows 

even stronger decreasing trend. However, the trend ends much earlier – at 25.10.2007 which 

equals almost a year difference. The dynamics become quite straightforward from this point 

on and linear trends are not presented as a consequence. Nonetheless, visible increasing trend 

starts on 25.10.2007 and ends on 8.4.2008 where another reversal occurs and changes to even 

stronger decreasing trend which lasts for 51 trading days up till 23.6.2008 where the evolution 

stabilizes. However, the calm period lasted for 70 trading days after which a rapid increase of 

Hurst exponent starts on 30.9.2008 and follows up till the end of the examination period. 

Therefore, both used methods show a shift of behavior at a break of September and 

October 2008 which is most probably connected to the financial crisis of 2008. However, this 
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turning point is present significantly later when compared to ATX and PX. Nevertheless, the 

end of significant decrease of Hurst exponent, which ends at 23.6.2008, is very close to the 

shift of two mentioned indices. These results imply that not only the shift from decreasing to 

increasing trend of Hurst exponent (or vice versa) but even shift from strong trend to stable 

behavior of the exponent which is later followed by reverse trend can indicate important 

change in investors’ behavior. The situation can be interpreted as uncertainty about market 

behavior which occurred between June and September 2008 where the investors were not 

decisive whether the financial turbulences were about to last. On the break of September and 

October 2008, the financial crisis became widespread and the significant increase of Hurst 

exponent was connected with huge losses of the index.  

Let us now show significant dynamics and patterns in more detail which are summed 

in Chart 4-9 in Section 4.3.7. The pattern between 10.5.2006 and 8.6.2006 starts with a strong 

increasing trend of Hurst exponent up to 17.6.2005 where it switches to strongly decreasing 

trend. The whole period is connected with a cumulative loss of 21.75%, the decreasing trend 

of the exponent with a loss of 15.78%. Even though this pattern is quite against the logics of 

previous patterns, it can be explained if we take a broader look at the dynamics of the 

downturn. Hurst exponent reaches its local maximum at 4.5.2006, an observation earlier than 

the peak of BUX index. Four consecutive decreases of the exponent follow and bottom at 

10.5.2006 where the already mentioned dynamics starts. There is also strong increasing trend 

after 8.6.2006 which ends at 20.6.2006 and is connected to an additional cumulative loss of 

10.22%. The peak of Hurst exponent is quite well synchronized with the peak of BUX index 

while being present two observations later. Nonetheless, the whole dynamics show that there 

was a clear trend behavior from 10.5.2006 to 17.5.2006 where the mood switched to rather 

uncertain one which was still connected with losses which were, however, not so significant 

and there was rather stable period between 19.5.2006 and 6.6.2006 connected with a small 

loss of 3.95%.    

Next interesting behavior is connected with the financial crisis of 2008. There is long 

and stable period between 6.6.2008 and 6.10.2008 where the behavior of BUX is very close to 

an independent one. Very strong trend starts at 6.10.2008 and peaks at 28.10.2008 which is 

connected to a huge cumulative loss of 48.49% of BUX index. The trend stabilizes for several 

periods and starts again at 7.11.2008 with a peak at 19.11.2008. The second trend is 

connected with additional cumulative loss of 12.20% of the index value. The interpretation of 

the behavior is quite logical as the increasing trend is connected with investors’ belief that 

current trend will continue. This belief slowed for short period and occurred again. 
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Even though BUX has been shown to be independent, the efficiency of F65 type is 

still rejected as the time series is non-stationary. Let us now turn to Polish index which was 

already shown to be non-stationary as well.  

4.3.4 Poland 

Analysis of Polish index follows. Standard crossover detection is presented in Chart 0-

13 in Appendix. WIG20 shows two new situations which were not present in any of above 

examined indices. DFA-1 method is inconclusive as we can see changing behavior of V 

statistic for all scales between 8 and 128 days which implies that this method would not yield 

conclusive results and therefore, we omit it for the analysis of WIG20. Further, DFA-0 

method shows a crossover at lower scale than R/S and M-R/S, which implies that the method 

should be used with a length of a time series only equal to 256. However, this method would 

be rather questionable while estimating H on the basis of three fluctuation statistics only. 

Therefore, DFA-0 is not suggested to be used at all for daily data of WIG20. Additionally, all 

remaining methods (R/S, M-R/S and DFA-2) show the same crossover at a scale of 128 days. 

Therefore, it is probable that the time series move in a cycle of a length of approximately half 

a trading year. However, this cycle is not covered by polynomial detrending methods we use 

and thus it suggests a cycle could be modeled by either higher polynomial fit or different 

detrending technique (Kantelhardt, 2008) or simply the series scales finitely up to the scale of 

128 days. That fact can easily be a reason why V statistic of both DFA-0 and DFA-1 yields 

such inconclusive results.   

The results for time-dependent Hurst exponent are illustrated in Chart 4-5 in Section 

4.3.7. R/S analysis shows WIG20 to be behaving as a random process for the whole examined 

period. We use DFA-2 method as WIG20 has been shown to be non-stationary and thus the 

results of R/S might be biased66. The results as of independence of returns are quite similar. 

Even though there are two periods where H moves out of confidence intervals, these periods 

are not long and the movement outside is not significant. Nevertheless, WIG20 is non-

stationary based on KPSS test (Table 4-2) which implies rejection of F65 efficiency.   

There are again several breaks in the dynamics of WIG20. R/S shows four visible 

trends – the first starting at the beginning of the examination period and ending at 10.10.2006, 

the second from 11.10.2006 to 6.6.2007, the third starting at 7.6.2007 and switching to the last 

one at 11.3.2008. The most obvious common feature with other already discussed markets is 

the presence of strongly increasing trend of Hurst exponent during 2008. However, this trend 
                                                 
66 M-R/S was not used as R/S showed no long-term memory in the time series (similarly as in the case of BUX). 
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starts more than three months earlier when compared to the markets examined above. DFA-2 

shows even earlier start of the trend at 20.12.2007. 

However, the dynamics of WIG20 is much more complex than the one of ATX, PX 

and BUX as it shows very strong trends of a short sequence together with many significant 

downward jumps of Hurst exponent which have usually preceded the mentioned trends 

(patterns are summed in Chart 4-10 in Section 4.3.7). 

The first of such patterns was present between 29.3.2005, 19.4.2005 and 5.10.2005 

where the dates represent start of significant decrease, the bottom of the trend and starting 

point of increasing trend, respectively. The starting and ending dates collide with the 

beginning and end of strong increasing trend of WIG20 values. This implies that the trend 

started as the shift of dynamics of the market (downward jump of Hurst exponent) and was 

followed up by increasing belief of the investors (increasing trend of Hurst exponent). Note 

that the strong increasing trend ceases several observations earlier than the trend of the index 

itself.  

The second pattern starts right after the first one and the important dates are 6.10.2005, 

28.10.2005 and 2.12.2005 with the same sequence of events as of the previous pattern. Again, 

starting and ending dates agree to the dates of beginning and ending trend. Yet, the trend is 

decreasing this time which again implies that the significant shifts (specifically downwards 

jumps) of Hurst exponent are connected to significant changes of behavior of the market. 

Furthermore, the subsequent increase of the exponent suggests that the change of dynamics of 

the market is about to last.  

The third pattern is again connected to strong trend and crucial dates are 13.4.2006, 

5.5.2006 and 2.6.2006 or 8.6.2006. The last one is not quite obvious as the most rapid part of 

the trend ends at 2.6.2006 but the growing trend of Hurst exponent is present up till 8.6.2006.   

The last one of the similar patterns is connected to the current financial crisis. We can 

see that between 3.3.2008 and 11.3.2008, there is a downward jump of Hurst exponent which 

is followed by an increasing trend which becomes very strong after 31.3.2008. Note that the 

period between 3.3.2008 and 10.4.2008 is connected with a cumulative loss of 38% of the 

value of the index and is the most dramatic period of the financial crisis for WIG20 index. Let 

us now turn to the index of Slovakia. 

4.3.5 Slovakia 

We follow with the final index of the Central Europe – the one of Slovakia. Standard 

detection of crossovers is summed in Chart 0-14 in Appendix. SAX is the first index that 
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shows strong and same crossover for all methods used – 512 trading days. However, this 

result does not necessarily mean that there is a cycle of the length of 2 years. The time series 

can either scale up to this finite period or can be cyclic in the way that cannot be filtered by 

simple polynomial trends or finally, the time series can scale infinitely as the estimates of V 

statistics for the last two scales can be biased67. This result of crossovers detection suggests 

three methods to be used – R/S, M-R/S and DFA-268. As for the analysis of time-dependent 

Hurst exponent, we propose maximum scale of 256 trading days as if we use the maximum 

scale available – 512 – we would obtain estimates of time-dependent Hurst exponent of 

approximately 300 trading days only. Such a choice would not allow us to evaluate an 

evolution of Hurst exponent in longer period which is needed for assessment of the changes in 

efficiency of SAX. 

Let us move to an analysis of time-dependent Hurst exponent (Chart 4-6 in Section 

4.3.7). R/S analysis yields interesting results not seen yet – Hurst exponent follows an 

increasing trend up till exactly 14.3.2005, which is the peak value of SAX, and then stabilizes 

above confidence interval implying the persistence of the time series. We check the 

possibility of short-term memory bias with M-R/S. The result is very similar as for the general 

behavior of the exponent as an increasing trend of H up till 14.3.2005 and stabilization at 

persistent behavior with some periods where the independence cannot be rejected are present 

as well. However, very disturbing pattern starts at 8.1.2007 where Hurst exponent jumps 

down by approximately 0.08 compared to the previous one and this jump repeats every 16 

trading days. When we take into consideration how a modified rescaled range is constructed, 

the problematic period can be detected. Firstly, 16 trading days is the lowest used scale and 

therefore, there is a bias at this range, most probably. Secondly, R/S analysis does not show 

this pattern and therefore, it is rather a problem of modified standard deviation estimator, 

more specifically, a problem of auto-covariance estimator. Thirdly, the pattern begins to occur 

at 8.1.2007. If we sum all the information together, it implies that a period between 

13.12.2006 and 8.1.2007 is the one that causes problems. If we check this period, it contains 

seven consecutive observations with zero return and thus non-trading days. These returns not 

only significantly lower a variance estimator (which is the case for R/S as well) but also yield 

significantly negative first and second auto-covariance for the period which strongly biases 

the standard deviation estimator for M-R/S. This effect strongly overestimates rescaled range 
                                                 
67 See Sections 2.2.2 and 3.3 for detailed discussion. 
68 As the proposed maximum scale is the maximum one available, we choose DFA2 rather than DFA1 as DFA2 
does not show any bias based on crossover analysis. Moreover, there can be a crossover at the highest scales 
which can hardly be detected by crossover analysis and therefore, DFA2 is a safer procedure to use. 
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for the period which in turn biases average rescaled range for the scale of 16 trading days. The 

eventual consequence is a leverage effect on H which is strongly biased downwards.      

