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Abstract

Nazov prace: Modelovanie rastu kvantovych bodiek v aproximacii elastického
kontinua
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Katedra: Katedra fyziky kondenzovanych latek, Matematicky tstav UK
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Abstrakt: Kvantové bodky mézu rast spontdnne pocas molekuldrnej epitaxie dvoch
roznych materidlov s réznymi mriezkovymi parametrami, Stranski-Krastanowov rastici
mod. Uvazujeme dvojrozmerny matematicky model zalozeny na aproximécii rasticeho
filmu ako elastického kontinua. Nelinearnu evolu¢ni rovnicu rieSime numericky po-
mocou metddy koneénych prvkov a spektralnymi metédami. Vypocet deformacie
prevadzame do komplexnych premennych a rieSime pomocou tzv. Goursatovovych
analytickych funkcii. Vplyv rozhrania film/substrat je zahrnuty v zévislosti povr-
chového napétia na hribke filmu. Studujeme zavislost rastu na smerovej anizotropii
povrchovej energie, stabilitu vytvorenych fazetovanych bodiek a ich tvarové zmeny.
Ostré rohy a silnd anizotropia vedid na tazkosti v numerickej analyze, ktorym sa
d4 predist zaclenenim regulariza¢nych élenov. Vysledky simuldcii kvalitativne zod-
povedaju experimentilnym pozorovaniam.

Klucové slova: kvantovs tecka, anizotropie, povrchové energie, epitaxe

Title: Modeling the quantum dot growth in the continuum approximation
Author: Peter Cendula

Department: Department of Condensed Matter Physics, Mathematical Institute
of Charles University

Supervisor: Prof. RNDr. Viclav Holy, CSc.

Supervisor’s e-mail address: holyOmag.mff.cuni.cz

Abstract: Quantum dots can grow spontaneously during molecular beam epitaxy of
two materials with different lattice parameters, Stranski-Krastanow growth mode.
We study a mathematical model based on the continuum approximation of the
growing layer in two dimensions. Nonlinear evolution equation is solved using fi-
nite element method and spectral methods together with stress calculation based
on the Goursat analytic functions. Effect of the film/substrate interface is included
in the dependence of surface tension on height of the film. The effect of directional
anisotropy of surface tension on the evolution is established together with stabil-
ity of faceted island arrays and their shape transitions. Corner between facets and
strong anisotropy lead to difficulties in the numerical analysis, which are prevented
by including the regularization terms. Simulation results qualitatively agree with
experiments.

Keywords: quantum dot, anisotropy, surface energy, epitaxy
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Goals of the thesis

e understand heteroepitaxial growth phenomena and structural properties
of quantum dots

e review the current state of continuum models for dot formation

e formulate two-dimensional growth model according to Spencer and Me-
iron (1994)

e perform linear stability analysis with wetting energy and anisotropic sur-
face energy

e calculate numerically the strain energy density on the film surface and
inside the film

e develop numerical methods for evolution equation

e include wetting energy to account for film/substrate interaction
e verify the ripening process for evolution of large samples

e inspect the consequences of material deposition

e include corner regularization in order to follow the evolution after cre-
ation of corners between facets

e study the effect of anisotropic surface energy on the evolution of faceted
islands

e examine if the cusped surface energy enhances the stability of island
arrays

e study the shape transitions of growing islands
e find major factors influencing island final morphology and stability

e compare simulation results with experimental observations



Introduction

Quantum dots were first developed in 1970s and ever since they attracted
huge research interest among physicists, chemists and biologists. Many ways
of production were developed (colloidal synthesis, electron beam lithography,
epitaxy) and here we will only focus on the bottom-up self-organizing pro-
cess in heteroepitaxy (island growth, Stranski-Krastanow growth) promising
to produce regular quantum dot arrays for quantum cryptography and quan-
tum computers.

Roughening and growth of undulated strained solid films was long seen as a
degradation mechanism during planar film growth. It has been realized around
1990 that this could be a way to fabricate quantum nanostructures. It is well
understood that islands form through stress-driven morphological instability
(ATG-instability, 1972) to reduce the total elastic strain energy in the system.
Many gaps in theory and experiment have been filled in recent years, but the
production of commercial island arrays is still not possible.

Number of works studied continuum approach to the growth problem.
Stress-driven instability in a semi-infinite solid was studied by Spencer and
Meiron (1994), Yang and Srolovitz (1993) and it leads to the formation of
cusps. This is prevented in heteroepitaxy by strong film /substrate interaction,
since the film wets the substrate and Chiu and Gao (1995), Kukta and Freund
(1997), Spencer (1999) studied the free boundary problem to determine the
equilibrium island shape for isotropic surface energy. Either boundary layer
model or height-dependent surface energy was used to smooth the abrupt
change in material properties at the film/substrate interface. Zero contact an-
gle of island edges to the film wetting the substrate was derived for isotropic
case. Long-time annealing of isotropic films reveals growth of larger islands
at the expense of smaller, so called ripening (coarsening), which is undesir-
able effect for fabrication. These works did not give physical explanation of
experimentally observed island facets and initial growth stages.

Equilibrium study by Tersoff et al. (2002) first explained the prepyramid to
pyramid shape transition with the assumption of anisotropic surface energy.
Dynamical studies were carried out in 2D with smooth and cusped surface
energy by Long et al. (2001); Eisenberg and Kandel (2005) with special nu-
merical approaches. They both concluded that the evolution timeline is best
explained with the assumption of cusped surface energy below roughening tem-
perature and the latter found stable island array against ripening, consistent
with observations of Medeiros-Ribeiro et al. (1998).
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Strength of the surface anisotropy is critical for the evolution problem, as
for strong anisotropy the evolution problem can become ill-posed, with the
leading negative fourth derivative. In this case corner energy regularization
can be introduced, but it was considered dynamically only by Siegel et al.
(2004) for evolution of voids in elastic solid and not in the context of quantum
dot growth.

This work aims to cover only the basic properties of quantum dot forma-
tion, evolution and stability from the continuum simulations. Main results
of our work are: successful numerical treatment of the evolution equation in-
cluding the strong anisotropic surface energy and island edges, calculations of
ripening process, development of faceted islands for anisotropic surface energy
and their metastability against ripening for cusped surface energy. FExperi-
mental characteristics of growth, including island growth only above critical
wetting layer thickness, constant aspect ratio of growing faceted islands, shape
transitions and stability were qualitatively reproduced.



Chapter 1

Quantum dots

1.1 Properties and applications

Quantum dot(QD) is a tiny semiconductor crystal with size in the order of
nanometers, hence the names “dot” or “island”, Figure 1.1. It is also often
called “artificial atom” because of its quantum properties, but it actually con-
tains roughly hundreds to thousands real atoms.

In the bulk semiconductor material(several times bigger than 10 nm),
charge carriers can have a range of energies. These energies are so close to-
gether, that they can be described as continuous. There is certain forbidden
range of energies called bandgap. Almost all carriers naturally occupy the en-
ergy levels below the bandgap (valence band) and only very few of them are in
the conduction band (above the bandgap). They can jump to the conduction
band when they get additional energy from outside (heat, radiation) and they
leave a “hole” in the valence band. This electron-hole pair is called an exciton
and there is an average distance between them called Exciton Bohr Radius.
If the size of the semiconductor is comparable with this value, the energy
spectrum is no longer continuous and has to be treated as discrete. Carriers
are thus confined inside the dot, similarly to an atom. So the quantum dot
is actually a three dimensional quantum well known from the basic quantum
mechanics. The width of the quantum dot bandgap depends on its size and
chemical composition, making it easy to tune absorption and emission spectra,
what is impossible for atoms, but desirable for optical properties.

quantum well quantum wire quantum dot
i v / &
2D 1D 0D free dimensions

of an electron gas

Figure 1.1: Schematic figure of various nanostructures.



1. Quantum dots 1.2 Self-organized growth

Because they are so small, they have very sharp density of states and thus
superb transport and optical properties for detectors, lasers and amplifiers.
Quantum dots have also large quantum yield, the percentage of absorbed pho-
tons that result in emitted photons, what is being studied for potential use in
more effective solar cells.

There are already working quantum dots around us to date. New genera-
tion of Blue-ray disc and Playstation 3 uses QD based blue-violet laser with
smaller wavelength than traditional HeNe lasers and is able to read more dense
data. Organic dyes with quantum dots have better brightness and stability.
Organized arrays of quantum dots could serve as quantum chips for performing
quantum operations.

1.2 Self-organized growth

When one material is being deposited on another (with different lattice con-
stant) during molecular beam epitaxy (MBE), the growing layer laterally fits
the crystal lattice of the substrate and is therefore elastically deformed. It is
known, that such a stressed film is unstable (Asaro-Tiller-Grinfeld (ATG) in-
stability) against perturbations with wavelength greater than (Srolovitz (1989);
Stangl et al. (2004))
sl

Aerit = m, (1.1)
where v is Poisson’s ratio of the film, F its Young’s modulus, 7 isotropic
surface energy (per unit area) and gy is the misfit strain of the growing layer
with respect to the substrate. The fastest growing perturbation has wavelength
% and determines the periodicity of the final morphology.

There are three scenario of heteroepitaxy (Figure 1.2), continuous layer-
by-layer Frank-van der Merwe mode, island formation without wetting layer
in between during Volmer-Weber mode and Stranski-Krastanow growth mode
when layer-by-layer growth is observed usually up to a critical thickness of
few monolayers (ML) Mo et al. (1990), when a 3D island morphology is ener-
getically more favorable, Figure 1.3. The onset of the ATG instability in the
initial growth stages is suppressed by the wetting effect at the film/substrate
interface Chiu and Gao (1995); Spencer (1999); Tekalign and Spencer (2004)
or due to the elastic anisotropy in the growing layer Eisenberg and Kandel
(2002). This clustering from flat film into 3D islands at preferable wavelength
is the core of the self-organizing process.

Generally, elastic energy stored in the growing layer competes with its
surface energy and provides possibility for nonplanar morphologies.

1.3 Observed properties

We have used extensive review on structural properties of quantum nanostruc-
tures by Stangl et al. (2004). Germanium islands on Si were first observed
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Frank-van der Merwe growth

monokaver

subsirate

Stranski-Krastanow growth

wedline Taver

Vollmer—Weber growth — ~\

islands //_“\ ,.-’:
i 5 \\

time evolution

Figure 1.2: Various modes of the heteroepitaxial growth.