To solve the problem, we check the results of M-R/S with higher minimum range of 

32 trading days. Note that the estimation procedure changes and thus we cannot use the 

confidence intervals that were used up to this point. Therefore, we have simulated M-R/S 

procedure with only difference being a minimum scale of 32 trading days, other parameters 

remained unchanged. The resulting confidence intervals are much wider as a standard 

deviation of simulated H is approximately 1.4 times higher than the one based on minimum 

scale of 16 trading days. With the higher minimum scale, the repeating pattern of significant 

downward jumps disappeared. Nonetheless, the persistent behavior remains and therefore is 

not caused by short-term memory process. However, we still need to check whether the 

estimates based on R/S are not biased by the presence of trends in the time series. 

The results are supported by the estimates of DFA-2. Therefore, the significant 

persistent behavior for a majority of the time series length is confirmed and efficiency of SAX 

is rejected for both F65 and S65 for the majority of the examined period. Nonetheless, 

common feature of the increasing trend of Hurst exponent during year of 2008 is present and 

shows that current turbulences in the financial markets affected even SAX, which shows very 

little common features with other Central European indices otherwise. 

When we concentrate on patterns in the behavior of Hurst exponent, which are 

summed in Chart 4-11 in Section 4.3.7), we can identify several of them. The one that was 

already mentioned is connected with rapid increasing trend of SAX index. Note that DFA-2 

does not show such an obvious pattern. Nonetheless, there is similar pattern of DFA-2 as 

observed before – significant decrease followed by significant increase of Hurst exponent 

connected with significant trends of levels of the index. The decrease starts at 4.11.200469 and 

hits bottom at 21.1.2005. The increasing trend then reaches its peak at 14.3.2005. The period 

between 21.1.2005 and 14.3.2005 is connected with cumulated return of 41.70%.  

Quite similar pattern occurred between 18.3.2008 and 6.8.2008 with the bottom value 

of Hurst exponent at 13.5.2008. However, there are several differences. The increasing trend 

does not start right after the bottom is hit and the exponent remains rather constant around a 

value of 0.56. The trend starts to be more profound after 25.6.2008. Nonetheless, this trend is 

not connected with any significant cumulative returns. It is needed to be noted, though, that 

the examined period contains a lot of zero returns and is therefore a period of very shallow 

                                                 
69 We can mark several different observations as the ones of the beginning of the trend. Nonetheless, it is the 
peak or bottom which is the most important (Alvarez-Ramirez et al., 2008). 
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market where there is little liquidity present. Therefore, the estimates can be biased by this 

fact and hence this result does not necessarily contradict previous results. As a consequence, 

we can conclude that time-dependent Hurst exponent is connected with significant trends of 

the market as long as the market is liquid. 

Examination of SAX has, thus, uncovered very important phenomenon which can 

strongly bias estimates of Hurst exponent and can yield very inconclusive results – liquidity. 

If the market is not liqiud, it can strongly bias both R/S and M-R/S. In the case of DFA, the 

estimation of trends in sub-periods can be easily biased as well as consecutive zero returns 

pull the estimation to a constant trend. Therefore, liquidity of the market is crucial for Hurst 

exponent analysis which is in hand with fractal markets hypothesis presented in Section 1.2.4. 

We follow with comparison of all examined Central European indices. 

4.3.6 Comparison of Central European indices 

We have examined the Central European indices and came to several interesting 

results. We have showed that Austrian index ATX behaves quite similarly to PX and less 

efficiently than WIG20 and BUX and therefore belongs in the category. Generally, all indices 

showed quite different behavior and thus it seems that there can be no strong conclusions 

made about Central European indices as a group. Nonetheless, we have estimated the 

correlations of time-dependent Hurst exponents, which were based on R/S analysis, for the 

indices (summed in Table 4-3). We estimated correlations of Hurst exponent constructed with 

the same maximum scale of 128 trading days as crossover analysis has not rejected this scale 

for any index. Moreover, days which are not trading days for all the indices were omitted to 

avoid bias. For the magnitude of correlation, we use a proposal of Cohen (1988) – absolute 

value of correlation from 0.1 to 0.3, from 0.3 to 0.5 and from 0.5 to 1.0 stand for weak, 

medium and strong correlation, respectively. We use such method for both negative and 

positive correlation. 

 
Table 4-3 Correlations of time-dependent H (R/S) of Central European indices 

 PX BUX WIG SAX ATX 

PX 1     

BUX 0,16076 1    

WIG 0,358652 0,487661 1   

SAX 0,393539 0,211099 0,451508 1  

ATX 0,505671 0,173199 0,532348 0,431943 1 

 
ATX is strongly positively correlated with PX and WIG20 and medium with SAX. 

Therefore, with its behavior, it obviously belongs to the Central European area. Additionally, 
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WIG20 and BUX are almost strongly correlated. Most interesting result from the point of 

correlations is the fact that it is rather BUX than SAX which seems to be most atypical for the 

area of the Central Europe. Nevertheless, all the indices are positively correlated.  

For comparison, we present the correlations for Hurst exponents based on both DFA-1 

(Table 4-4) and DFA-2 (Table 4-5). The results are rather different for each method. 

However, there are several assertions which were further supported. BUX and WIG20 are 

strongly positively correlated (based on DFA-2). ATX still shows positive correlations with 

all indices (DFA-2 shows stronger correlations). On the other hand, other results must be 

taken with caution as they are method dependent. 

 
Table 4-4 Correlations of time-dependent H (DFA-1) for Central European indices 

 PX BUX WIG SAX ATX 

PX 1     

BUX 0,082294 1    

WIG 0,200232 0,168306 1   

SAX 0,574923 0,098572 0,073722 1  

ATX 0,399175 0,260982 0,047427 0,267846 1 

   
Table 4-5 Correlations of time-dependent H (DFA-2) for Central European indices 

 PX BUX WIG SAX ATX 

PX 1     

BUX 0,332123 1    

WIG 0,375363 0,559834 1   

SAX 0,234459 -0,07377 0,313052 1  

ATX 0,404997 0,274621 0,508811 0,216092 1 

 
Moreover, all indices have shown similar patterns of Hurst exponent and index values. 

There have been two types of patterns uncovered. For the first one, a strong decrease of H 

followed by an increasing trend of H is connected with significant change in the evolution of 

the index (both negative and positive). The second one shows that long lasting decreasing 

trend of H again followed by rapid increase indicates that investors follow the commenced 

trend. Such findings are in hand with findings of Grech & Mazur (2004) and Czarnecki et al. 

(2008). 

Further, as all indices have been hit by the financial crisis of 2008 and have shown 

patterns during the same period, we examine the period more thoroughly. The evolution of 

time-dependent Hurst exponent for all five indices based on DFA-270 is presented in Chart 4-

1. The strong increasing trend of Hurst exponent starts at the beginning of October 2008 

                                                 
70 DFA-2 is used because it was not rejected by crossover detection for any index and is resistant to non-
stationarities which were shown to be present in majority of the Central European indices (ATX, BUX and 
WIG20). 
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which was connected to the start of the most significant losses of the indices in the sense of 

values. Moreover, the comparison again shows how SAX behaves differently compared to the 

other indices of the Central Europe. 

  
Chart 4-1 Time-dependent H (DFA-2) for Central European indices during crisis of 2008 
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Last but not least is the fact that all indices have been inefficient during at least some 

periods. The most efficient market of the region is PX which moved from significantly 

inefficient to efficient in 2007 and is both S65 and F65 efficient for the rest of the examined 

period. However, PX still remains very close to upper confidence interval dividing persistent 

and efficient market. BUX and WIG20 have both shown S65 efficiency for the whole 

examination period. Nevertheless, they remain F65 inefficient due to non-stationarity. ATX is 

similar to BUX and WIG20 due to its non-stationarity and thus F65 inefficiency. Further, it is 

alike with PX as it experienced a shift from inefficient to efficient market in a sense of S65 in 

2006. The last in the sense of efficiency is SAX which is persistent for the majority of the 

examined period and thus both F65 and S65 inefficient.   



Chapter 4    Fractality of world stock markets 
 

 62  

4.3.7 Charts for Central European indices 

Chart 4-2 ATX time-dependent Hurst exponent 
(a) (b) 
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Chart 4-2: (a) Time-dependent H based on R/S, (b) Time-dependent H based on M-R/S, (c) Time-
dependent H based on DFA-1: Constant solid lines present upper and lower confidence intervals (2.5% and 97.5%). 
Curved solid lines show linear trends of Hurst exponent. 
 
Chart 4-3 PX time-dependent Hurst exponent 
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Chart 4-3: (a) Time-dependent H based on R/S, (b) Time-dependent H based on M-R/S, (c) Time-dependent 
H based on DFA-1: Constant solid lines present upper and lower confidence intervals (2.5% and 97.5%). Curved solid lines 
show linear trends of Hurst exponent. 
 



Chapter 4    Fractality of world stock markets 
 

 63  

Chart 4-4 BUX time-dependent Hurst exponent 
(a) (b) 
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Chart 4-4: (a) Time-dependent H based on R/S, (b) Time-dependent H based on DFA-1: Constant solid lines 
present upper and lower confidence intervals (2.5% and 97.5%). Curved solid lines show linear trends of Hurst exponent. 
 
Chart 4-5 WIG20 time-dependent Hurst exponent 
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Chart 4-5: (a) Time-dependent H based on R/S, (b) Time-dependent H based on DFA-2: Constant solid lines 
present upper and lower confidence intervals (2.5% and 97.5%). Curved solid lines show linear trends of Hurst exponent. 
 
Chart 4-6 SAX time-dependent Hurst exponent 
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Chart 4-6: (a) Time-dependent H based on R/S, (b) Time-dependent H based on M-R/S, (c) Time-dependent 
H based on M-R/S with minimum scale of 32 trading days, (d) Time-dependent H based on DFA-2: Constant 
solid lines present upper and lower confidence intervals (2.5% and 97.5%). Curved solid lines show linear trends of Hurst 
exponent. 
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Chart 4-7 ATX relationship between time-dependent Hurst exponent and index values 
(a) (b) 
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Chart 4-7: (a) H based on R/S, (b) H based on R/S, (c) H based on DFA-1: Charts show patterns between time-
dependent Hurst exponent (right y-axis) and significant movements in ATX values (left y-axis). 
 
Chart 4-8 PX relationship between time-dependent Hurst exponent and index values 
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Chart 4-8: (a) H based on DFA-1, (b) H based on DFA-1 during financial crisis of 2008: Charts show patterns 
between time-dependent Hurst exponent (right y-axis) and significant movements in PX values (left y-axis). 
 
Chart 4-9 BUX relationship between time-dependent Hurst exponent and index values 
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Chart 4-9: (a) H based on R/S, (b) H based on DFA-1 during financial crisis of 2008: Charts show patterns 
between time-dependent Hurst exponent (right y-axis) and significant movements in BUX values (left y-axis). 
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Chart 4-10 WIG20 relationship between time-dependent Hurst exponent and index values 
(a) (b) 
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Chart 4-10: (a) H based on R/S, (b) H based on R/S during financial crisis of 2008: Charts show patterns between 
time-dependent Hurst exponent (right y-axis) and significant movements in WIG20 values (left y-axis). 
 
Chart 4-11 SAX relationship between time-dependent Hurst exponent and index values 
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Chart 4-11: (a) H based on DFA-2, (b) H based on DFA-2 during financial crisis of 2008: Charts show patterns 
between time-dependent Hurst exponent (right y-axis) and significant movements in SAX values (left y-axis). 

4.4 Western Economies 

We follow our analysis with the indices of the Western Europe, which we analyse 

first, and the USA, which is presented further. The charts for each section are included after 

the analysis (Section 4.4.2 and Section 4.4.4, respectively). The last subchapter sums and 

compares the findings. 

4.4.1 Western Europe 

We present the procedure for the economies of the Western Europe in different way 

than the ones of the Central Europe. As the economies of France, Germany and the UK are 

much interconnected, they are expected to yield similar results and a direct comparison of the 

results will be more transparent. We start with a crossover analysis.   

The results for crossover detection are very similar for all indices as it was expected. 

Evolution of V statistics and point to point derivatives of H for different methods and indices 

are shown in Chart 0-15, Chart 0-16 and Chart 0-17 in Appendix for CAC40, DAX and 

FTSE, respectively. 
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Detected crossovers are summed in Table 4-6. All indices show same crossover of 128 

trading days for R/S and M-R/S. However, the results are quite different for the other 

methods. CAC40 shows the same crossover of 128 trading days for all DFA methods and 

thus, there are no simple trends (constant, linear or quadratic) which could strongly bias the 

results of R/S and M-R/S. On the other hand, crossovers are detected at a scale of 512 trading 

days for DFA-1 for DAX and FTSE which indicates that there is a significant linear trend for 

both indices which can influence the estimates of rescaled range methods. However, it is 

needed to note that crossovers for all methods and especially for DFA methods were rather 

insignificant and therefore, we expect the indices to exhibit independent behavior. The results 

suggest a use of R/S, M-R/S and DFA-1 with maximum scale of 128 trading days and 512 

trading days long estimation period. DFA-1 is used for all indices as it clears all trends for 

DAX and FTSE and does not bias the estimates for CAC40 as it shows same crossover for all 

DFA methods. 

Let us start the long-term dependence examination with the results of R/S analysis 

(charts are provided in Chart 4-12 in Section 4.4.2). Most clear results are obtained for DAX 

which does not show any dependence during whole examined period. On the other hand, 

CAC40 and FTSE show approximately two years (from September 2003 to September 2005) 

for which the behavior is anti-persistent or very close to confidence interval separating 

martingale and anti-persistent behavior. Note that anti-persistent behavior is very little 

discussed in the literature (e.g. Di Matteo, 2007) even though it yields strong implications 

about market efficiency as was shown in Section 2.3. Let us now turn to M-R/S to exclude the 

possibility of short-term memory bias.  

 
Table 4-6 Crossover detection results for CAC40, DAX and FTSE 

υmax T 
Method 

CAC40 DAX FTSE CAC40 DAX FTSE

R/S 128 128 128 512 512 512 
M-R/S 128 128 128 512 512 512 
DFA-0 128 512 128 512 2048 512 
DFA-1 128 512 512 512 2048 2048 
DFA-2 128 256 128 512 1024 512 

 

The results of M-R/S analysis are quite straightforward for FTSE and indicate that 

short-term memory does not bias the estimates of R/S for this index. On the other hand, 

CAC40 seems to exhibit short-term memory which influences the estimates of R/S. 

Nevertheless, there are still periods which exhibit significant anti-persistence. However, the 

results must be interpreted with caution as M-R/S analysis show several persistent periods for 
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both CAC40 and FTSE even though there has been none shown for R/S. Nevertheless, the 

anti-persistence might still be caused by trends in the time series. Thus, we turn to analysis 

based on DFA-1. 

However, even DFA-1 analysis shows anti-persistent behavior for both CAC40 and 

FTSE and thus we can conclude that these indices exhibited several significantly anti-

persistent periods between September 2003 and September 2005. Let us now focus on 

patterns which show significant relation between time-dependent Hurst exponent and 

behavior of the indices (Chart 4-13, Chart 4-14 and Chart 4-15 in Section 4.4.2 for CAC40, 

DAX and FTSE, respectively). 

We start our analysis with CAC40. There are again several periods which show 

patterns of Hurst exponent behavior. There is a strong decreasing trend of H which starts at 

2.2.2001, bottoms at 14.2.2001 and is followed by an increasing trend which stabilizes at 

1.3.2001. Behavior is then independent as H is very close to 0.5 and deviates again from 

10.4.2001. The period between 2.2.2001 and 1.3.2001 is connected to 11% loss of CAC40 

index. 

Similar pattern starts at 7.8.2001 where a break from stable to strongly decreasing 

trend of Hurst exponent occurs. The decreasing trend stops at 14.8.2001 and is stable up till 

29.8.2001 where an increasing trend begins and reaches its maximum at 21.9.2001. This 

behavior is again connected to very significant loss of the index as between 29.8.2001 and 

21.9.2001, CAC40 index lost 30.20% of its value. 

Both of the mentioned patterns were present when R/S analysis was used. DFA-1 

shows different breaks in the behavior of Hurst exponent. Pattern similar to those already 

showed by R/S analysis starts at 16.3.2006 where significant decreasing trend begins and 

bottoms at 25.4.2006 which is in turn followed by increasing trend up 20.6.2006. Even though 

the significant increasing trend of Hurst exponent is connected with not such a significant 

cumulative loss of CAC40 (9.34%), the pattern again supports previous findings. 

There are two more interesting parts of Hurst exponent behavior present. The first one 

is an obvious transition which happened around 3.9.2003 for all used methods which is 

connected to change of market structure as the break is followed by long lasting increasing 

trend of index values. The second one is a pattern already showed in preceding indices – 

strongly increasing Hurst exponent during the financial crisis of 2008, mainly in the second 

half of the year. Interestingly, the pattern for CAC40 is connected with other of its patterns as 

it shows strong decreasing trend of H from 15.9.2008 which inverses at 1.10.2008 into strong 

increasing trend up till 13.10.2008. The period between 1.10.2008 and 10.10.2008 is 
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connected to a cumulative loss of 23.85%; on the other hand, a day of 13.10.2008 is 

connected to a gain of 10.59%. Nonetheless, the dynamics of Hurst exponent is again strongly 

connected to the behavior on the market. 

We follow our analysis with DAX. The pattern, which starts at 4.7.2001 with slowly 

decreasing trend of Hurst exponent down to 30.8.2001 where the trend bottoms and reverses 

into strongly increasing trend up till 20.9.2001, is connected to a huge loss of 33.90% of DAX 

value. Other pattern shows again a strong decreasing (from 19.8.2002 to 4.9.2002) and 

increasing trend (from 26.9.2002 to 10.10.2002) of Hurst exponent. However, the reversal 

between the two is not immediate and there is a period of quite stable or only slightly 

increasing trend of the exponent. The period from the bottom of the decreasing trend to the 

end of the increasing trend is connected with a cumulative loss of 21.80%. The whole period 

is then connected with even more severe loss of 29.87%. 

Another pattern is linked to the financial crisis of 2008. Behavior is again connected 

with the switch between strong decreasing and strong increasing trend of Hurst exponent. The 

critical dates are 24.9.2008, 1.10.2008 and 16.10.2008. The increasing trend is joined by a 

cumulative loss of 23.22% and whole period is connected with even deeper cumulative loss of 

27.21%. Similarly to other indices, this period shows the most significant losses of the 

financial crisis.  

The last pattern of DAX is different from the ones presented up till now. The main 

difference is the fact that significant increasing trend is not preceded by any significant 

decreasing trend and is rather preceded by stable Hurst exponent behavior. The strong 

increasing trend is present between 15.5.2006 and 15.6.2006 which is connected to a 

cumulative loss of 7.71% which is rather modest. Nonetheless, the loss in value of DAX starts 

quite earlier at 9.5.2006 and bottoms at 13.6.2006 and is equal to 14.66%, almost a double of 

a loss connected visibly to Hurst exponent trending. Therefore, the behavior of Hurst 

exponent suggests that it took investors several days to react to the trend or rather to believe 

that the trend is not only a short term episode.  

The last index of the Western Europe, which we examine, is FTSE. If we check for 

patterns, we can’t find any of the most typical type observed for above examined indices 

(strong decreasing trend of Hurst exponent followed immediately by strong increasing one). 

However, there are two visible by the naked eye and these are two waves between 26.4.2002 

and 16.4.2003 of DFA-1. 

The wave shows a strong increasing trend starting at 9.5.2002 and peaking at 

16.7.2002 and is connected with a cumulative loss of 25.87%. The other wave shows similar 
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relationship. Increasing trend starting at 2.12.2002 and reaching its peak at 4.2.2003 is 

connected with a cumulative loss of 14.96%. Therefore, both waves of Hurst exponent show 

very similar connection to the returns of FTSE index. 

The last pattern is again connected with the biggest losses during the financial crisis of 

2008. We can see quite modest decreasing trend of Hurst exponent starting at 1.9.2008 which 

turns into several consecutive downward movements from 23.9.2008 to 1.10.2008 which are 

followed by an upward movement of Hurst exponent. An increasing trend follows and peaks 

at 16.10.2008. The whole mentioned period is connected with a huge cumulative loss of 

37.83%. Nevertheless, the period between the shift of behavior from a decreasing to an 

increasing trend is connected with a cumulative loss of 25.03% which is even more severe if 

considering the length of the period (11 trading days compared to 34 of the whole period). 

The interpretation is similar to the ones above – decreasing Hurst exponent indicates 

increasing uncertainty and investors’ nervousness which turns into panic while the trend 

breaks. 
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4.4.2 Charts for the Western Europe 

Chart 4-12 Time-dependent Hurst exponent for CAC40, DAX and FTSE 
(a) 

0

0,2

0,4

0,6

0,8

1

25
.1.

20
01

25
.7.

20
01

25
.1.

20
02

25
.7.

20
02

25
.1.

20
03

25
.7.

20
03

25
.1.

20
04

25
.7.

20
04

25
.1.

20
05

25
.7.

20
05

25
.1.

20
06

25
.7.

20
06

25
.1.

20
07

25
.7.

20
07

25
.1.

20
08

25
.7.

20
08

re
sc

al
ed

 H
ur

st
 e

xp
on

en
t

CAC40 DAX FTSE
 

(b) 

0

0,2

0,4

0,6

0,8

1

25
.1.

20
01

25
.7.

20
01

25
.1.

20
02

25
.7.

20
02

25
.1.

20
03

25
.7.

20
03

25
.1.

20
04

25
.7.

20
04

25
.1.

20
05

25
.7.

20
05

25
.1.

20
06

25
.7.

20
06

25
.1.

20
07

25
.7.

20
07

25
.1.

20
08

25
.7.

20
08

re
sc

al
ed

 H
ur

st
 e

xp
on

en
t

CAC40 DAX FTSE
 

(c) 

0

0,2

0,4

0,6

0,8

1

1,2

25
.1.

20
01

25
.7.

20
01

25
.1.

20
02

25
.7.

20
02

25
.1.

20
03

25
.7.

20
03

25
.1.

20
04

25
.7.

20
04

25
.1.

20
05

25
.7.

20
05

25
.1.

20
06

25
.7.

20
06

25
.1.

20
07

25
.7.

20
07

25
.1.

20
08

25
.7.