‘_%_' *\—7H—*

” V]

Figure 1.3: In the first stage of the Stranski-Krastanow growth mode, pseu-
domorphic layer is grown (a). After the layer thickness exceeds critical value
island morphology is created (b). Wetting layer is denoted WL, growing layer
L and substrate S.
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. 85x85x7 nm3

»

Figure 1.4: Typical Ge pyramid islands obtained by STM during Si capping
(left 2 ML, right 4 ML) of Ge domes grown on Si(001) Rastelli et al. (2001).
Beautiful facets {105} have angle 11°.

by Mo et al. (1990) as square base pyramids with (105) facets (11°), Figure
1.4. SiGe islands are additionally observed as prepyramids (shallow mounds),
hut clusters (elongated pyramids with (105) facets) and multifaceted domes
(with facets (105),(113), (15 3 23)), Figures 1.5. The pyramid-to-dome shape
transition during growth was experimentally observed by Kamins et al. (1997);
Medeiros-Ribeiro et al. (1998); Ross et al. (1998) and numerically calculated
in the work of Eisenberg and Kandel (2005). Even bigger islands called ”su-
perdomes” can be grown, but dislocations appear at their base as strain is
more effectively relieved above some critical size. They will be not considered
in this work.

Postgrowth annealing studies have shown that pyramids and domes are
stable against ripening in some temperature range, caused by the stronger
surface energy anisotropy relative to the strain relaxation. At higher temper-
atures surface energy is more isotropic and ripening was observed. Island size
distribution evolves from prepyramids to pyramids and then to domes with
increasing diameter, Figure 1.6.

Lateral interaction of quantum dots at the same surface weakly influences
the size distribution and periodicity of island positions. Island multilayers
show influence of island position on the surface from elastic interaction of the
buried island layers, which can result in vertically or oblique aligned islands in
the superlattice, depending on the elastic anisotropy of the material.
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{15323} {113} (a)
70x70x11 nm3

{105}

[100]

(b)

| 75x75x8 nm?

Figure 1.5: Typical Ge dome islands obtained by STM during Si capping (left
uncapped, right 1 ML) of Ge domes grown on Si(001) Rastelli et al. (2001).

Facets are denoted in the inset picture.
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Figure 1.6: Island height h as a function of island diameter d during deposition
of Ge on Si(001). The inset shows the time evolution of the island density for

different island types, from Stangl et al.

(2004).



Chapter 2

Continuum model of thin film
growth

We will describe the continuum approximation of thin strained film (dislocation
free) in 2D. Evolution equation with wetting energy and corner regularization
is derived in nondimensional form. Goursat analytic functions are used to
formulate the elastic problem as boundary integral equation. Different sur-
face energy anisotropies are introduced, isotropic, smooth and cusped. Linear
stability analysis is performed with anisotropic surface energy. Illustration of
material parameters and characteristic quantities for Ge/Si and InAs/GaAs
follows.

2.1 Strained epitaxial film

Our model would like to describe the evolution of faceted quantum dots during
the thin film growth with the wetting effect. We will follow Spencer and Meiron
(1994); Tekalign and Spencer (2004) in model formulation, but we will assume
anisotropic surface energy.

Let us simplify the problem to two dimensions, assuming only plane cut
perpendicular to the film surface. This is often denoted as 1 + 1 system of 2D
film with 1D surface. Some important features of the film evolution can be
studied in this case. Our model is equivalent to the equally elongated film and
substrate in the third dimension, with no strain in the third dimension (plane
strain is assumed). Strained film in this 2D model is a region between the
graph of a function Y = H(X,T) and Y = 0 in Cartesian coordinates X, Y,
see Figure 2.1. The film is allowed to evolve in time 7. Substrate occupies the
region under Y = 0.

Material is deposited from above the film with constant deposition rate Vp
either normal to the X axis (MBE), what results in vertical deposition rate

Jp(X,T)="Vp (2.1)
or normal to the film surface (liquid phase epitaxy, LPE), what yields

Jp(X,T) = Vpy/1+ HZ. (2.2)

9



2. Continuum model of thin film growth 2.1 Strained epitaxial film

Y
4 vacuum
H=HX.T)
film
6 X
substrate :

Figure 2.1: Strained epitaxial film.

The region above the film is otherwise ultrahigh-vacuum.

System is supposed to occupy the domain (0,A) x R and repeat itself
periodically in the X axis.

We choose the reference state of a uniform undeformed substrate crystal
lattice for the measurement of strains. Relative difference between lattice
constants of the substrate a, and the film ay is the so-called “mismatch strain”

s —ar

Eo — (23)

ay
and it is usually negative (compression), as ay > a,. During the film deposi-
tion, its crystal lattice is deformed to fit the crystal lattice of the substrate.
Both the film and the substrate are supposed to be isotropic linear elastic ma-
terials with the same elastic constants (what is reasonable e.g. for Ge/Si and
InAs/GaAs systems) and obey usual Hooke’s law
1+, v

€y =~ 0ij — Ea'kkéija (2.4)

where ¢;;, I/, v are strain tensor, Young modulus and Poisson’s ratio. Their
response to strains is thus identical and it is useful to view the problem as
a stressed semi-infinite film under the interface Y = H(X,T) subject to the
condition of mechanical equilibrium for the stress tensor ;; (indices represent
coordinates X, Y)

and boundary condition without normal forces to the surface (traction-free
interface)

where N; = (Nx, Ny) is the unit outer normal. This simplified view is valid
until H(X,T) > 0, what will be guaranteed by the wetting effect implicitly.

10



2. Continuum model of thin film growth 2.1 Strained epitaxial film

There should be only the uniaxial stress far away under the interface H (X, T),

Gy = ( ‘60 8 ) for Y — —o0, (2.7)
where oy = lbislf’g is the “mismatch stress” for the case of a flat film. The

stresses in the film are then given by &;; and in the substrate by

Gy — ( %0 8 ) , (2.8)

since the substrate has different lattice parameter and there are no stresses
far away under the interface film/substrate. We need to calculate the strain
energy density S at the surface of the film, which affects the mass transport
on the surface. It is given by

~ 1
S = §€ij6ij- (29)

Since we assumed the plane strain conditions, we can write

exx exy O
gij= | exv eyy 0 |, (2.10)
0 0O 0

where the Z axis is assumed in the perpendicular direction to the XY plane.
According to Hooke’s law (2.4), the mixed components of stress with Z index
have to be zero

1
0=cxy = E”axz = Gyy =0, (2.11)
1
O=¢eyz = ;V&yz = Oyz :0, (212)
and other nontrivial relations hold
1+v._ v, - -
Exx = i Oxx — E(UXX +0yy + 0zz2), (2.13)
14+v .
EXy = E oxy, (214)
1
Eyy = ;Va'YY — %(5)()( +0yy +0z2z2), (2.15)
1+v._ v, - -
ezz = 0= O'ZZ——(O'X)(-i-Uyy—i-UZZ). (2.16)
F F
From the last equation we have
G772 =v(0xx +Oyy), (2.17)

and thus the stress tensor looks like

Oxx OXxy 0
5= | oxy vy 0 . (2.18)
0 O V((}XX—i-a'yy)

11



2. Continuum model of thin film growth 2.2 Evolution equation

Then, the strain energy density (2.9)

S = 5(5XX5XX +2exyOxy + EyyOyy), (2.19)
~ 1+v ,_ B _ ~ ~
- 9F (UE(X + vy —v(Gxx 4+ Gyy)’ + 20§(y) , (2.20)

and on the interface of the film with the use of boundary condition (2.6)

-~ 1—v2 - \2

S: °F (Uxx+0yy) . (221)
Nonlinearity in the boundary condition implies we have to solve for stresses
numerically in general, what will be done by introducing Goursat analytic func-
tions and solving equivalent boundary integral equation for them (see Section
2.6). Strain energy density will be plugged into the evolution equation as the

driving force.

2.2 Evolution equation

Interface of the film can move by mass transport under the influence of chem-
ical potential. We assume that surface diffusion is the dominant transport
mechanism. We neglect evaporation and volume diffusion but we allow con-
densation of deposited atoms. In our view, all impinging atoms stick on the
interface and then diffuse by surface diffusion. The net change in the number
of atoms along the surface causes it to move normal to itself with velocity

Vi = JpNy — VgJs, (2.22)
where Ny = 141rH2 and Vg is the surface gradient operator
X
1 0
Vg = ———, 2.23
° V1+ H:0X (2.23)
OH
Hxy = —. 2.24
* 09X (2.24)

Atoms tend to move from places with higher chemical potential to places with
smaller chemical potential, also the surface diffusion flux Jg is proportional to
the negative gradient of the chemical potential at the surface i

_ vsDgVi
kp©

where V,; is the atomic volume of the film, vg is the number of atoms per
unit area of the surface, Dg is the surface diffusivity, kg Boltzmann constant
and O is the absolute temperature. The chemical potential on the surface [
consist from the surface energy term [ig,, ¢, strain energy term fi.;, wetting
energy term [i,.; and corner energy contribution fi.,,

Js = Vsii, (2.25)

ﬂ - V;Lt(ﬂsurf + lael + ﬂwet + /1007”)- (226)

12



2. Continuum model of thin film growth 2.2 Evolution equation

We denote surface free energy (per unit area) with 4. For most crystals, it
depends on the orientation angle #, defined as the angle between unit outward
surface normal n to the X axis. Its contribution to the chemical potential
on the interface can be obtained by minimizing [ 5(6)ds over the volume pre-
serving variations of the interface Eisenberg and Kandel (2002); Siegel et al.
(2004), what implies the equation

_ 0%y
~ _ 02~
T = 7+8—QZ, (2.28)

0 Hy
K = —— | —/—, 2.29
0X (\/1+H§(> (2:29)

where T denotes “surface stiffness” and K mean curvature. Elastic energy
contribution is simply

flet = S. (2.30)

Finally
fo= V(YK + S+ flwet + fcor)- (2.31)

Because the interface moves normal to itself, it has greater velocity in

vertical Y axis SH

and the evolution equation (2.22) is then

OH 0 1 J [~ - N
9T Jp + D8_X \/Tng(ﬁ_X (TK+ S + flwet + ,ucor)] ) (2.33)

2
with constant D = %. Generally, surface energy stabilizes the interface

and the elastic energy is responsible for the destabilization. Ratio of these
two affects the evolution of the film. The nonlinear character of the problem
cannot be simplified by linearization, since the slopes of faceted quantum dots
(11°,45°) exceed small angles.