20
08

re
sc

al
ed

 H
ur

st
 e

xp
on

en
t

CAC40 DAX FTSE
 

Chart 4-12: (a) based on R/S, (b) based on M-R/S, (c) based on DFA-1: Time-dependent Hurst exponent and 
related confidence intervals are rescaled so that 0.2, 0.5 and 0.8 are in the middle of the confidence intervals for CAC40, 
DAX and FTSE, respectively. All indices very similar behavior of time-dependent Hurst exponent with almost two years 
long period of anti-persistent and very close to anti-persistent behavior between 09/2003 and 09/2005 for CAC40 and FTSE. 
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Chart 4-13 CAC40 relationship between time-dependent Hurst exponent and index values 
(a) (b) 
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Chart 4-13: (a) H based on R/S, (b) H based on R/S, (c) H based on R/S, (d) H based on DFA-1 during 
financial crisis of 2008: Charts show patterns between time-dependent Hurst exponent (right y-axis) and significant 
movements in CAC40 values (left y-axis). 
 
Chart 4-14 DAX relationship between time-dependent Hurst exponent and index values 
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Chart 4-14: (a) H based on R/S, (b) H based on DFA-1, (c) H based on DFA-1, (d) H based on DFA-1 during 
financial crisis of 2008: Charts show patterns between time-dependent Hurst exponent (right y-axis) and significant 
movements in DAX values (left y-axis). 
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Chart 4-15 FTSE relationship between time-dependent Hurst exponent and index values 
(a) (b) 
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Chart 4-15: (a) H based on DFA-1, (b) H based on DFA-1, (c) H based on DFA-1 during financial crisis of 
2008: Charts show patterns between time-dependent Hurst exponent (right y-axis) and significant movements in FTSE values 
(left y-axis). 

4.4.3 USA 

The methodology of the research of the US indices is similar to the one of the Western 

European indices. We have chosen this approach because we have different indices for one 

economy. There can be several separations done. Firstly, DJI30 is the index of NYSE; 

NASDAQ is the index of NASDAQ, obviously; and SP500 is the index of both NASDAQ 

and NYSE. Secondly, DJI30 is a sector index and the other two are broad market indices. 

Thirdly, the breadth of the indices is quite different. The number of stocks included in indices 

is quite obvious from their names in case of DJI30 and SP500. NASDAQ consists of almost 

3000 stocks71. 

Therefore, there are several expectations based on above noted differences. DJI30 is 

expected to show the least independent behavior or even dependent during several periods. 

On the other hand, NASDAQ is expected to behave the most efficiently with some respect to 

potential biases caused by trends which might be present as NASDAQ generally lists stocks 

of technologic companies. The same is in turn expected for DJI30 – trending may bias the 

results. Let us follow with standard long-term dependence detection procedure. 

We present standard crossover detections for DJI30, SP500 and NASDAQ in Chart 0-

18, Chart 0-19 and Chart 0-20 in Appendix, respectively, and sum the proposed maximum 
                                                 
71 See finance.yahoo.com for specific stocks. 
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scales in Table 4-7. The results lead to several conclusions. All indices stock a common 

feature of maximum scale proposed for DFA-2 which is lower than the one proposed for 

DFA-1. This behavior leads to strong conclusion that a maximum trending is linear while the 

quadratic one biases the estimates. Therefore, we omit DFA-2 from the examination of all the 

US indices. The same is true for DFA-1 in the case of DJI30 and therefore only DFA-0 is 

recommended for this index. Nevertheless, we use DFA-1 as a detrending method as well for 

the sake of comparison. Further, DJI30 scales very differently when compared with other 

indices and shows a scaling behavior up to only half a trading year. However, if M-R/S and 

DFA-0 methods are used, it shows the maximum available scale. Therefore, short-term 

memory is expected to be present in the process of DJI30. It must be noted that the most of 

the crossovers found were weak and the behavior of V statistics was close to constant which 

implies that all indices are expected to be independent or very close to independent. 

 
Table 4-7 Crossover detection results for US indices 

υmax T 
Method 

DJI30 SP500 NASDAQ DJI30 SP500 NASDAQ
R/S 128 256 256 512 1024 1024 

M-R/S 512 256 256 2048 1024 1024 
DFA-0 512 512 256 2048 2048 1024 
DFA-1 256 512 512 1024 2048 2048 
DFA-2 128 256 256 512 1024 1024 

 
Let us move to time-dependent Hurst exponent analysis (Chart 4-16 in Section 4.4.4). 

We start with the results of R/S analysis. NASDAQ shows an independent behavior during 

whole examined period which is in hand with expectations. The second index, which is 

closest to independent behavior, is DJI30 which is quite surprising. There are three periods 

which are persistent but short, though. Nonetheless, we will check for short-term memory or 

trends later. SP500 shows an independent behavior up to approximately 3.5.2007 where H 

gets very close to lower confidence interval and in many cases even slips to an anti-persistent 

behavior.  

M-R/S analysis shows that short term memory process biased the estimates of R/S for 

SP500. DJI30 remains persistent in the mentioned periods as for R/S estimates. However, a 

problem of a pattern that was already tackled while examining SAX occurs. Unfortunately, 

we cannot use the same method as we did for SAX as using minimum range of 32 trading 

days together with maximum range of 128 trading days leaves us with only three rescaled 
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range statistics72 to estimate H. Therefore, we need to stick with minimum range of 16 trading 

days which implies that the presence of long-term memory was not caused by a short term 

memory bias. 

As no long-term dependence was shown for SP500 and NASDAQ, we could examine 

only DJI30 with DFA. However, we present the results for DFA-1 for sake of classification of 

possible interesting patterns which were shown to be present even for independent time series 

(e.g. BUX and WIG). Moreover, DFA methods have shown interesting dynamics during the 

crisis of 2008. The results of DFA-1 are quite similar to the ones of R/S and M-R/S. The 

method cleared away almost all the persistence of DJI30. Nevertheless, DFA-1 is used mainly 

to uncover interesting patterns in the behavior of Hurst exponent of the indices. Let us now 

turn to these patterns (Chart 4-17, Chart 4-18 and Chart 4-19 in Section 4.4.4 for NASDAQ, 

SP500 and DJI30, respectively) 

We start with the examination of NASDAQ. There is a pattern between 23.11.2007 

and 10.3.2008. The strong increasing trend between mentioned dates is connected with a 

cumulative loss of 16.64% of the index. Even though the loss is not huge considering the 

length of the period, the behavior of Hurst exponent again shows that there is a connection 

between the increasing Hurst exponent and ongoing trends of the indices as was shown in 

almost all examined indices. 

Other pattern is connected to the financial crisis of 2008. We compare NASDAQ 

values and estimates of Hurst exponent based on both R/S and DFA-1. R/S analysis shows a 

decreasing trend of Hurst exponent starting at 20.8.2008 up to 15.9.2008 where the trend 

reverses to an increasing trend which peaks at 10.10.2008. The whole period is connected 

with a cumulative loss of 36.85% while the increasing trend of the exponent is connected to a 

loss of 31.54%. DFA-1 shows quite different results. The decreasing trend of the exponent 

starts already at 18.8.2008 and stops at 22.9.2008 where the dynamics stabilize or at least 

slows and quite a strong increasing trend starts at 6.10.2008 and tops at 24.10.2008. The last 

trend is connected to a cumulative loss of 22.69%. The whole period is in hand with a loss of 

45.76%. Therefore, we can see similar behavior of the investors which was present at the 

other indices. The positive mood of the investors vanished and turned into increasing 

nervousness and uncertainty which eventually turned into following of the decreasing trend of 

the index.  

                                                 
72 See Weron (2002) for the estimates based on only three rescaled range statistics which show large standard 
deviations. 
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SP500 shows the most interesting dynamics during the financial crisis of 2008. The 

peak of the index is the same as the peak of Hurst exponent at 16.5.2008. The exponent then 

falls into six consecutive decreases and bottoms at 27.5.2008 where the behavior switches into 

slow increasing trend peaking at 2.7.2008. Even though the latter trend is connected with a 

cumulative loss of only 8.68%, it shows rather fast transition of the market mood. The 

position of the market then stays in rather slowly increasing trend of the exponent up till 

20.8.2008 where the behavior again switches into strongly decreasing trend which bottoms at 

22.9.2008 where the reversal into strong increasing trend again occurs. The period of the 

increasing trend is connected with significant cumulative loss of 32% of the index. Therefore, 

the whole period starting at 19.2.2008 to the end of the examined period at 20.1.2009 can be 

described as the end of growing trend which was driven by a positive mood of the investors 

and which was in turn switched into negative expectations which turned out to be true. 

The evolution of Hurst exponent based on DFA-1, however, yields quite different 

results. The decreasing trend of the exponent starts already at 6.3.2008 and bottoms at 

28.5.2008 where it suddenly inverses into an increasing trend which peaks at 10.11.2008. The 

period of the increasing Hurst exponent is connected with a cumulative loss of 41.02% of 

SP500 index. The interpretation is the same – increasing uncertainty followed by strong 

decreasing trend in the index. 

DJI30 shows more interesting dynamics compared to the other indices as was 

expected. The pattern which, we can now say, is quite typical shows a decreasing Hurst 

exponent from 8.2.2002 to the bottom at 5.4.2002 where the trend turns into an increasing 

trend which peaks at 22.7.2002. The increasing trend is again connected to a significant 

cumulative loss of 26.95% of the value of DJI30.  

The other pattern is again rather typical and shows increasing uncertainty on the 

market despite the increasing trend of the index. The decreasing trend is visible for more than 

100 trading days and hits its bottom at 12.5.2006 where it turns into strong increasing trend 

which peaks at 13.6.2006. Even though a cumulative loss connected to the latter trend equals 

only to 7.16% of the index, the pattern is similar to the ones already presented. Therefore, we 

can see that the patterns are not sufficient conditions for the market change but rather 

necessary. 

The last pattern is quite expectedly connected to the financial crisis of 2008. The 

decreasing trend connected with an increasing uncertainty bottoms at 22.9.2008 and turns into 

the increasing one peaking at 9.10.2008 which is connected to a cumulative loss of 28.33%. 

After the last mentioned observation, the decreasing trend comes and ends at 5.11.2008 and 
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reaches its maximum at 17.11.2008. The latter trend is again connected to significant 

cumulative losses of 15.13%. 
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4.4.4 Charts for the USA 

Chart 4-16 Time-dependent Hurst exponent for DJI30, SP500 and NASDAQ 
(a) 
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Chart 4-16: (a) based on R/S, (b) based on M-R/S, (c) based on DFA-1: Time-dependent Hurst exponent and 
related confidence intervals are rescaled so that 0, 0.4 and 0.8 are in the middle of the confidence intervals for DJI30, SP500 
and NASDAQ, respectively. DJI30 shows that long-term dependence is caused by trends in the time series, NASDAQ is 
efficient for the whole examined period and SP500 shows several periods of anti-persistent behavior which is not caused by 
short-term memory or trends. 
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Chart 4-17 NASDAQ relationship between time-dependent Hurst exponent and index values 
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Chart 4-17: (a) H based on DFA-1, (b) H based on DFA-1, (c) H based on DFA-1 and R/S during financial 
crisis of 2008: Charts show patterns between time-dependent Hurst exponent (right y-axis) and significant movements in 
NASDAQ values (left y-axis). 
 
Chart 4-18 SP500 relationship between time-dependent Hurst exponent and index values 

(a) (b) 

700

900

1100

1300

1500

19
.2.

20
08

19
.3.

20
08

19
.4.

20
08

19
.5.

20
08

19
.6.

20
08

19
.7.

20
08

19
.8.

20
08

19
.9.

20
08

19
.10

.200
8

19
.11

.200
8

19
.12

.200
8

19
.1.

20
09

0,46

0,48

0,5

0,52

0,54

0,56

SP500 Hurst exponent (R/S)

700

900

1100

1300

1500

19
.2.

20
08

19
.3.

20
08

19
.4.

20
08

19
.5.

20
08

19
.6.

20
08

19
.7.

20
08

19
.8.

20
08

19
.9.

20
08

19
.10

.200
8

19
.11

.200
8

19
.12

.200
8

19
.1.

20
09

0,4

0,42

0,44

0,46

0,48

0,5

0,52

SP500 Hurst exponent (DFA-1)

Chart 4-18: (a) H based on R/S during financial crisis of 2008, (b) H based on DFA-1 and R/S during 
financial crisis of 2008: Charts show patterns between time-dependent Hurst exponent (right y-axis) and significant 
movements in SP500 values (left y-axis). 
 
Chart 4-19 DJI30 relationship between time-dependent Hurst exponent and index values 
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Chart 4-19: (a) H based on R/S, (b) H based on DFA-1, (c) H based on DFA-1 during financial crisis of 
2008: Charts show patterns between time-dependent Hurst exponent (right y-axis) and significant movements in DJI30 values 
(left y-axis). 
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4.4.5 Comparison of indices of Western Europe and the USA 

The analysis of the indices of developed economics has shown several interesting 

results. We showed that CAC40, FTSE and SP500 were anti-persistent during several periods 

which points out to the mere existence of this phenomena in financial time series. There are 

only several researchers who found anti-persistence; however, the anti-persistence was mostly 

insignificant (Di Matteo, 2007). Moreover, some quite recent papers about long-term memory 

processes have not taken anti-persistence connected to the financial markets into 

consideration at all (e.g. Lillo & Farmer, 2004 and Taqqu, Teverovsky & Willinger, 1995). 

However, our results show significant anti-persistence and such behavior should be subject to 

further research. We have also shown that the indices of the Western Europe are rather 

different from the ones of the USA in a sense of time-dependent H behavior.  

For more detailed relationship analysis of Western Europe and the USA, we compare 

correlations of time-dependent Hurst exponent, which were again based on a maximum scale 

of 128 trading days, and we present Table 4-8, Table 4-9 and Table 4-10. 

 
Table 4-8 Correlations of time-dependent H (R/S) for indices of Western Europe and the USA 

 DAX FTSE CAC DJI NASDAQ SP 

DAX 1      

FTSE 0,431708 1     

CAC 0,730905 0,558112 1    

DJI 0,306398 0,311075 0,12111 1   

NASDAQ 0,3264 0,648306 0,444827 0,349786 1  

SP 0,249142 0,299979 0,033824 0,793742 0,347699 1 

 

The mostly correlated indices are quite expectedly pairs SP500 - DJI30 and DAX – 

CAC40. Further, all the indices of the Western Europe are strongly correlated (with exception 

of pair FTSE – DAX which shows medium correlation). Quite interestingly, CAC40 shows 

weak or no correlation at all with DJI30 and SP500. Also, NASDAQ shows only medium 

correlation with SP500 and DJI30; on the other hand, NASDAQ is strongly correlated with 

FTSE. For the comparison and confirmation, we present results for DFA-1 and DFA-2. 

 
Table 4-9 Correlations of time-dependent H (DFA-1) for indices of Western Europe and the USA 

 DAX FTSE CAC DJI NASDAQ SP 

DAX 1      

FTSE 0,61355 1     

CAC 0,851346 0,746557 1    

DJI 0,716294 0,464963 0,532585 1   

NASDAQ 0,489885 0,661039 0,509113 0,485312 1  

SP 0,627521 0,469759 0,423351 0,854654 0,588312 1 
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Both methods show quite similar results – all the correlations are even stronger for all 

pairs of the indices. Therefore, we can state an important conclusion – the indices of the 

Western Europe and the USA are positively correlated in the sense of changes of market 

dynamics and mood. 

 
Table 4-10 Correlations of time-dependent H (DFA-2) for indices of Western Europe and the USA 

 DAX FTSE CAC DJI NASDAQ SP 

DAX 1      

FTSE 0,523119 1     

CAC 0,844103 0,629008 1    

DJI 0,573599 0,393236 0,311605 1   

NASDAQ 0,478637 0,577908 0,310696 0,83379 1  

SP 0,592486 0,412485 0,339927 0,928694 0,811595 1 

 
The indices of the Western Europe reacted rather similarly to the financial crisis of 

2008 (Chart 4-20). However, the reaction is quite different from the one of the indices of the 

Central Europe. The examined indices behaved independently for the first four months of 

2008. After that period, quite strong increasing trend of Hurst exponent occurs for all three 

markets. The trend is connected with the first wave of significant losses. However, the most 

severe negative returns occur after quite long decreasing period of Hurst exponent when the 

significant jump of the exponent occurs. Quite importantly, the jump is present for all three 

indices at the same time and is followed by slow decreasing trend of the exponent for all 

indices. 

 
Chart 4-20 Comparison of CAC40, DAX and FTSE during financial crisis of 2008 
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The dynamics is rather different for the US indices (Chart 4-21). The year of 2008 

starts with a decreasing trend of Hurst exponent for all DJI30, SP500 and NASDAQ and 

quickly (after a month) switches into an increasing trend of the exponent which lasted to the 

half of July 2008 for all indices. The exponent then fell significantly and performed rather 
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stable for almost a quarter of the year. After the stable period, significant jump of similar 

magnitude appears and is again connected to the most significant losses of the whole financial 

crisis of 2008. Importantly, the jump occurs between 7th and 9th October 2008 which is the 

same as for the indices of the Western Europe. Thus, the Western Europe and the USA 

reacted rapidly to the biggest losses of the crisis while the Central Europe reacted rather 

slowly. This implies that the belief of negative prospects spilled over from Western countries 

to the ones of the Central Europe. 

 
Chart 4-21 DJI, NASDAQ and SP500 and time-dependent H during financial crisis of 2008 
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When we compare the efficiency of the markets, we have clear winners in NASDAQ 

and DAX, which have not shown a single long-term dependent period, are stationary and thus 

both S65 and F65 efficient. All the other indices are S65 efficient as there has been no 

persistent behavior shown but none of them has been F65 efficient for the whole examined 

period. CAC40, FTSE and SP500 have experienced significantly anti-persistent behavior. 

Moreover, SP500 has also exhibited significant short-term memory which rejects the 

hypothesis of a random walk as well. On the other hand, DJI30 has followed significant trends 

during several periods and thus again rejects a random walk model of its behavior. 

Nevertheless, the efficiency of last two years can be summed by both F65 and S65 efficient 

markets for all indices but one. SP500 has been anti-persistent during several short periods 

and thus is the least efficient of the Western countries. Let us turn to the analysis of the 

indices of China and Japan.  

4.5 Asian Economies 

At last, we present the analysis of two indices – SSEC and NIKKEI. As China and 

Japan have undergone different evolution of the financial markets, we expect rather different 
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results. We present standard procedures for long-term memory detection for both indices. We 

start with examination of SSEC and follow with NIKKEI. Two last parts of the chapter 

compare the results and present the charts. 

4.5.1 China 

We start our analysis with a crossover detection which is presented in Chart 0-21 in 

Appendix. R/S, M-R/S, DFA-0 and DFA-2 all show no crossovers in the process and 

therefore no cycles. On the other hand, DFA-1 shows a crossover at a scale of 128 trading 

days. Even though the crossover is not significant, it is supported by the evolution of point to 

point derivatives of H. However, if we check the V statistic evolution of DFA-0, we recognize 

that the statistic behaves almost constantly between scales of 128 and 256 trading days. The 

result is again supported by point to point derivatives. Therefore, the results suggest that there 

is a quadratic trend in the time series which causes crossovers in DFA-0 and DFA-1. 

However, neither R/S nor M-R/S show such a crossover. Therefore, we use R/S, M-R/S and 

DFA-2 as the other DFA methods can be biased. Despite the fact that all methods with 

exception of DFA-1 show no significant crossover, we choose a maximum scale of 256 

trading days as it does not lead to biased results and the longer period can be examined73. Let 

us proceed with time-dependent Hurst exponent analysis which is summed in Chart 4-33 in 

Section 4.5.4. 

R/S analysis shows a behavior which varies around the higher confidence interval, 

which separates an independent and a persistent behavior, for the most of the examined 

period. Interestingly, H decreases significantly from 22.7.2008 to the end of examined period 

which is in contrast with majority of already examined indices. M-R/S analysis shows very 

similar results to R/S analysis. However, there is no persistent behavior after 25.9.2007 

according to M-R/S which implies that there was an increasing influence of short-term 

memory process in the last year of examination. Nonetheless, there may still be a bias caused 

by trends and non-stationarity of the time series. 

DFA-2 shows stronger decreasing trend of Hurst exponent for the whole examined 

period. Thus, the decreasing trend is supported by all used methods and therefore SSEC 

shows clear movement to more efficient market. Moreover, the decrease below upper 

confidence interval, which continues to the end of examined period (20.1.2009), is again 

                                                 
73 The use of maximum scale of 512 trading days would lead to only 333 trading days with estimated H. 
However, we want to compare the evolution of H for longer periods. 
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present for all used methods and suggests that the financial crisis of 2008 rather helped SSEC 

in the sense of efficiency.  

Quite interestingly, there are no patterns in the relationship between Hurst exponent 

and SSEC index but one which is connected with the global peak of SSEC at 16.10.2007. The 

peak is preceded by significantly growing Hurst exponent that peaks at the same point as 

SSEC. The dynamics significantly changes, then, as there is very strong decreasing trend 

bottoming at 9.11.2007 which in turn switches to rather volatile behavior up till 27.12.2007 

where very strong increasing trend begins. The exponent stabilizes around upper confidence 

interval, then. Therefore, Hurst exponent shows that turning point of the index is connected 

with belief of investors. The pattern is presented in Chart 4-35 in Section 4.4.4.     

What is, however, even more interesting and for the sake of comparison more 

important is the fact that all used methods show strong decreasing trend of Hurst exponent. 

Therefore, we can make strong conclusion that SSEC switched to more efficient market 

during the financial crisis of 2008. We now follow with the analysis of the last index – 

NIKKEI. 

4.5.2 Japan 

We present the crossovers detection for NIKKEI in Chart 0-22. However, the analysis 

shows quite inconclusive results for all methods as there is a crossover at a scale of 64 trading 

days which would give us only three points for Hurst exponent estimation which was 

discarded in the text above, already. Therefore, we choose a maximum scale of 128 trading 

days as it is the closest one to the one detected and point to point derivatives of H do not show 

volatile behavior for all methods with an exception of DFA-1. Therefore, we omit the method 

based on linear detrending as its results would not be reliable. Nonetheless, all the methods 

imply that the behavior of NIKKEI is either independent or very close to it. Moreover, we can 

expect several periods of an anti-persistent behavior which is in hand with the results of 

CAC40, FTSE and SP500. We follow with the examination of behavior of Hurst exponent 

(Chart 4-34 in Section 4.5.4)  

As expected, R/S analysis shows periods of anti-persistent behavior during similar 

periods as indices of developed economies did. Moreover, M-R/S analysis shows that a short-

term memory process does not bias the estimates of H based on R/S. DFA-2 cleared most of 

the dependence in the time series. Nonetheless, there are still several anti-persistent periods 

remaining and even one persistent period emerges at 5.11.2008. Even though the periods 

marked as anti-persistent by R/S and M-R/S are independent if checked by DFA-2, they still 
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remain rather close to the lower confidence interval. Despite the fact that the behavior of 

Hurst exponent for all methods is rather volatile in time, there are still two periods with 

interesting patterns. 