We require periodic boundary values of all functions, especially

H(0,T) = H(A,T). (2.34)

The first derivatives should be also periodic at the boundary (for the weak
formulation)

OH(0,T) OH(A,T)

= 2.
0X 0X (2.35)
Last assumption is the periodic surface flux of atoms at the boundary
Js(0,T) = Js(A, T). (2.36)

13



2. Continuum model of thin film growth 2.3 Wetting energy

This condition can be written using previous equations for chemical potential

oji oji
8_X(0’T) = a—X(A,T). (2.37)
Small sinusoidal perturbation of amplitude F, of the flat film surface of
height H; with fastest growing wavenumber A are assumed

H(X,0) = Ho(X) = Hy + Pycos(AX). (2.38)

Other simulations start with random small amplitude (typically 10~°) pertur-
bation of the flat film on a bigger interval.

When the initial condition is even, the solution H(X,T') at later times must
be also even (governing equations are symmetric with respect to —X'). Because
of the periodicity, they must be also even around % and we can handle all
variables only in the first half of the interval explicitly. If the initial condition
is random we compute the variables independently in whole interval.

2.3 Wetting energy

Surface energy of the film 7, is typically smaller than the surface energy of
the substrate 7, and therefore the film tends to cover the substrate (than it
has smaller total surface energy). At the film/substrate interface, there is an
abrupt change between surface energy of the film and the substrate, which we
smooth by height dependent surface energy from Tekalign and Spencer (2004)
based on the transition thickness parameter B

1 1 H
F(H) = 5(% +7s) + %(ﬁf — 45) arctan (§> : (2.39)
which can be seen on Figure 2.2. It was shown by Spencer (1999), that the re-
sults are independent of the transition function chosen in the limit of vanishing

boundary layer thickness.
We obtain the wetting energy term by minimization of total surface free

energy
/ S(H)\/1+ HZ2dX (2.40)

with constraint of constant area

/HdX = const. (2.41)

This leads to the Euler-Lagrange equation for

Q = F(H)\/1+ H% - jH, (2.42)

0 = =2 ——_—° (2.43)
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Figure 2.2: Transition in the surface energy over the film thickness for B =
0.02.

where we have identified the Lagrange multiplier i with chemical potential.

With
Q .
a7 = (H)\/1+ HS — i, (2.44)
OHx V1+ H% 7 .
we end up
fi=4(H)K +7'(H)Ny. (2.46)

First term is the chemical potential from the surface energy and second from
the wetting interaction. Thus

~ ~ Y — ~s B
Howet = NY’}/(H) S it}

T /I H B

2.4 Corner energy regularization

(2.47)

In case of anisotropic surface energy, the surface can rapidly develop apparent
corners at the edges between different facets. On the other hand, evolution
problem may be ill-posed when the surface stiffness becomes negative. This
leads to divergent numerical behavior, which can be prevented by including the
higher-order regularization term Tersoff et al. (2002); Siegel et al. (2004) to the
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2. Continuum model of thin film growth 2.5 Nondimensional governing equations

surface energy, which rounds the corners slightly and stabilizes the numerical
scheme
R

r=A(0) + F K. (2.48)

Corners have large curvature and make the regularized surface energy diverge.
It is physically well-founded and it contains the energy of atomic steps on the
crystal surface and their interaction. Chemical potential term is then derived
minimizing the free energy functional as in previous section and leads to

K3  d’°K
ficor = —R (— + ) , (2.49)

2 ds?

where s is arclength. It has almost no effect in the regions outside edges, since
there the curvature is small. Regularization parameter R is typically very small
and the simulation results should be not affected by its value if it is sufficiently
small. It depends on the real miscut of the surfaces. Regularization term is
inherently stiff, since it contains power and second derivative of curvature. It
has to be treated implicitly in numerics therefore.

It was shown by Spencer (2004) that when the stress is absent, corner
solutions of the Wulff shape can be obtained by including the regularization
and the limit of R — 0. In the presence of stress, only one work Siegel et al.
(2004) dealt with the effect of regularization and it concluded that different
corner angles are probably obtained.

2.5 Nondimensional governing equations

It is useful to formulate the equations for nondimensional variables. Char-
acteristic values (in physical units) for different quantities are denoted with
subscript 0

Y= 07 (2.50)
~ Eet

S == S()S, S()— m, (251)
S = (140, +0y,)°%, (2.52)

Characteristic length [y and time 75 quantify the scale at which surface energy
and elastic energy are fairly equal

3
Y0 Yo

lo = = = ) 2.53

0 So’ 70 D561 ( )

We introduce nondimensional variables x,y,t, h(x,t), K, fhwets teor, Ja With ap-
propriate scalings to dimensional variables X, Y, T, H(X,T), K, fiwet, ficors JD

X = l’lo, Y = ylo, T= tT(), H= hl07 (254)
ko lo .
K = 7 Hwet = E,vaeta JD = _Ojd, (255)
l() lO To
/,L - T’f + S + /’Lwet + /"LCOT (256)

16



2. Continuum model of thin film growth 2.6 Strain energy calculation

Other nondimensional variables are denoted also as small letters or without
tilde. The stress tensor is obtained with

Gy = 0o [( (1) 8 ) +ai]} (2.57)

Let us define the interval Q = (0, \) and its boundary 09 = {0, A\}. The

wavelength of the solution is denoted A and the wavenumber a = 27”

We are looking for the stress tensor (to compute the strain energy density)

which satisfies (2.5), (2.6), (2.7)

8jal-j =0 in Yy < h(l’,t),
njoy; = fi on y = h(z,t), (2.58)
oi; — 0 as Yy — —00,

Vo e R, t >0 fixed and f; = (—n,,0).
We want to find two functions h(z,t), k(z,t) : 2x(0,T) — R, even around
%, such that

0 hy .
Kk = ~ 5 (—_1 — h%) in Qx(0,7), (2.59)
oh 9 1 ol .
E = Ja+t % \/ﬁ% in Qx <0,T>, (260)

(now T" denotes end of the nondimensional time interval) satisfying boundary
conditions (2.34), (2.35), (2.37) on 9Q x (0,T)

h(0,t) = h(\1t), (2.61)
oh oh
o _ ou
Initial conditions used are
h(x,0) = ho(x) = hy + po cos(ax) (2.64)

or random small py amplitude perturbation of the flat film.

2.6 Strain energy calculation

Because of the two dimensional geometry, we can solve the elasticity equations
using transformation to complex Goursat functions ¢, ¢ analytic in the domain
of the semi-infinite film (denoted II) as in Spencer and Meiron (1994). We will
briefly present the derivation of the resulting nonsingular integral equation
Mikhlin (1957). It will be then solved by numerical quadrature in the Section
3.1.
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2. Continuum model of thin film growth 2.6 Strain energy calculation

Let z = x 4 1y, then stresses and displacements are determined with

0w+ 0y = 4Re[¢'(2)),
+9(2)), (2.65)

(uz +iuy) = (3—4v)p(z) — ZW - WZ),

— O + Oy + 2004, = 2[Z¢"(z

1+v

where overbar denotes complex conjugation. On the boundary OII the traction-
free boundary condition transforms into

p(C) + ¢’ () +¥(Q) = f(O)+C  for (€Ol (2.66)

where C' is an arbitrary constant. The term on the right side represents surface
forces and is given by

=i (o +ify)ds, (2.67)

S0

where f = (—n,,0) = (%, 0) are surface forces appearing in eq. (2.58), thus

ds’
f(Q) = —iy(s), (2.68)

because we have chosen sg so that y(sg) = 0.

The periodicity of the stresses and displacements does not imply period-
icity of Goursat functions ¢, in general. It is, however, possible to define
new functions pg(2),1o(2z) periodic in z, bounded as y — —oo and uniquely
determined to within two arbitrary constants

e(z) = wol(2), (2.69)
P(z) = o(2) — 2¢(2). (2.70)

The boundary condition (2.66) becomes

©o(C) + (€= O)h(O) + ¥o() = f(Q)  for (€0, (2.71)

where with C' = 0 we have chosen on of the two additive constants for ¢y and
Yo.

Now all terms appearing in boundary condition (2.71) are periodic with
wavelength A. The domain II can be transformed with w = €'%*, a = 27” to the
exterior of a closed curve L (which contains the origin), Figure 2.3.

Functions
O(w) = @0(% Inw), (2.72)
U(w) = %(% Inw), (2.73)
(2.74)
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2. Continuum model of thin film growth 2.6 Strain energy calculation

complex plane

M
w=exp(iaz) ‘ | ‘

oo h=h(x.t)

| N
/

\ 4

Figure 2.3: Transformation to the closed curve in the complex plane.

are analytic in the w plane exterior to the boundary L. Setting ¢ = %lnn
gives boundary condition (2.71) along L

®(n) — 2nln[n|®'(n) + ¥(n) = F(n), for nelL, (2.75)

where
In |n]

1
F(n)=f(=1 =i— 2.76
() = (- Q) =i (2.76)
The elasticity problem is now solved with finding of two functions ®, ¥ analytic
outside L and satisfying boundary condition (2.75).

2.6.1 Boundary integral equation

With analyticity of ® and ¥, further reduction to a single nonsingular integral
equation over L is possible. We replace the terms in (2.75) by their conjugates,
multiply by ﬁn—f”@ (wp is arbitrary inside L) and integrate counter-clockwise
over L to get

/ ®(n) dn_Q/Mdn+/Mdn:2mA<wo) (2.77)

1 — wo T — Wo T — wo
and _
1 [ E®)
A = — dn. 2.78
(w0) = 5 [ 2y (2.78)
Since ®(n) and ¥(n) are analytic outside of L, it holds
L 0)
— [ ———dn=29o 2.79
o [ Ty = 8(cc), (2.79)
1 v
— )4 = (0), (2.80)

21 J1, n — wy
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2. Continuum model of thin film growth 2.6 Strain energy calculation

We set W(0o) = 0 (and thus the second arbitrary constant mentioned earlier)
for simplicity. Differentiating (2.79) with respect to wy we get

1 )
— / _oM) dn =0, (2.81)
2mi Jp, (n — wo)?

and integrating by parts with respect to n we end with

1 ®'(n)

21 ), n — wo

dn = 0. (2.82)

Conjugating (2.79) and substracting them for the point wy and origin 0 (both
always inside L) we have

1 ) 1 )
— | = (ﬂdﬁ - — / —(_n)dﬁ =0. (2.83)
21 ) — Wy 2 J;. M

Now we add the last equation and multiplications of (2.81), (2.82) (to ensure
well-conditioned integral equation) to the boundary integral equation (2.77)

1 o 1 o 1 1 —nl o’
| (n) dy+ ./_ (’7)_dﬁ+_./ (wo In wo| —nln |n]) (n)dn_
21t J;, n — wo 21 )1, M — Wy ™ Jr 7 — Wo
1 ) 1 o
2 J;, M 2mi LN

(2.84)

Last step is to take the limit wy — 7y from inside L, and 7 is a point on
L. When we use the boundary values of Cauchy integrals, i.e.