The first one is similar to the most common pattern present in the time series, slowly 

decreasing trend of Hurst exponent starts at 19.11.2007 and bottoms at 28.12.2007 where it 

reverses into rather rapid increasing trend which vanishes at 22.1.2008. The strong increasing 

trend is connected with a cumulative loss of 21.35% of the index. The interpretation is again 

the same – increasing uncertainty which turns into strong belief of continuing downward 

trend. 

The second pattern starts with rather stable behavior of Hurst exponent followed by 

strong increasing trend of the exponent which is connected with significant negative returns. 

The strong increasing trend begins at 30.7.2007 and peaks at 17.8.2007. This trend is linked 

with a cumulative loss of 12.36% and can be explained as a change of behavior of the 

investors who came to believe that the slowly starting decreasing trend of NIKKEI is about to 

persist. 

As it was already mentioned, DFA-2 shows significant upward jump in Hurst 

exponent during the year of 2008. However, the evolution is rather different from the ones of 

comparable indices (CAC40, DAX and FTSE). It is needed to point out that we use DFA-2 as 

a detrending method compared to DFA-1 used for indices of the Western Europe and 

therefore, the comparison is not straightforward. Nonetheless, the significant increase of Hurst 

exponent is present as well and is foregone by downward sloping trend of the exponent. 

Interestingly, Hurst exponent jumps to significantly persistent behavior and even though it 

goes below the confidence interval after three persistent observations between 1.9.2008 and 

3.9.2008, the estimates of the exponent remain close to the critical value. In spite of the fact 

that persistent values of Hurst exponent are not directly connected to the start of the most 

significant losses of the index (60.89% between 11.8.2008 and 27.10.2008), these losses are 

again in hand with increasing trend of Hurst exponent. We can again see the decreasing trend 

of the exponent as the mood on the market was worsening and eventually turned into huge 

losses connected with belief of the investors that the turbulence is not to pass quickly. Let us 

now compare the results for Asian indices in the following section. 
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4.5.3 Comparison of Asian indices 

Both indices have shown different behavior and therefore, there is little to compare74. 

Nonetheless, we present the dynamics of Hurst exponent during the financial crisis of 2008 

(Chart 4-22). We can see that Hurst exponent of both indices behaved rather differently and 

the dynamics is almost perfectly negatively correlated during last quarter of 2008. 

Nevertheless, NIKKEI shows the same behavior as the indices of the Western Europe and the 

USA – slow decreasing trend of the exponent with rapid increase in the beginning of October 

2008 followed by slow decreasing trend. 

 
Chart 4-22 Comparison of SSEC and NIKKEI during financial crisis of 2008 
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4.5.4 Charts for Asian indices 

Chart 4-23 SSEC time-dependent Hurst exponent 
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Chart 4-23: (a) Time-dependent H based on R/S, (b) Time-dependent H based on M-R/S, (c) Time-
                                                 
74 Comparison of both NIKKEI and SSEC with other indices is present in Section 4.6. 
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dependent H based on DFA-2: Constant solid lines present upper and lower confidence intervals (2.5% and 97.5%). 
Curved solid lines show linear trends of Hurst exponent. 
 
 



Chapter 4    Fractality of world stock markets 
 

 87  

Chart 4-24 NIKKEI time-dependent Hurst exponent 
(a) (b) 
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Chart 4-24: (a) Time-dependent H based on R/S, (b) Time-dependent H based on M-R/S, (c) Time-
dependent H based on DFA-2: Constant solid lines present upper and lower confidence intervals (2.5% and 97.5%). 
Curved solid lines show linear trends of Hurst exponent. 
 
Chart 4-25 SSEC and NIKKEI relationship between time-dependent Hurst exponent and index values 
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Chart 4-25: (a) H based on R/S for SSEC, (b) H based on R/S for NIKKEI, (c) H based on R/S for NIKKEI, 
(d) H based on R/S during financial crisis of 2008 for NIKKEI: Charts show patterns between time-dependent Hurst 
exponent (right y-axis) and significant movements in SSEC and NIKKEI values (left y-axis). 
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4.6 Comparison and conclusions 

The examination of daily time series has shown several interesting results which were 

not, to our best knowledge, covered in any literature yet. 

The investigation of Central European indices has revealed that all the indices have to 

be considered separately as the results for long term memory tests have yielded very different 

evolution for each market or couple of markets at most. Czech and Austrian indices (PX and 

ATX, respectively) have shown decreasing trend of Hurst exponent estimates (starting in a 

persistent phase and eventually reaching an independent one). Nonetheless, there still is quite 

a difference in the fact that PX was persistent for shorter period but remains very close to 

upper confidence interval which separates independent and persistent phase up to recent days. 

On the other hand, ATX started at higher levels of persistence but showed very quick 

transition to independent behavior far from both confidence intervals. Hungarian and Polish 

indices (BUX and WIG20, respectively), quite surprisingly, have shown an independent 

behavior through the whole examination period. Slovakian index (SAX) has shown 

significantly different results from other indices of this group. The index has experienced an 

increasing trend of Hurst exponent which has not been caused by either short term memory or 

trends in the time series. The trend has stabilized in the persistent region, then. Nevertheless, 

SAX examination has displayed a pitfall of M-R/S which has not been obvious during the 

investigation of other indices. The modified standard deviation estimator can be significantly 

biased when the time series includes several consequent zero returns. The estimator is thus 

underestimated and in turn overestimates the rescaled range leveraging downwards the 

estimate of Hurst exponent. Therefore, the special caution is suggested when a repeating 

pattern of significant jumps is present in time-dependent Hurst exponent estimates. 

Indices of the Western Europe have shown very similar behavior. The indices of 

Germany, the UK and France (DAX, FTSE and CAC40, respectively) are independent in the 

vast majority of the estimation period. DAX has shown no dependent period at all. However, 

it has shown that the use of DFA techniques can yield dependent behavior in several periods 

which agreed to the fact that DFA methods yield biased estimates of Hurst exponent when 

there are no non-stationarities present in the time series. FTSE and CAC40 have shown an 

anti-persistent behavior during similar periods. However, the dependency is much lower for 

FTSE. Moreover, behavior of FTSE seems to be partly caused by trends in the time series. 

Nonetheless, the anti-persistency was not cleared even by DFA-2. CAC40, on the other hand, 
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shows quite similar anti-persistency no matter the estimation method. Last but not least is the 

fact that all three indices show the same cycle of the length of half a trading year. 

As for the US indices, they yield expected results in the sense of independence as all 

examined indices are either independent or dependent during only several periods. However, 

the results have showed some new features which were not covered by other indices. 

Estimates of SP500 were biased by short-term memory. On the other hand, estimates of DJI30 

were biased by trends. Generally, DJI30 behaved differently when compared to the other US 

indices. Not only did it show persistent behavior in several periods, it also exhibited a cycle of 

half a trading year in comparison to the whole trading year of all other indices. 

The Asian indices show strongly different performance compared to each other. 

NIKKEI index behaves in a very similar manner as the indices of the Western Europe – 

several periods of an anti-persistent behavior, which are caused by neither short-term memory 

nor trending of the time series. On the other hand, the crossover detection showed a cycle of 

only 64 days or no cycles at all as V statistics behaved in rather non-monotonous way and 

point to point derivatives of H were inconclusive as well. SSEC has shown behavior, which is 

on the edge of independence and persistence, for almost whole examination period. The 

persistent features of the index vanish during last trading year where Hurst exponent shows a 

decreasing trend to an independent region. This trend is in contrast with the results of other 

indices (with exception of SAX) as they show rather increasing trend of Hurst exponent 

during 2008. 

The correlation analysis has revealed quite strong connection of ATX to the rest of 

Central European region. Other results supported previous findings such as a close connection 

between CAC40, DAX and FTSE as well as the expected connection between SP500 and 

DJI30. However, we still need to check the correlation for all pairs of indices. The results are 

summed in Table 0-1, Table 0-2 and Table 0-3 in Appendix for R/S, DFA-1 and DFA-2, 

respectively. The most interesting implications, which were not covered in previous sections, 

are as follows. 

PX as the only one from the Central European indices has medium positive correlation 

with all three examined US indices based on all methods used for correlation analysis. 

Moreover, the index shows medium positive correlation with FTSE and weak positive one 

with DAX, CAC40 and NIKKEI. On the other hand, BUX and WIG20 show no significant 

correlations with any of the indices from other regions. Interestingly, SAX is weakly 

positively correlated with DAX and CAC40 while being medium positively correlated with 

NASDAQ. ATX shows medium positive correlation with FTSE. NIKKEI, quite expectedly, 
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shows medium positive correlation with all of CAC40, FTSE and DAX. SSEC, on the other 

hand, shows no significant correlations with exception of rather random medium positive 

correlation with ATX. Therefore, the correlation analysis has shown that NIKKEI is strongly 

connected to the indices of the Western Europe as well as is PX which is additionally 

correlated with the US indices. 

As for the efficiency of the indices, NASDAQ and DAX are the only indices which 

were efficient during whole examined period. Other indices showed at least several periods 

for which they were inefficient in either F65 or S65 sense. ATX, BUX and WIG20 have been 

shown to be non-stationary and thus inefficient in F65 even before long-term memory 

analysis. Nevertheless, BUX and WIG20 were independent for the whole examined period 

and thus S65 efficient. ATX, on the other hand, moved from inefficient to S65 efficient 

market in 2006. PX moved from inefficient to efficient market in 2007 and remained so until 

the end of the examined period. CAC40, FTSE, NIKKEI and SP500 were efficient during 

majority of the examined period while experiencing several anti-persistent periods which are 

connected with F65 inefficiency. SSEC showed stable movement towards efficiency of both 

types while SAX, reversely, was becoming less efficient in time and thus is the least efficient 

overall.    

For the methodological part, the detection of crossovers based on point to point 

derivatives of Hurst exponent has supported the assertion made in Chapter 3 which is the use 

of minimum scale of 16 trading days. The reason is straightforward as point to point 

derivatives were in vast majority of cases higher than one and usually three or even four times 

higher than average value of the rest of the derivatives. In the same way, the use of one fourth 

of time series length as a maximum scale was supported in a similar way as again for a vast 

majority of cases, point to point derivatives significantly deviated from the other ones.  
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 Conclusion  
We have shown that neither methodology nor applications of Hurst exponent 

estimations are uniform throughout the literature. The unification and improvement of current 

techniques have been the main aim of the thesis. We have arrived to several interesting 

theoretical as well as applied results.  

On the methodological part, we have shown that asymptotic limits of H being equal to 

0.5 are far from finite sample estimates for random time series for R/S and M-R/S analysis. 

Both methods have shown that the estimates are higher than the limit in infinity. On the other 

hand, we have confirmed the findings of several recent papers that DFA with a constant, a 

linear and a quadratic detrending show estimates of the exponent very close to its asymptotic 

limit. However, we argue that the result does not discredit R/S and M-R/S analysis. On the 

contrary, the simulations have showed that R/S and M-R/S analysis are not biased but need to 

be applied together with confidence intervals which have been constructed for various time 

series lengths for all presented methods. The use of confidence intervals also strongly rejects 

the method used by several authors who reject independence of the time series just on the 

basis of inequality of estimated H to its asymptotic limit of 0.5. The method has been shown 

to be absolutely incorrect as the confidence intervals are rather wide. 

Moreover, we have uncovered a weak point of M-R/S which occurs when the time 

series contains several consecutive zero returns. The problem was uncovered while examining 

SAX index and pointed out that the method can be highly biased as the estimate of modified 

standard deviation for low scales is highly underestimated. As a consequence, the estimate of 

modified rescaled range is strongly overestimated and the estimated Hurst exponent is in turn 

leveraged down. Therefore, liquidity of the market has been shown to be quite important for 

estimates of the exponent. 

As an interconnection between methodological and applied findings, we have shown 

that estimates which take into consideration all available scales can be unstable. On the basis 

of V statistic, we have shown that two highest scales are rather different from the others. 

Moreover, we have presented the results based on point to point derivatives of H which have 

supported the findings based on V statistic and additionally uncovered that the lowest scales 

act differently. The use of the lowest scales for the estimation of H yields overestimated 

results and the assertion has been shown to be stronger for DFA methods. Therefore, we 

propose to use the minimum scale of 16 trading days and the maximum scale of one fourth of 

the time series length for all of used methods. 
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The interesting results of applied part are summed in the previous section. 

Nonetheless, we present the most important ones. Indices are strongly interconnected at both 

their stage of independence and the dynamics. The most similar are the indices of the Western 

Europe (DAX, CAC40 and FTSE) which are also close to the index of Japan (NIKKEI). 

These indices also show the phenomena which has been discussed rarely in the literature – 

anti-persistence. When the long-term dependence was uncovered in the stock markets, it was 

mostly persistence which was driving the market. However, the indices of Western Europe 

and Japan show almost two years where the anti-persistence was present. 

Further, there have been several patterns present in almost all the indices. The most 

frequent one has been the change of market dynamics from a decreasing trend of Hurst 

exponent, which is connected with growing uncertainty of the investors, to an increasing one, 

which shows that the investors came to believe that the starting trend is about to continue for 

several periods. Such pattern was mostly connected with significantly negative returns. 

Furthermore, almost all indices reacted very similarly to the financial crisis of 2008. 

The crisis was preceded by slowly decreasing trend of Hurst exponent which reversed into 

slowly increasing trend of the exponent (Central Europe) or rapid increase of the exponent 

followed by relatively stable behavior close to the borderline between independent and 

persistent behavior (Western Europe, Japan and the USA). The index of Slovakia (SAX) has 

showed only mild reaction to the crisis. On the other hand, SSEC has been influenced by the 

crisis in different way. The start of the crisis has been connected with beginning of the 

decreasing trend of Hurst exponent which has led SSEC into independent behavior. 

Therefore, the financial crisis has led the index of China to higher efficiency. 

To sum the conclusions up, we have presented several new ideas and applications of 

the fractal approach to the financial markets and have showed that the fractality and 

specifically long-term dependence has been present in almost all the examined markets for at 

least some periods. Moreover, if the independence could not be rejected, there was interesting 

dynamics in the market which could be further examined. 
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 Appendix  

Gamma function and beta function 
Gamma function Γ is defined as 

( ) ( )!1−=Γ nn  for ℵ∈n      (0.1) 

and 

( ) ∫
∞

−−=Γ
0

1 dtetz tz  for ℜ∈z .     (0.2) 

 Equation (0.2) holds for complex numbers as well. However, we work with real 

numbers only. Following part covers only definitions needed for purposes of this thesis. For 

more detailed description, see Boisvert et al. (2008). 

 Beta function B is defined as 

( ) ( )∫ −− −=Β
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 The most important relationship between both functions for our purposes is 
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 Stirling’s asymptotic approximation of B for high x and high y states that 
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 Nevertheless, this approximation does not solve the computational problem for very 

high values of x and y. For high value of x and low value of y, Stirling’s asymptotic 

approximation of B is stated as 
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Distributions of simulated Hurst exponents 
Chart 0-1 Distributions of simulated Hurst exponents 
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Chart 0-1: (a) R/S, (b) M-R/S, (c) DFA-0, (d) DFA-1, (e) DFA-2: Charts show distributions of simulated Hurst exponents. 
For each time series length, 10000 simulations have been run with minimum scale of 16 and maximum scale of one fourth of the 
time series length. 
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Index values and returns charts 
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Chart 0-2 Index values of ATX, PX, BUX, WIG20 and SAX 
Index values are divided by initial value. Chart shows that PX, BUX and ATX behave very similarly; 
WIG20 has shorter data set but still behaves similarly to mentioned indices; SAX shows different 
evolution with much earlier peak. 
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Chart 0-3 Logarithmic returns of ATX, PX, BUX, WIG20 and SAX 
Logarithmic returns are adjusted by addition of 0.1, 0.35, 0.6, 0.85 and 1 to ATX, PX, BUX, WIG20 and 
SAX, respectively. Chart shows that SAX differs significantly from other indices as it is less liquid with 
many non-trading days. Other indices behave similarly to each other. 
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Chart 0-4 Prices of CAC40, DAX and FTSE 

Index values are divided by initial value (at 21.1.1999) and 0, 1, and 2 is added for FTSE, DAX and 
CAC40, respectively. All indices show very similar behavior with two peaks and two strong trends. 
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Chart 0-5 Returns for CAC40, DAX and FTSE 
Returns are rescaled by adding 0, 0.2 and 0.4 for DAX, FTSE and CAC40, respectively. All indices 
show increased volatility during same periods. 
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Chart 0-6 Prices of DJI30, NASDAQ and SP500 

Index values are divided by initial value (at 21.1.1999) and 0, 1, and 2 is added for NASDAQ, 
SP500 and DJI30, respectively. NASDAQ behaves differently during “DotCom” bubble; otherwise, 
the indices show similar behavior. 
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Chart 0-7 Returns of DJI30, NASDAQ and SP500 
Returns are rescaled by adding 0, 0.2 and 0.4 for SP500, NASDAQ and DJI30, respectively. All 
indices show increased volatility during the financial crisis of 2008. NASDAQ differs during 
“DotCom” bubble and following years where its volatility increased significantly compared to 
SP500 and DJI30. 
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Chart 0-8 Prices of SSEC and NIKKEI 
Index values are divided by initial value (at 21.1.1999). NIKKEI (left y-axis) shows behavior very 
similar to CAC40, DAX and FTSE (Chart 8-3). Behavior of SSEC (right y-axis) is unique when 
compared to other indices. 
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Chart 0-9 Returns of SSEC and NIKKEI 
Returns are rescaled by adding 0.1 and 0.3 for SSEC and NIKKEI, respectively. Increased volatility 
during financial crisis of 2008 is visible for both indices. However, the increase of volatility started 
earlier for SSEC. Moreover, SSEC did not trade between 8.2.2002 and 25.2.2002 
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Crossover detection charts 
Chart 0-10 Crossover detection of ATX 
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Chart 0-10: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S analysis (a), M-R/S (b) and DFA-0 
(c) show a crossover at scale of 256 trading days while DFA-1 (d) and DFA-2 (e) show no crossover implying that a crossover is 
caused by linear trend in the time series. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-dependent Hurst 
exponent. DFA methods show volatile behavior of point to point derivatives of H at two highest scales and thus support the use of 
one fourth of the time series length as a maximum scale. Moreover, DFA methods have much higher point to point derivative of H 
at the lowest scale of 8 trading days and thus support the use of 16 trading days as a minimum scale. R/S and M-R/S show similar 
results which imply the same minimum and maximum scale for H estimation.  
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Chart 0-11 Crossover detection of PX 
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Chart 0-11: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S analysis (a), M-R/S (b) and DFA-0 
(c) show a crossover at scale of 128 trading days while DFA-1 (d) and DFA-2 (e) show no crossover implying that a crossover is 
caused by linear trend in the time series. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-dependent Hurst 
exponent. DFA methods show volatile behavior of point to point derivatives of H at two highest scales and thus support the use of 
one fourth of the time series length as a maximum scale. Moreover, DFA-1 and DFA-2 have much higher point to point derivative 
of H at the lowest scale of 8 trading days and thus support the use of 16 trading days as a minimum scale. R/S and M-R/S show 
unstable behavior at scales higher than proposed maximum scale and at the lowest scale which support the minimum and maximum 
scale for H estimation.  
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Chart 0-12 Crossover detection of BUX 
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0,50

0,70

0,90

1,10

1,30

1,50

1,70

1,90

2 3 4 5 6 7 8 9 10

scale

V 
st

at
is

tic

0,4

0,5

0,6

0,7

0,8

0,9

po
in

t t
o 

po
in

t d
er

iv
at

ie

V statistic point to point derivative

0,50

0,70

0,90

1,10

1,30

1,50

1,70

2 3 4 5 6 7 8 9 10

scale

V 
st

at
is

tic

0,4

0,5

0,6

0,7

0,8

0,9

1,0

po
in

t t
o 

po
in

t d
er

iv
at

ie

V statistic point to point derivative

(c) (d) 

0,002

0,003

0,004

0,005

0,006

0,007

2 3 4 5 6 7 8 9 10

scale

V 
st

at
is

tic

0,5

0,6

0,7

0,8

0,9

1,0

1,1

po
in

t t
o 

po
in

t d
er

iv
at

ie

V statistic point to point derivative

0,001

0,002

0,003

0,004

0,005

0,006

0,007

2 3 4 5 6 7 8 9 10

scale

V 
st

at
is

tic

0,5

0,6

0,7

0,8

0,9

1,0

po
in

t t
o 

po
in

t d
er

iv
at

ie

V statistic point to point derivative

(e) 