.1 ®(n) 1 1 / ®(n)
lim — dn = -® —(v.p. d 2.
i L= (0) + 5—(v-p.) sl (2.85)

we get the resulting nonsingular integral equation for ®

T Iy ey 1 In || — 701
<I>(770)+—./<I>(77)d [mﬁ "O} +—./<I>(77)d [" ol = 1o “'”Oq +

n—To n = "o
1 (@), 1 __ / ®(n)
— [ —=dn — —nR dn| =A
2mi /L n 1 g e [ L n? g (10)
(2.86)
We make a trick adding zero to desingularize the right hand side
E(1o) 1 / F(n)
(o) = lim.A(wo) 5 to(p) T dn
1 F F 1 —F
:E—.(U / (770) dn — (770) + _/ (77 (770>d77+ (2.87)
2mi L —"o 2 2mi Jp, n—="
F 1 F(n)—F
2mi L= 2, 1o
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Tl_nu

Figure 2.4: Boundary values of (2.88).

because (see Figure 2.4)

1 1 d(n =) 1 ‘ w1
.p. e l — — — —
57 (VP )/0 PR df = o [ln[n — | + targ(n —m)ly" =

(2.88)
Since the strain energy density S depends on ® only (see (2.52), (2.69),
(2.72)), W is not required to determine surface evolution and we have

vo(2) = ian®'(n),
= [1+ 4Re (ian®'(n))]*. (2.89)

2.6.2 Analytic continuation

In order to obtain stress tensor from equations (2.65), (2.69), (2.72) inside the
film and the substrate, we have to construct analytic continuation of analytic
functions ®, ¥ and their first and second derivatives in the exterior of the curve
L. Since they’re bounded at infinity, we can use the Cauchy integral formula
for the point p; in the exterior of the curve L

L[ 20
O(p;) =@ - — dn. 2.90
(1) = 8(o) = 5= [ oay (290)
This is improper for numerical calculations, when the point p; is close to the
curve L. Therefore we add suitable zero (from residue theorem)

1 ®(m:)
— | ——=dn =0 2.91
2mi /L n = pi =5 (2.91)

to aid the accuracy of computations. We end up with the equation

B(p0) = B(00) ~ 5 / de, (2.92)
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2. Continuum model of thin film growth 2.7 Surface energy anisotropy

where p; € ExtL and ®(c0) is computed from (2.79) with wy = 0. The point
7; is nearest to p; which lies on L.

First and second derivative of ® outside L are obtained also with Cauchy
integral formulae with "regularization” terms reminding of Taylor series

V(o) = 5 / (1) - @(T&)__ p@;— W)y 293
and
V(p) = 5 L (n) — 2(m) — (n _<Zi)—@$>7§) 3P,
(2.94)

since following integrals vanish because the integrated functions are holomor-
phic outside L

1 D(n;) — (n— 77i)(1>/(77i)d

A T @90
L 20m) = (=)@ () — 5(n = m:)*2" (ms)
0= 5/ o dy.  (2.96)

Values of ¥ on the boundary are computed from (2.75) and then similar
procedure is applied on ¥ in ExtL with ¥(o0) = 0.

2.7 Surface energy anisotropy

The anisotropy of the surface energy plays critical role in determining the
equilibrium crystal shape (ECS). This was formulated as Wulff construction
in two dimensions - convex envelope of the perpendiculars through the tip of
each radius vector in a polar plot of y(6) describes crystal shape in equilibrium,
Figure 2.5. It can have flat/curved sides connected smoothly or by corners.
Flat sides correspond to facets and develop for v(#) with discontinuous first
derivative at the minima (cusp), otherwise curved sides are formed. Corners
develop for high surface anisotropy when the surface stiffnesses is negative for
some orientations, Spencer (2004). The presence of cusps in (6) depends on
whether the system is below the thermal roughening temperature or not.

We will follow Long et al. (2001) in the notation of surface energy. Isotropic
version is denoted vy, smoothly anisotropic <, cusped anisotropic 3 with
discontinuous derivative at 50 = nmw, n € N given by Bonzel and Preuss
(1995) and its rounded version 4 used in the numerical calculations

W) = 1, (2.07)
() = 1+ gsin®(89), (2.98)
73(0) = 1+ g|sin(B0)], (2.99)
1(0) = 1+g/G2+sin?(80), (2.100)
r(6) = 1—geos(56), (2.101)

(2.102)
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2. Continuum model of thin film growth 2.7 Surface energy anisotropy

270 -1 0 1

Figure 2.5: Polar graph of surface energy and its Wulff construction.

where 3 sets the minima, g sets the strength of anisotropy and G = 500 is a
rounding parameter representing miscut angle ~ 0.1°. It is difficult to grow a
perfect facet and real materials have usually slight miscut of the facet (we will
call facet every nice approximation of the perfect one). This corresponds to a
rounded version of the cusped surface energy -, (2.97) used in the simulation
studies of Eisenberg and Kandel (2005); Long et al. (2001). Tersoff et al. (2002)
used the form 7, (which is equivalent to v, for the same minima) to predict
the prepyramid to pyramid phase transition. Let us denote

0%y

TO)=~0)+ — 2.103
(6) = 4(60) + (2103)
the nondimensional “surface stiffness”, which appears at the equation (2.27) for
chemical potential from the surface energy. Corresponding surface stiffnesses

are then

T,(0) = 1, (2.104)

To() = 1+42g8° — (45° — 1)gsin®(36), (2.105)

T3(0) = 1— (8% —1)g|sin(B0)|, without singularities at 30 = 0, +(2,106)
2 12

T0) = 1+gvm+ g8 Coj/(ge) = gf Sm:; 9. (2.107)

w = G ?+sin*(p0), (2.108)

Tr.(d) = 1+ (B8*—1)gcos(B6). (2.109)

The difference between T, and T3 can be seen on Figure 2.6.
For simplicity, we will speak about weak anisotropy, if Y(6) > 0 for all
angles 6 and strong anisotropy, if T(#) < 0 for some angles 6.
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0.2 , , L

0 0.5 1 1.5
0

Figure 2.6: Cusped surface stiffness T3 and its rounded version V.

2.8 Linear stability analysis

To determine the first order perturbation analysis of the evolution equation
with wetting energy and smooth anisotropic surface energy, we will follow
the approach of Srolovitz (1989). Anisotropy of the surface energy does not
influence the wetting energy term if we consider perturbation to the flat film
with § = 0°. It enters just the surface energy term as surface stiffness instead
of the surface energy.

We perturb the flat film of height h; with small sinusoidal perturbation
(2.64) such that ppa < 1. Linearizing all the terms in (2.59), (2.60) we find

oh  0? 20(vs — v¢)
— =— | =Y(0)hgyy + S — ——=—=h |, (2.110)
ot 0x? ( W’th?c
where the strain energy density is given to the first order by Srolovitz (1989)
S =1 — 4ppacos(ax). (2.111)
Thus initially the perturbation evolves according to
Ipo _ 2 _ 26(0s = y)
—_— = 4a — 1 (0)a* — —————= . 2.112

~
¢—growth rate

If the film wets the substrate (ys — vy > 0, Stranski-Krastanow mode) and

by — 1)\
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2. Continuum model of thin film growth 2.9 Material parameters

the film is stable against any small perturbations and otherwise unstable for
wavenumbers in the range

B N N ﬂ")/fh?}
a” <a<a', a = T(0) . (2.114)

2+ \/4 —7(0)20=20)

The initially fastest growing wavenumber a; is that with maximum growth
rate, which can be obtained by solving

dC - 2 b(’)/s - ’yf) _
1 =40 <3a T(0)a )" 0, (2.115)

which gives

3+ \/9 — 47(0)2==2p)

W’th?

ay = 27(0) , (2.116)
because the other solution corresponds to the minimum growth rate. This is
in agreement with previous works for isotropic surface energy with or without
the wetting energy by Chiu and Gao (1995); Tekalign and Spencer (2004);
Pang and Huang (2006) but was not considered with anisotropic surface en-
ergy before. Initial self-similar evolution of the sinusoidal perturbation can be
therefore seen also for anisotropic surface energy.

If the substrate wets the film (75 — 7y < 0) any perturbation will grow
and islands tend to form from the very beginning as in the Volmer-Weber
mode. If there is no mismatch or it is very small (e.g. for In,Ga,_,As/GaAs
system) and v, —~; > 0, the film is always stable and layer-by-layer Frank-van
der Merwe growth mode is observed. Also basic three growth modes can be
explained with the wetting energy.

2.9 Material parameters

To illustrate the characteristic physical quantities, we consider Ge thin film on
Sig5Geo5(001) substrate and InAs/GaAs(001). Material parameters can be
seen on Table 2.1.

The mismatch strain ¢q for Ge/Si system is 2.09%. For parameters of the
substrate we take the weighted average of values for Ge and Si, F = 117 GPa,
7y = 2.22 Nm ™', v = 0.276. This gives characteristic length Iy = 79 nm. For
the film we have 7y = 1.9 Nm~'. Rough estimate of the characteristic time

depends on the constant

VSstzt
D=——%= 2.117
e (2.117)
For the atomic volume of Ge (8 atoms per unit cell) we have
a3
Vo = —2¢ =2.3.107%m?. (2.118)

8
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2. Continuum model of thin film growth 2.9 Material parameters

Parameter | Ge Si | InAs | GaAs

alA] 5.66 | 5.43 | 6.06 | 5.75
E[GPa] 103 [ 130 | 52 | 88
v 0.27 1 0.28 | 0.35 | 0.31

F[Nm™] 1.9 [ 25 [ 075 | 0.9

Table 2.1: Lattice constant is denoted a, Young modulus F, Poisson ratio v
and surface energy 7. Values are taken from Spencer et al. (2001) and Penev
(2002).

For the number of atoms per surface area it holds (2 atoms on side of unit cell)

vs = % =6.2-10"%m 2. (2.119)
AGe

Typical temperature in experiments Medeiros-Ribeiro et al. (1998); Ross et al.
(1998) is © = 900 K and surface diffusion constant Dg = 107'* m?s~! Eisen-
berg and Kandel (2002); Spencer et al. (2001). With these values and Boltz-
mann constant kp = 1.38-10723 Jmol'K~! we obtain D = 2.6-10732 N~ 1m®s~!
and characteristic time 79 = 0.1 s. The competition between strain and sur-
face energies is therefore important in typical growth experiments. Value of
the characteristic time is uncertain because the surface diffusion constant is
not experimentally well known and varies with temperature. It is well known
that square pyramid islands on Si(001) have facets at (105), Mo et al. (1990),
what implies facet angles 0°, 11° and thus § = 16 for the surface energy.

The InAs/GaAs(001) system has greater mismatch €y = 0.07. This gives
characteristic length [ = 5.5 nm. Facet angles 0°, 45°, £90° are seen for this
system, corresponding to 5 = 4.

All numerical results will be presented in the nondimensional
units if not otherwise stated.

26



Chapter 3

Numerical methods

Solution to the elasticity problem on the surface is obtained by numerical
quadrature of the boundary integral equation and then analytically contin-
ued inside the film. Evolution problem is formulated numerically using finite
element and spectral methods.

3.1 Elasticity problem

We will solve the integral equation (2.86) by numerical quadrature. Smooth
boundary L is taken as a set of N points n;,j = 1,..., N parametri-

zed by equidistant grid 6; = %(] —1),j=1,...,Nand 0 € (0,27), Af = ZN“
All integrals over n are converted to 6 with trapezoidal rule, e.g.

On) [ O dy 2w~ D(1) ,

j=1

where 7, = (8,).
Approximated integral equation is evaluated at the N node points 7y = 7,
and we obtain N complex equations for the NV unknowns ®; = ®(n,)

N —
— 1 —doy, dpy, | @pdyr W5 —
b+ — Op— + 20—+ ——— — =(P ) =
A ;[’“d(fL Qg T g (B )
- (3.2)
N JR— —_
- 1 Fy — Fydn,
:F+_ 2 9 :1a"'7N’
R\ ; e —n; do J
where we have written for simplicity
n—"o
on) = In——, 3.3
() = Wik 3.3)
nln || — 1o In |rpo|
p(n) = , (3.4)
) n—"
1dn
= ——. 3.5
wn) = =5 (35)
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3. Numerical methods 3.1 Elasticity problem

We separate real and imaginary parts of the unknowns ®; = Re(®,) 4 Im(®,)
and get a system of 2V real linear equations for Re(®;), Im(®;) and we solve
with GMRES iterative solver. This is the most expensive step in our calcula-
tions.

Derivatives and limits in the discretized equation (3.2) at the point 1y = n;
(singular at first sight) are computed using I’Hospital rule (even more than
once)

d =] ”

lim — "y |2 3.6
Jim L iTin M, (36)

d [nlnlnl—mlnlml} ' "

. —nj 77Jq 77]77 q;
] T = ¢ + 23 27 3.7
o, df G T 2y (37)

F—F: dF
lim L= —(n 3.8
P —— dn(g) (3.8)
where we denoted

() = In|n) ’-—d‘-’< PITRY (3.9)

Obtaining the analytic continuation in the exterior of L is straightforward
with (2.92), (2.93). We choose the lower bound e on the y axis, make vertical
line from h(z;) and divide the section between e and h; into N, intervals. This
grid of points pi; = x) + 1y, is equidistant in  and nonuniform in y. With
transformation wy; = €', we obtain points in exterior of L, for which we
apply (2.92), (2.93).

Derivatives of 27-periodic complex functions with respect to 6 are com-
puted with Fourier transform using its well known property

D 1 - —iwT 1
flw) = \/—Q_W/—oo flz)e™™*dz, fe€ L (R) (3.10)
Plw) = iwf(w). (3.11)

Fourier transform is computed on the discrete grid using the Discrete Fourier
transform (DFT), especially with Fast Fourier transform (FFT) algorithm Wei-
deman and Reddy (2000), e.g

27\'1
U;DFT _ }:nke FU-DE-) - pRET (3.12)
d ] 7r7,
% = E i e N FU-DED - inverse DFT, (3.13)

where v is the wavenumber vector

N-2 N N-2
= e 1), N 14
(07 17 Y 2 ) 27 2 ) Y )7 even’ (3 )

and we take N as powers of 2 to speed-up the computations of DFT.
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3. Numerical methods 3.2 Evolution equation

3.2 Evolution equation

We will use the strain energy density computed from Section 2.6 and solve the
evolution equations (2.59), (2.60) in the weak form with Galerkin semidiscrete
approximation using finite elements or using spectral methods.

3.2.1 Weak formulation

Since we have periodic Dirichlet and periodic Neumann conditions for h and
flux, we require functions to have equal values on the boundary. Hence we
choose the test space of functions from the Sobolev space D = W:2(Q) with
periodic values at the boundary. For a fixed time ¢, multiplying the equation
for k (2.59) with test function u and integrating per partes over the domain €2

we get

A
1 oh
klx,t)u(zx)de = — | ———=—(x, t)u(x)| +
e ntante = = | o B 0| -
1 oh du
+/§2—_1+h%8—$(x,t)a(x)dx, Yu e D.

From the periodic Neumann condition (2.62) for h, the boundary term van-
ishes.
With the same procedure on (2.60), we have

A

)w(ﬂc)] -

0

oh [ 1 Ou
/Qa(x,t)w(a:)dx—/Q]d(a:,t)w(:n)dw%— Max(ac,t

1 o dw
— | ———(z,t)—(x)d Yw e D

(3.16)

where the boundary term vanishes the same way with the use of periodic flux
boundary condition (2.63).
Also more precisely, we are looking for x,h € C*((0,T); D) such that

/m(t)udx = ! oh(t) dudx, Vu € D, (3.17)
Q

o /1+ (D)2 Or dz

dh [ - 1 op(t) dw ,
/Qg(t)wdx = /de(t)wd:c /Q OG0T O dr. (3.18)

for Vw € D. With N-dimensional subspace Dy of the test space D, we define
the discrete problem: find functions sy, hy € C1({0,T); Dy) so that

1 GhN(t) duN

Amwwngwumwﬁ'w dr

dz, Yuy € Dy  (3.19)
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and
th / . 1 0,&]\[(75) d’LUN
(¢ dr = t do — dz (3.20
/Q de (tyundz Q]dN( Jundz a1+ (hn(1))?2 Jr dx z )
Ywy € Dy.

Existence of the solution and convergence of the numerical scheme was
not addressed here due to the different orientation of the work. To our best
knowledge, some results exists just for mean curvature flow (second order flow)
and Willmore flow (fourth order) with no strain energy and other terms present
here.

3.2.2 Finite element method

Let us assume the triangulation 7; of the domain Q with N elements €2, =
(i, wip1),i=1,...,N. The N+ 1nodesare 0 =1 < x5 < ... < Tny1 = A,
with A\; = x;,1 — x; and maximal element diameter d. The space Dy C D will
consist of continuous functions on {2 with periodic values at z1,xy.1, linear
on each element §2; with basis functions {gbi}i]il such that fori=1,..., N and
j=1,...,N+1holds ¢;(z;) = J;; except ¢1(zrn41) = 1.

Interpolation operator Z, : C°(Q) — Dy is given by

N+1
Toh = higy(x). (3.21)
i=1
Values at the node points will be denoted as vector h = (h1,ha, ..., hyy1) in

the following. We set hyy1 = hy in each time step to get periodic Dirichlet
condition.

The usual L? scalar product on §2 will be written as (-, ). The mass matrix
M, is given by

N N

(Ma)ij = (61, 67) = Y (1, 05)a. = Y M7, (3.22)

e=1 e=1

where subscript denotes restriction of the scalar product on element €2.. Since
basis function ¢; is nonzero only in €2;_; U ();, we easily compute

DY m m DY
M - o meen | 32
o Met1,e Metle+1 o

where other terms than written are zero. This matrix is usually written as
element mass matrix

r(e) — Mee Me.e+1 _ & 2 1
M (me+1,e Met1,e+1 ) 6 <1 2 . (324)
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which follows from trivial integration of linear functions.
In the very same way, the weighted stiffness matrix is computed by elements

N

vé: S [ ve | =S @wm

(La(h))ij = | ——=—==
\/1+h e=1 \/1+h 0 e=1
(3.25)
with element stiffness matrix
- 1 1 _
Ld(h)(e) = —A_ ( 1 11 ) (3.26)
1+ (h )2
and the derivative of h at the element e as
— hei—h
p o= ekl T e 9
=t (3.27)

Inserting our finite element space D, in the weak formulation (3.19), (3.20)
and interpolating function p also in this space we have

Vhq
(/id, ’LLd) = (m, VUd) s VUd € Dd, (328)
dhg ) . V,ud
—, W = yWe) — | —==,Vwy |, Ywge€ Dy, (3.29
( W (Ja> wa) ( ENTHE d) ¢ € Da, (3.29)

where the variables are all time dependent. With the choice wy; = 1, we have
explicit mass conservation

/ d(ftd( )z = /Q ja(z)dz. (3.30)

In the matrix form it holds (for every time ¢, which we have omitted for
clarity)

MyRy = Lg(hq)hy, (3.31)
dh _ -

Mdd—td = Myjq— La(ha)fig(ha), (3.32)

Ta(ha) = Ya(ha)Fa + S(ha) + Tuer(ha) + Teor (ha), (3.33)

where we introduced matrix (Y4);; = 6;; T with ;; Kronecker delta matrix.
All matrices are sparse and this was used in the numerics to lower the memory
usage.

The time interval I = (0,7) is divided into intervals Iy = (t,tx+1) with
tgr1 = tx + 7% for time increments 7, > 0,k =0,1,..., K — 1.

This system of ordinary differential equations for hy(t) is very stiff (owing
to the curvature and regularization terms) and therefore we have used TR-
BDF2 method which is one step, second order and both A- and L-stable Bank
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3. Numerical methods 3.2 Evolution equation

et al. (1985) implemented in Matlab with function ode23tb (with automatic
error and timestep control). The strain energy density is computed explicitly
to enhance the computation speed, since most of the time is spent there.

We will show the TR-BDF2 algorithm on the general ODE system to sim-
plify the writing

y = f(y), (3.34)
y(0) = Yo (3.35)

First divide each time interval 74 into two parts, 975, and (1 — ¢)7;. Trape-
zoidal rule (TR) is then used in the first sub-interval

yre —¥* _ fyrr) + (")

3.36
797—1@ 2 ( )
and backward differentiation formula of order 2 is used in the second
L (29 41 1 pa, 1=0 4 k
- _ — f(yFtL 37

Additionally, if 9 is chosen properly it can be shown that the Jacobian
need not be re-factored for the TR step, substantially reducing the CPU time
per timestep. Local truncation error is estimated for each component and
it is kept with relative error tolerance 1073, meaning that the we have all
solution components with 0.1% relative error. Newton method is used for the
solution of nonlinear equations. From higher order methods (although slower),
numerical differentiation formula (NDF) method ode15s of order 5 was used
for comparison.