0,000

0,001

0,002

0,003

0,004

2 3 4 5 6 7 8 9 10

scale

V 
st

at
is

tic

0,5

0,7

0,9

1,1

1,3

1,5

1,7

po
in

t t
o 

po
in

t d
er

iv
at

ie

V statistic point to point derivative
 

Chart 0-12: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. All methods show no crossover 
implying that there is no trend in the time series. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-
dependent Hurst exponent. DFA-0 and DFA-1 show point to point derivatives of H well above the average at two highest scales and 
thus support the use of one fourth of the time series length as a maximum scale. Moreover, DFA-1 and DFA-2 have much higher 
point to point derivative of H at the lowest scale of 8 trading days and thus support the use of 16 trading days as a minimum scale. 
R/S and M-R/S show above average point to point derivatives at the lowest and the highest scale.  
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Chart 0-13 Crossover detection of WIG20 
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Chart 0-13: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S (a), M-R/S (b) and DFA-2 (e) 
show a crossover at scale of 128 trading days. DFA-0 (c) and DFA-1 (d) show a crossover at scale of 64 trading days and thus are 
inferior to DFA-2. Such results lead to use of R/S, M-R/S and DFA-2 in the analysis of time-dependent Hurst exponent. DFA-0 and 
DFA-1 show point to point derivatives of H well above the average at the highest scale. Moreover, DFA-1 and DFA-2 have much 
higher point to point derivative of H at the lowest scale of 8 trading days and thus support the use of 16 trading days as a minimum 
scale. R/S and M-R/S show above average point to point derivatives at the lowest and the highest scale.  
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Chart 0-14 Crossover detection of SAX 
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Chart 0-14: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. All methods show a crossover at scale 
of 512 trading days. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-dependent Hurst exponent. All 
methods show volatile behavior of point to point derivatives of H at two highest scales and above-average value at the lowest scale. 
Such results support the use of minimum and maximum scale of 16 trading days and a fourth of time series length, respectively.  
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Chart 0-15 Crossover detection of CAC40 
(a) (b) 
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Chart 0-15: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. All methods show a crossover at scale 
of 128 trading days. However, the results are not clear for DFA methods. Such results lead to use of R/S, M-R/S and DFA-1 in the 
analysis of time-dependent Hurst exponent. All methods show unstable behavior of point to point derivatives of H at two highest 
scales. Moreover, all methods except of DFA-0 show above average point to point derivatives of H at the lowest scale. Such results 
support the use of minimum and maximum scale of 16 trading days and a fourth of time series length, respectively. 
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Chart 0-16 Crossover detection of DAX 
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Chart 0-16: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S (a) and M-R/S (b) show a 
crossover at scale of 128 trading days. DFA-0 (c) and DFA-1 (d) show no crossover and DFA-2 (e) shows a crossover at scale of 
256 trading days. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-dependent Hurst exponent. All methods 
show unstable behavior of point to point derivatives of H at two highest scales. Moreover, all methods except of DFA-0 show above 
average point to point derivatives of H at the lowest scale. Such results support the use of minimum and maximum scale of 16 
trading days and a fourth of time series length, respectively. 
 



Appendix 
 

 

 114  

Chart 0-17 Crossover detection of FTSE 
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Chart 0-17: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S (a), M-R/S (b) and DFA-0 (c) 
show a crossover at scale of 128 trading days. DFA-1 (d) shows a crossover at scale of 512 trading days and DFA-2 (e) shows a 
crossover at scale of 256 trading days. Note that DFA-1 shows a crossover from anti-persistent to persistent behavior whereas the 
other methods show the reverse. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-dependent Hurst 
exponent. All methods show unstable behavior of point to point derivatives of H at two highest scales. Moreover, all methods 
except of DFA-0 show above average point to point derivatives of H at the lowest scale. Such results support the use of minimum 
and maximum scale of 16 trading days and a fourth of time series length, respectively. 
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Chart 0-18 Crossover detection of DJI30 
(a) (b) 
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Chart 0-18: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S (a) shows a crossover at scale of 
128 trading whereas M-R/S (b) shows a crossover at a scale of 512 trading days. Note that V statistics differ only slightly for both 
methods and different crossovers are not significant. DFA-0 (c) shows same behavior as M-R/S, DFA-1 (d) shows a crossover at a 
scale at 256 trading days and DFA-2 (e) at 512 trading days. Such results lead to very unclear conclusions and R/S, M-R/S, DFA-0 
and DFA-1 are proposed in the analysis of time-dependent Hurst exponent. All methods show unstable behavior of point to point 
derivatives of H at two highest scales. Moreover, all methods except of DFA-0 show above average point to point derivatives of H 
at the lowest scale. Such results support the use of minimum and maximum scale of 16 trading days and a fourth of time series 
length, respectively. 
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Chart 0-19 Crossover detection of SP500 
(a) (b) 
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Chart 0-19: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S (a) and M-R/S (b) show a weak 
crossover at a scale of 256 trading days. DFA-0 (c) and DFA-1 (d) show a crossover at a scale of 512 trading days while DFA-2 (e) 
shows the same crossover as R/S and M-R/S. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-dependent 
Hurst exponent. All methods show unstable behavior of point to point derivatives of H at two highest scales. Moreover, all methods 
except of DFA-0 show above average point to point derivatives of H at the lowest scale. Such results support the use of minimum 
and maximum scale of 16 trading days and a fourth of time series length, respectively. 
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Chart 0-20 Crossover detection of NASDAQ 
(a) (b) 
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Chart 0-20: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S (a), M-R/S (b) and DFA-0 (c) 
show a weak crossover at a scale of 256 trading days. DFA-1 (d) shows no crossover and DFA-2 (e) shows the same crossover as 
R/S, M-R/S and DFA-0. Such results lead to use of R/S, M-R/S and DFA-1 in the analysis of time-dependent Hurst exponent. All 
methods show unstable behavior of point to point derivatives of H at two highest scales. Moreover, all methods except of DFA-0 
show above average point to point derivatives of H at the lowest scale. Such results support the use of minimum and maximum 
scale of 16 trading days and a fourth of time series length, respectively. 
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Chart 0-21 Crossover detection of SSEC 
(a) (b) 
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Chart 0-21: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. R/S (a), M-R/S (b), DFA-0 (c) and 
DFA-2 (e) show no crossover. DFA-1 (d) shows weak crossover at scale of 128 trading days. Such results lead to use of R/S, M-R/S 
and DFA-2 in the analysis of time-dependent Hurst exponent. All methods with exception of DFA-2 show unstable behavior of 
point to point derivatives of H at three highest scales. DFA-2 shows very volatile behavior of point to point derivatives at two 
highest scales. Moreover, all methods except of DFA-0 show above average point to point derivatives of H at the lowest scale. Such 
results support the use of minimum and maximum scale of 16 trading days and a fourth of time series length for DFA-2, 
respectively. 
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Chart 0-22 Crossover detection of NIKKEI 
(a) (b) 
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Chart 0-22: (a) R/S based, (b) M-R/S based, (c) DFA-0 based, (d) DFA-1 based, (e) DFA-2 based: V statistics (left 
y-axis) and point to point derivatives of H (right y-axis) are presented for all possible scales. Crossover detection based on V 
statistics is unclear as the behavior changes from to scale to scale for both R/S (a) and M-R/S (b). DFA-0 (c) and DFA-1 (d) show a 
crossover from anti-persistent to persistent behavior at scale of 128 trading days. DFA-2 (e) shows a crossover at scale of 512 
trading days. Such results lead to use of R/S, M-R/S and DFA-2 in the analysis of time-dependent Hurst exponent. All methods 
show unstable behavior of point to point derivatives of H at two highest scales. Moreover, all methods except of DFA-0 show above 
average point to point derivatives of H at the lowest scale. Such results support the use of minimum and maximum scale of 16 
trading days and a fourth of time series length, respectively. 
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Hurst exponent correlations 
 
Table 0-1 Correlations of time-dependent Hurst exponents for all indices (R/S) 

 
Table 0-2 Correlations of time-dependent Hurst exponents for all indices (DFA-1) 
 PX BUX WIG SAX ATX DAX FTSE CAC DJI NASDAQ SP NIKKEI 

PX 1,0000            

BUX 0,0823 1,0000           

WIG 0,2002 0,1683 1,0000          

SAX 0,5749 0,0986 0,0737 1,0000         

ATX 0,3992 0,2610 0,0474 0,2678 1,0000        

DAX 0,0705 0,1716 -0,2367 -0,2380 0,1128 1,0000       

FTSE 0,2553 0,0153 -0,3543 0,1379 0,2727 0,6136 1,0000      

CAC 0,0136 -0,0284 -0,4159 -0,2111 0,1188 0,8513 0,7466 1,0000     

DJI 0,1930 0,1660 -0,1175 -0,1454 0,1473 0,7163 0,4650 0,5326 1,0000    

NASDAQ 0,4383 -0,1599 -0,2812 0,1664 0,0985 0,4899 0,6610 0,5091 0,4853 1,0000   

SP 0,2647 0,2083 0,0119 -0,0839 0,1760 0,6275 0,4698 0,4234 0,8547 0,5883 1,0000  

NIKKEI 0,1454 -0,2215 -0,3406 0,0040 0,2866 0,2965 0,3290 0,4032 0,1110 0,4734 0,1550 1,0000 

 
Table 0-3 Correlations of time-dependent Hurst exponents for all indices (DFA-2) 

 PX BUX WIG SAX ATX DAX FTSE CAC DJI NASDAQ SP NIKKEI SSEC 

PX 1,0000             

BUX 0,3321 1,0000            

WIG 0,3754 0,5598 1,0000           

SAX 0,2345 -0,0738 0,3131 1,0000          

ATX 0,4050 0,2746 0,5088 0,2161 1,0000         

DAX 0,1750 0,0854 0,0082 -0,2582 0,2627 1,0000        

FTSE 0,1584 0,0723 0,3865 0,2773 0,5212 0,5231 1,0000       

CAC 0,0500 0,0619 -0,0486 -0,2204 0,2211 0,8441 0,6290 1,0000      

DJI 0,4213 0,0236 0,1763 0,0884 0,3503 0,5736 0,3932 0,3116 1,0000     

NASDAQ 0,4091 -0,0479 0,2865 0,3057 0,4519 0,4786 0,5779 0,3107 0,8338 1,0000    

SP 0,4022 0,1223 0,2015 0,0291 0,3983 0,5925 0,4125 0,3399 0,9287 0,8116 1,0000   

NIKKEI 0,1908 0,1259 0,2327 0,0698 0,4002 0,4074 0,3466 0,4927 0,0274 0,1597 0,0397 1,0000  

SSEC -0,0141 0,1615 0,2333 -0,2019 0,3673 0,3061 0,4292 0,4561 0,0268 0,1193 0,1265 0,4476 1,0000 

 
 

  PX BUX WIG20 SAX ATX DAX FTSE CAC40 DJI30 NASDAQ SP500 NIKKEI SSEC 

PX 1,0000             

BUX 0,1608 1,0000            

WIG20 0,3587 0,4877 1,0000           

SAX 0,3935 0,2111 0,4515 1,0000          

ATX 0,5057 0,1732 0,5323 0,4319 1,0000         

DAX 0,1246 -0,2519 -0,3194 -0,2780 0,0561 1,0000        

FTSE 0,3275 0,0048 0,2613 0,2661 0,4391 0,4317 1,0000       

CAC40 0,1149 -0,3426 -0,3483 -0,1550 0,1103 0,7309 0,5581 1,0000      

DJI30 0,3547 0,2125 0,0135 0,0929 0,2518 0,3064 0,3111 0,1211 1,0000     

NASDAQ 0,4433 0,0362 0,4421 0,4234 0,3375 0,3264 0,6483 0,4448 0,3498 1,0000    

SP500 0,2940 0,3275 0,1737 -0,0396 0,2421 0,2491 0,3000 0,0338 0,7937 0,3477 1,0000   

NIKKEI 0,2131 -0,3166 0,0592 0,0002 0,2724 0,4241 0,3905 0,5616 0,0987 0,3807 0,0621 1,0000  

SSEC 0,1144 -0,0803 0,3086 0,1156 0,3164 0,0139 0,0960 0,1159 -0,0415 0,0958 -0,1597 0,1201 1,0000 