3.2.3 Spectral methods

Another approach to the solution of the evolution equation uses periodicity
and symmetry of the solutions Spencer and Meiron (1994). It enjoys infinite
order of accuracy for smooth solutions. We will use truncated Fourier series
to approximate the solution in the form

N/2

h(zj,t) = h;(t) = ch(t) cos (%ﬂx]) : (3.38)

=0

where we use equidistant grid z; = %(] —1),7 =1,...,N. Now the time
derivative in the evolution equation (2.60) can be written as
N/2
dh;(t) de(t) 2ml

=0

and the problem can be solved in the Fourier space for ¢;(t) instead of h;(t).
Spectral coefficients r; are computed with the discrete Fourier transform

D 1 o ik 2l
[]d + e <Th§%)] (xj,t) = Zrl(t) coS (Tx]) ) (3.40)

=0
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Also comparing (3.39) and (3.40) it must hold

de(t) B N
Cllt =), 1=0,...,—. (3.41)

This ODE system is also very stiff and can be solved easily by the default
TR-BDF2 only for N = 100 spectral coefficients, because for higher modes it
is not possible to estimate them as accurately as the lower ones and we had
to set lower absolute error tolerance on them. The way out from this could
be semi-implicit algorithm, where nonlinear terms are treated explicitly and
linear implicitly. This was not possible because the stiff terms were nonlinear.

We have also used implicit method of backward Euler differentiation. We
start with initial surface profile ho(x), transform it into the spectral coefficients
? with FFT and start with iterations: for k = 0,1, ... find cf“ such that

k+1 _ k

I —_ (3.42)

Tk

System of nonlinear equations has to be solved in each timestep using Newton
method. As different time scales play important role in the problem, we have
adjusted the step size according to the well-known step-doubling procedure,
but we experienced problems to capture the important events during evolution
(shape transitions).

Pseudospectral method (e.g. Boyd (2001)) was developed similarly to the
spectral but it computes the derivatives by Fourier differentiation as in (3.12)
and solves the system of ODEs for h with the same TR-BDF2 scheme as for
the finite element method. This algorithm performs qualitatively similar to
FEM and implicitly contains periodic boundary conditions.
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Chapter 4

Simulation results

We compare calculations of strain energy on the surface and inside islands with
previous analytical and numerical results. Numerical schemes for evolution of
islands reproduce known results of cusp formation (no wetting), ripening (with
wetting) for isotropic surface energy. Deposition can have significant effect on
film evolution. Smooth and cusped anisotropic surface energy is studied to
see the facet formation and metastability of faceted island array, qualitatively
comparable to experiments.

4.1 Strain energy

4.1.1 Numerical check - cycloid surface

Analytic result for the strain energy density of the 27-periodic cycloid interface
is known from Chiu and Gao (1993) for # € (0,27) and 0 < a <1

r = 0+ asinb, (4.1)

h(z) = «cosb, (4.2)
2m .

0, = N(]—l), j=1,...,N, (4.3)

Semact(g) — ( Lo )2. (4.4)

1+ 2acosb; + a?

We obtained spectral accurate results within standard error err = 10719 for
the parameter o = 0.1,0.5,0.9 (characterizing sharpness of the cusp) with
N =16, 32,256 points

N
1
err = \| 57 D (S5t = Sy, (4.5)
j=1

where we have computed the numerical value of the strain energy density S™*
from (2.89) solving the integral equation for ®. Sample cycloid surface and its
strain energy is plotted on Figure 4.1.
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Figure 4.1: Strain energy density for the cycloid surface, « = 0.9.

4.1.2 Stresses inside film and substrate

We have computed the components of stress tensor o;; according to the proce-
dure in section 2.6.2 for one stable island (Figure 4.2) and T-pyramid (Figure
4.3).

In agreement with Spencer and Tersoff (2001), we observe misfit stress
(02z) relaxation at the top of island, which can be eventually overrelaxed for
big islands. The thin inter-island wetting layer stays quite uniformly strained
as for the case of flat film. Island edges experience big stress concentration,
which can lead to the introduction of dislocations. Substrate is deformed
because of the island relaxation and therefore opposite misfit stress is present
directly below the island. Other elements of the stress tensor (o,,0,,) are
small generally, decaying in the substrate.

4.2 Isotropic surface energy

We present justification of our evolution numerical schemes for (2.59),(2.60)
with well known results for isotropic surface energy (and thus stiffness) T; = 1.
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Figure 4.2: Components of stress tensor o, (upper), oy, (middle) and oy,
(lower) inside the stable quantum dot (y > 0) and in the substrate (y < 0).
The dot was taken from calculations stable island array for cusped surface
energy Y3 with b =5-1073.

4.2.1 Linear equation without strain energy

Omitting strain energy term, linearizing curvature (k = —h,,) and small slope
approximation (h, < 1) in (2.60), we in fact solve linear diffusion equation of
fourth order

Oh o*h
E = —@ m <0, )\) X <0, T> (46)
oh oh

— _— — pu— 4.

00 = S =0, (4.7

2
h(z,0) = cos(ax),a = 5N (4.8)
which is analytically solvable using Fourier transformation (3.10)

Do) = () hlw,1), (4.9
h(w,t) = h(w,0)e ", (4.10)
Mw,0) = varow=a) ;L dwta) (4.11)
Wz, t) = e “"cos(az), (4.12)

where here 0 indicated Dirac delta distribution. With our numerical schemes,
standard error (4.5) 1073 of h from analytical solution was obtained with N =
50. Uniform space grid, a = 1,7 = 1 was used.
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05 T T T T T T

0 05 1 15 2

Figure 4.3: Components of stress tensor o, (upper), oy, (middle) and oy,
(lower) inside the T-pyramid quantum dot (y > 0) and in the substrate (y < 0).
Similar dot shape was observed by number of experiments Rastelli et al. (2001);
Tersoff et al. (2002).

4.2.2 Linear results with strain energy

Now we add strain energy (which is nonlinear and nonlocal term) to the linear
equation from the last section

oh o*h %S .
% = ot ge (0,\) x (0,7), (4.13)
oh oh
5.0 = (1) =0, (4.14)
ho(z) = 14 0.01cos(ax). (4.15)

Linear perturbation result of (2.112) with no wetting and isotropic v gives

h(z,t) = e(ho(x) — 1) + 1, (4.16)
where ¢ = 4a® — a*, giving unstable wavenumbers a < 4 and fastest grow-
ing wavenumber a = 3 (corresponding wavelength is A; = 2?”) Comparison

of numerical results with initial linear behavior is good and can be seen on
Figure 4.4. Perturbation evolves self-similarly and the surface profile remains
sinusoidal in the initial stages.
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Figure 4.4: Surface evolution at the point = 4 for a = 5 (stable), a = 4
(steady) and a = 3 (unstable, fastest growing). Data are for uniform space
grid with d = 1072 and 7" = 0.05. Solid lines represent initial linear behavior
(4.16) and dashed line our numerical approximation.

4.2.3 Nonlinear evolution

Fully nonlinear evolution equation (2.59),(2.60) without wetting and corner
regularization is

on o 1 ow+s)]
E = % m I mn <0, >\> X <0,T>, (417)

it

with periodic boundary conditions and

ko= —(% (h—> in (0,A) x (0,T), (4.18)

%(O,t) = %(A,t)zo, (4.19)
ho(z) = 14 0.01cos(ax). (4.20)

It was studied first by Spencer and Meiron (1994) and Yang and Srolovitz
(1993). The evolution for the fastest growing wavenumber from the linear
perturbation analysis a = 3 tends to develop cusp in finite time, see Figure
4.5, and we are not able to track the solution numerically after some time. On
the other hand, for a = 3.8, the evolution develops steady state, see Figure
4.6. Both predictions agree with Spencer and Meiron (1994).
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Figure 4.5: Surface evolution for wavenumber a = 3 (unstable, fastest
growing). Data are for uniform space grid with N = 128 and time T =
0,0.056, 0.079, 0.085, 0.086.
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Figure 4.6: Steady state develops for wavenumber a = 3.8. Data are for
uniform space grid with N = 128 and time 7" = 0,0.16,0.18,0.22 and steady
state.
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Figure 4.7: Random initial condition with a = 1. N = 128 and time 7" =
0,0.18,0.236, 0.24.

Evolution for a randomly perturbed initial condition
ho(x) =14 0.01 - rand(z), (4.21)

where rand(z) gives random number in interval (0, 1), confirms predictions of
the linear theory. Fastest growing wavenumber a = 3 dominates the evolution.
We plotted evolution for a = 1 on Figure 4.7, as in this case the random initial
condition contains all wavenumbers but a = 3 develops first.

For a = 9 on Figure 4.8, initial condition contains only wavenumbers a > 3
that are all damped out, as predicted by the linear theory.

Therefore, it is qualitatively reasonable to simulate the evolution only for
the fastest growing wavenumber a = 3 in some cases (when properties of single
island are studied). Periodic box is chosen to have width of few wavelengths.

4.2.4 Effect of corner regularization

We investigated the influence of corner regularization (2.49) on the evolution
(2.60) of islands. No effect was seen for isotropic surface energy from previous
test cases for regularization parameter r = 1073 or smaller.

On the other hand, when the corners tend to develop and /or the anisotropy
was strong (making the problem ill-posed), omitting the regularization was
disastrous and numerical simulation were unstable developing wrinkles.
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Figure 4.8: Random initial condition and a = 9, N = 32 and time T =
0,4-10"7,5-107%,0.003.

4.2.5 Wetting effect

Growth of the cusps in the previous section is prevented by the wetting energy
term (2.47) in (2.60), which guarantees that thin wetting layer stays between
the growing islands. Films thinner than the critical thickness (2.113) should
decay to a planar film according to the linear stability analysis.

In order to make direct comparison with result of Pang and Huang (2006),
we choose the same parameters. Films thinner than A, = 0.02 ~ 16 nm or 3
ML (2.113) were seen to decay to a planar film. Evolution for initial height
ho = 0.025 above the critical thickness is plotted on Figure 4.9. At the initial
stages, fastest growing wavenumber develops first, but the growth slows down
once it comes near the film/substrate interface (t = 1.1). Coarsening starts
afterwards, when the middle island grows at the expense of those at the sides,
reminding the decreasing island density seen in experiment Ross et al. (1998).
This process seams to stop and steady state morphology is reached numerically
(t = 20) and is stable against subsequent coarsening (f < 500), because no
more material can be diffused. Substrate stays covered with thinner inter
island wetting layer (thickness 0.01 or 1-2 ML, it is entirely determined by the
transition thickness parameter b) which cannot be removed from energetical
reasons. The trough at the island sides is common for all simulations. This is
consistent with the results of Tekalign and Spencer (2004), Pang and Huang
(2006), Eisenberg and Kandel (2005).

Simulation results for random perturbated initial conditions can be seen
on Figure 4.10 (¢ = 0.5). Fastest growing wavenumber a = 3 is seen to
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Figure 4.9: Evolution with wetting energy for initial conditions of Pang and
Huang (2006) ho(z) = 0.025 + 2.5 - 10° cos(ax) and a = 1.25, N = 128,
b=2.5-10"% Be aware of different scalings used by Pang and Huang (2006),
4L = ly and 2567 = 7.

really develop first and then ripening occurs, some islands dissapear and just
one big island remains as in Eisenberg and Kandel (2005) (Fig.8). On the
contrary, we did not observe the steady morphology computed in this work
for h, < h < h. + 1ML (qualitatively same results as in Figure 4.10 were
obtained). This could be caused by different mechanism for wetting which
included nonlinear elastic free energy in their work.

We have tried the simulations with their term

df h
(h) = Sp(1 —0.05exp(———)) for h >0, (4.22)
dh har
and zero for h < 0 with Ay = 0.1. This was included in the chemical

potential (2.54) insted of our wetting term (2.47), but the numerical evolution

had problems with abrupt change in behavior of %‘%O)(h) and this produced
instability at the film/substrate interface. In fact, Eisenberg and Kandel (2002)
also reported some numerical instability by directly computing the chemical
potential this way and used more physical approach based on the material
movement on the surface together with some tricks to keep the inter island
wetting layer on the substrate.
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Figure 4.10: Evolution with wetting energy for initial condition ho(z) = 0.025+
0.01 - rand(az) and a = 0.5, N = 128, b =2.5-107*.

4.2.6 Deposition effects

So far, deposition flux was assumed zero and annealing of thin films was studied
exclusively. In this section we solve evolution equation (2.60) with constant
deposition rate v, for two methods of deposition - MBE (2.1) and LPE (2.2).

Comparison with results of Eisenberg and Kandel (2002) for isotropic sur-
face energy, a = 3 and high deposition rate v; = 250 is on Figures 4.11 and
4.12. Cusp formation is seen for MBE;, since the deposition affects the evolution
only by enlarging the surface height. On the other hand, steady morphology
(preserving shape) is reached for LPE, because the material is deposited faster
on the cusps and thus slows down its formation.

Different outcome is produced for wavenumber a = 3.8, Figures 4.13 and
4.14. Both methods of deposition lead to the steady morphology and similar
to the steady states seen in infinitely thick film by Spencer and Meiron (1994).
This is in agreement with results of Chiu and Gao (1995), who showed that
different morphologies can be obtained for different values of ratio vy/a* during
LPE deposition. Cusps are produced for vy/a? ~ 1, steady state morphologies
for vg/a® > 1.

General random large sample was studied on Figure 4.15 with constant
MBE deposition rate vy = 0.1. Initially surface grows mainly flat, but as the
fastest growing wavelength develops, islands are formed and then they grow
only vertically. If the deposition is stopped, they seem to be metastable during
short term annealing.
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Figure 4.11: Cusp formation in MBE deposition, very high deposition rate
vg = 250 and a = 3. Value of h — vyt instead of A is plotted to keep the same
scale.
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Figure 4.12: Steady state for LPE deposition, very high deposition rate vy =
250 and a = 3. Value of h — v4t instead of h is plotted to keep the same scale.
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Figure 4.13: Steady state for MBE deposition, very high deposition rate
vg = 250 and a = 3.8. Value of h — v t instead of h is plotted to keep the same
scale.
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Figure 4.14: Steady state morphology for LPE deposition, very high deposition
rate vy = 250 and a = 3.8. Value of h — vt instead of h is plotted to keep the
same scale.
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Figure 4.15: Evolution with MBE deposition v = 0.1 and T; = 1,hy =
0.1,a = 0.25, N =256, b =2.5-107%.

4.3 Smooth anisotropic surface energy

Above the roughening temperature, crystalline materials exhibit smoothly
anisotropic or isotropic surface energy. We will study the impact of the surface
energy . for different facet angles.

4.3.1 Facets at 45 degrees

Parameters used by Long et al. (2001) g = 0.05, 3 = 4 for 7, lead to surface
stiffness YT, that becomes negative for certain angles, making the problem ill-
posed. In their numerical formulation no surface stiffness was calculated and
it appeared naturally from the algorithm used. This was seen in our evolution
study as blow-up at all length scales Spencer (2004) and corner regularization
(2.49) was needed. This regularizing term smoothes the small-scale instability
and removes the ill-posedness. This result can be seen in Figure 4.16, without
any qualitative difference for smaller regularization parameter r. Two faceted
islands develop at the distance ~ 6 and they ripen until all material is con-
sumed. This island spacing corresponds well with the fastest predicted growth
wavelength (2.116), Ay ~ 5.5. We have not observed the triangular shapes
(with facet angle 30°) reported by Long et al. (2001) and our results show
T-pyramid quasiequilibrium shapes (notation corresponds to Rastelli et al.
(2001)), Figure 4.17. This is awarded by Gill to the different variational for-
mulation (using not surface stiffness in the formulation) and its weakness to
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Figure 4.16: Evolution with Y5 (g = 0.05, 5 = 4) for perturbed initial condition
hy=0.15and a = 0.5, N = 256, b = 2.5-10~*,r = 10~3. Facets have developed
at 45° and 0°.

enforce 0° facet at the top of the triangle.

The influence of the strength of anisotropy on the quasiequilibrium shape
is on Figure 4.17. Facets are more sharp for g = 0.05, as the surface stiffness is
negative for orientations around the facet and therefore this high energy angles
are prohibited. For g = 0.02 there is no negative surface stiffness and facets
meet not so sharply because the orientations near facet are possible.

Larger samples were studied to study the effect of coarsening, Figure 4.18.
Number of small islands have developed next to the perturbation (t = 2.7),
smaller dissapear (¢ = 6.7) and this process continues over longer length scale
(t = 50 —200), because islands influence each other slowly when their distance
is increasing.

Evolution during MBE with deposition of v; = 0.1 leads to the formation of
nice regular array of nearly equally sized islands, Figure 4.19. The coarsening
process, which is just the surface diffusion of atoms between different islands,
is suppressed by the deposition from above and the atoms have little time to
diffuse along the surface. If the deposition is stopped and sample is further
annealed, it shows signs of metastable morphology that will not coarsen into
smaller number of bigger islands.

4.3.2 Facets at 11 degrees

We have done comparison with equilibrium island shapes obtained by Tersoff
et al. (2002) with the same parameters used there (11,22° facets with yr., 3 =
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Figure 4.17: Quasiequilibrium shapes of T-pyramids - sharper corners for g =
0.05 and smoother for g = 0.02.
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Figure 4.18: Evolution with Y5 (¢ = 0.05, 5 = 4) for perturbed initial condition
hy =0.15 and a = 0.125, N = 256, b = 2.5- 10~ 7 = 1073,
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Figure 4.19: Evolution of regular island array with Ty (¢ = 0.05,8 = 4)
for perturbed initial condition hy = 0.15 and a = 0.125, N = 512, b =
25104 1 = 103,

32,9 = 0.0015) converted to our scalings. We have enforced the very small
wetting layer by taking b = 10~ which makes the critical thickness of the
linearly stable wetting layer h. = 10~*. Results of our evolution calculations
are on Figure 4.20. At small volumes only cosinelike shapes are possible,
but for greater volumes faceted islands develop. Even larger islands have
“dome” shape with higher facet orientations £22°, what will be later described
as pyramid to dome shape transition. Island edges meet the substrate at
zero contact angle. Phase transition from prepyramids (cosinelike shapes) to
pyramids (faceted islands) is completely described in their work and compared
to the experimental data from STM.

Essentially the same minima can be obtained with v, 5 = 16,9 = 0.0015
as with vy, 6 = 32,9 = 0.0015. We studied the long time evolution of large
samples in this case, Figure 4.21. Lowest angle facet 11° develops first on the
islands and during coarsening small islands dissapear and bigger acquire higher
facet angles 22° and 33°.

4.4 Cusped anisotropic surface energy

Evolution equation (2.60) will be solved with cusped surface energy 73,74 or
T3, T4 respectively. Linear stability analysis for cusped anisotropic case 73
without wetting differs significantly from the case when smooth surface energy
was assumed. It was done by Long et al. (2001), Gill with the essential result
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Figure 4.20: Equilibrium island shapes for different island volumes, parameters
were taken from Tersoff et al. (2002), Y., g = 0.0015, 3 = 32.
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Figure 4.21: Number of small islands have developed (¢t = 28) and then bigger
grow at the expense of smaller (¢ = 33,43). Finally just one big island remains.
Ty (g = 0.0015, 3 = 16), h; = 0.03 and a = 0.125, N = 256, b = 2.5-10~4,r =
1073,
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Figure 4.22: Annealing of disturbed flat film hy = 0.15 with a = 0.5, N = 128
and Y4,g = 0.05,0 =4,G = 500.

that the perturbation amplitude must be above critical value

po > % (4.23)

in order to destabilize the film. Fastest growing wavenumber in this case is

as =4 (1 - @> . (4.24)

TPo

As pointed out first by Long et al. (2001), this result is very different from the
result of linear stability for ~4, which gives no dependence on the perturbation
amplitude and predicts stable film for G — oo. This result is valid for weak
anisotropy with the amplitude to wavelength ratio of roughly 0.05 or less, so we
are at its limit in our case where % ~ 0.06. Therefore, and also according to
the nonlinear analysis of a large perturbation model by Gill, smaller amplitude
perturbations than py could be unstable.

When we used T, in numerics, Figure 4.22, the computations were rather
slow because of the blow-up in the graph of T4 at 36 = nm, which introduces
difficulties in the numerical scheme ( timestep is very small for desired ac-
curacy). Computations with G = 50 were faster, but not as much as with
T;. Interestingly, when we used the surface stiffness T; (without
blow-ups, see Figure 2.6), no qualitative change was seen and com-
putations were many times faster. Most results henceforth were
computed using T3. It is clear that blow-up in T4 can substantially stabi-
lize facet orientations during evolution, much more than T3, as was shown by
Eisenberg and Kandel (2005).
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Figure 4.23: Annealing of disturbed flat film h; = 0.15 with a = 0.25, N = 256
and Y3, =0.05,3 = 4.

4.4.1 Facets at 45 degrees

We calculated the evolution for g = 0.05, 3 = 4 to make qualitative comparison
with the results of Eisenberg and Kandel (2005). First we tried the evolution
equation (2.60) without the regularization term (2.49) but it was unstable
after the creation of edges. After we have included this term in the equation
(Figure 4.23), we could compute the evolution for any time limited only by the
computational demands. Neighboring islands grow next to the perturbation
(t =0.1,5.5), which undergo long time coarsening (¢t = 100).

This is in agreement with number of experimental observations Mo et al.
(1990); Medeiros-Ribeiro et al. (1998); Kamins et al. (1997); Moison et al.
(1994) and simulation studies Long et al. (2001); Eisenberg and Kandel (2005),
where the islands maintain fixed height-diameter ratio (shape) as they grow.
Inter island wetting layer of thickness about 5-1073 (1 ML) (for b = 2.5-107%)
stays at the substrate consistent with observations of Moison et al. (1994);
Ozkan et al. (1997) and cannot be removed. Larger value of b produces larger
wetting layer.

As experimentally observed by Tromp et al. (2000) and others, new islands
are developing near other islands (“chain-reaction ripple effect”), because the
growth destabilizes the flat faceted film at island boundaries. This can be also
seen on Figure 4.23.

Quasiequilibrium island is shown in correct aspect ratio on Figure 4.24,
where 0°,45° facets can be roughly seen. Since our continuum model and
corner regularization are smoothing the edges, they are not perfect in the
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Figure 4.24: Metastable island in 1:1 aspect ratio, T3, g = 0.05, 5 = 4.

angle nor in the corners.

Few islands were studied during MBE deposition to see the shape transi-
tion between pyramid and dome, Figures 4.25, 4.26. We see islands growing
preserving their aspect ratio in the beginning (pyramids). After some criti-
cal width, their sides exceed 45° angle and they grow only vertically (domes).
This effect can be already seen for smoothly anisotropic surface energy on Fig-
ure 4.20, it is not constrained just to the cusped surface energy. This well
corresponds to the experimental observations in Section 1.3.

Constant deposition rate vy = 0.1 was assumed during MBE, Figure 4.27.
Initially film grows just vertically but small undulations soon develop and some
parts reach the substrate. From this moment, quite regular array of islands
grows vertically, eventually changing shape, what can be not seen in this graph.
If the deposition is stopped here and sample is annealed, it is metastable and
this could be used to produce stable regular positioned island array.

4.4.2 Facets at 11 degrees

Similar qualitative behavior as in the smooth case was obtained for T3 and
surface energy minima at 0, £11°, +22°, Figure 4.28. Number of small islands
appear (t = 4,7) and then bigger grow at the expense of smaller over longer
length scale (t = 50, 200).
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Figure 4.25: Increasing the size, pyramid aspect ratio remains roughly the
same (t = 0.9,1.4). When the dome is introduced (¢ = 1.6), it grows only
vertically. Parameters vy = 0.1, T3,9 = 0.07, 3 = 4.
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Figure 4.26: Pyramid-to-dome transition during MBE growth with deposition
rate vy = 0.5. 13,9 = 0.05, 6 = 4.
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Figure 4.27:  Deposition v4 = 0.1 on a disturbed flat film hy = 0.15 with
a=0.125, N =512 and Y3,¢9 = 0.07, 6 = 4.
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Figure 4.28: Coarsening for weak T3 (¢ = 0.0015,3 = 16), hy = 0.03,a =
0.125, N =256, b=2.5-10"%r = 1073.
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Figure 4.29: Evolution of higher sample, T35 (¢ = 0.0015,8 = 16), hy =
0.15,a = 0.125, N =512, b=2.5-10"%r = 1073,

When higher sample is annealed (and thus more material can diffuse to
make islands), Figure 4.29, small islands grow more dense together (t = 0.9)
and decay into bigger islands just over long time (¢ = 40 — 300), indicating
their meta-stability. As already mentioned, the stability is in reality enhanced
by bigger stiffness maxima at the facet orientations.

Evolution with constant deposition rate v, = 0.1 was calculated during
MBE, Figure 4.30. Quite regular array of islands develops (¢ = 1.6) and from
this moment, they grow only vertically. If the deposition is stopped, they are
metastable against ripening.
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Chapter 5

Discussion

Continuum model of thin film evolution used here allows to forget about the
atomistic nature of growth phenomena, since the islands typically contain thou-
sands of atoms and the continuum approximation is well satisfied. Quantum
mechanical potentials, barriers etc. are not needed in the model and this is
great advantage over the kinetic Monte Carlo models. In fact multiscale ap-
proaches are developed to use good properties of both models together. Our
model is mostly independent of material properties and thus can be applied
to any material system. The only parameters controlling the evolution are
transition thickness wetting parameter b and the form of surface energy and
its minima.

The smoothing property of the surface diffusion equation is propably the
main disadvantage of the model, since it constrains evolution of the corners
between facets and smoothes them. Here the atomic nature of the surface
should be accounted for. Reduction of the full 2 + 1 system (3D film with
2D surface) to the 1 + 1 system can only describe experimentally observed
elongated huts or ridges. Square pyramid islands reduce to triangles (with cut
top) and important patterns of spatial organization are missed.

Isotropic linear elasticity is good approximation but large deformations
could be present for large islands and this would require nonlinear elasticity. If
different elastic constants are assumed, they will not substantially change the
qualitative behavior, only the characteristic values of time and length. Elastic
anisotropy is small normally and has no effect on our 1 + 1 model but could
produce interesting features in 2 + 1 model.

Anisotropy of the surface energy is not well known and but it is a critical
factor for evolution and stability of islands. Lower angles of minima produce
islands with lower aspect ratio and thus smaller elastic relaxation. Different
models appeared with one, two or more minima and their consequence the
stability of islands was studied in literature. Surface energy in general de-
pends on temperature, composition and other factors and needs to be studied
experimentally and theoretically.

Discretizations errors can be disastrous if the grid resolution is too small.
Otherwise the methods were very robust, but sometimes too slow. Finite size
effect of periodic box is significant mainly for samples with one or very few is-
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5. Discussion

lands, where it can constrain the evolution mathematically. Larger samples are
not influenced very much and can well approximate real experimental systems
consisting of tens to hundreds of quantum dots.

Several directions could be possible to improve the numerical methods.
Unstructured grid could be used with points redistributed by following the
value of curvature. Admissible polygonal curves for surface height that would
allow only certain tangent angles are possible (developed for crystalline curva-
ture flow originally). Other stable time-stepping schemes which allow bigger
timesteps at the prescribed relative tolerance would be also appreciated.

Three dimensional calculations would better describe the physical phenom-
ena, but the extension of current method is not so straightforward. Hardest
problem is the accurate computation of strain energy, because the complex
formulation we introduced fails in 3D. Efforts were done to obtain expansion
of strain energy to first and second order, but as the slope of the islands be-
comes large for real systems, these approximations are not enough. Coupled
finite element calculation of strain energy and evolution of surface was beyond
the scope of this work.
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Summary

For a simple review on the main results of our simulations, see Table 5.1. Linear
results are from the linear perturbation analysis, self-similar means that the
surface pattern remains the same, but grows in amplitude. Metastable array
suggests that the island are stable if not annealed for very long times. More
comments can be found in appropriate results section. Analytical proof of the
stability is not possible due to the great number of parameters.

’ Regime H isotropic T, ‘ smooth T cusped T3
linear, b =0,r =0 self-similar self-similar self-similar
nonlinear, b =0,r =0 cusps cusps cusps
nonlinear, b # 0,7 =0 ripening numerically numerically

unstable unstable
nonlinear, b # 0,7 # 0 ripening faceted faceted
islands,ripening | islands,ripening
nonlinear, b # 0,7 # 0 || metastable metastable metastable
vg = 0.1 array faceted array faceted array

Table 5.1: Review of the main results.

We have studied the evolution of quantum dots during heteroepitaxy of
strained film on a substrate in two dimensions. Continuum model based on
surface diffusion equation was formulated in nondimensional form. Chemical
potential consisted of the strain energy, surface energy, wetting energy and
corner regularization. Interaction of film and substrate was included with
height-dependent surface energy, leading to the wetting energy term in the
chemical potential, which prevented exposure of the substrate in the model.
Anisotropic surface energy produced sharp corners at island edges and negative
surface stiffness, causing numerical instability and ill-posedness of the evolution
equation. To prevent these problems, corner regularization energy was added.

Elasticity problem for thin film was solved using Goursat functions by nu-
merical quadrature on the boundary and analytically continued inside the film.
Weak formulation for finite element method was derived but analytic results
(existence, convergence) were seen miles away. Spectral methods were also
presented and proved to be good choice for periodic boundary conditions. Re-
sulting system of ODEs is very stiff and the numerical stability was obtained
using stable A and L—stable method. Calculation of the stress tensor and dis-
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5. Discussion

placements inside the thin film was done numerically by analytic continuation.

We have compared the evolution for isotropic surface energy with known
results. Wetting energy was seen to prevent the exposure of the substrate and
leave thinner inter-island wetting layer between islands. In addition it stabi-
lizes thin wetting layer below critical thickness as seen for Stranski-Krastanow
growth. After the initial island formation, long time behavior reveals coarsen-
ing effect - vanishing of smaller islands at the expense of bigger.

Evolution for smoothly anisotropic surface energy leads to similar effects,
but the islands are slightly faceted and grow with the same aspect ratio. After
some critical width, they grow only vertically and pyramid-dome transition
was qualitatively observed. These islands are metastable just for some time
scale after formation. With the deposition from above, more regular island
arrays were obtained and they were stable against coarsening. Main difference
between 11° and 45° facet degrees lies in the lower aspect ratio of faceted
islands and thus lower elastic relaxation. The shape transition occurs sooner
and the corners are not so sharp for 11° facet.

Similar effects were seen for cusped surface energy, but the computations
were very slow with the rounded version of surface stiffness (blow-ups at the
maxima made the simulations untractable). Instead, stiffness without the
blow-up was used and proved to give similar results as smooth surface energy.
The only difference lies in the stability of facets, which can be greatly enhanced
by the blow-up in surface stiffness.
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List of symbols

Physical quantity Nondimensional Description

gl gl
€0
E
1%
XY x,y
H h
T t
A A
A a
VD (0
Jp Jd
Qs
af
5’2‘]‘ Uij
€ij
Nx, Ny Ny, ny
S S
Vn
Vat
Js
K K
T T
[Lsur‘f Hsurf
/lel Hel
ﬂwet Hapet
[’2/607‘ MCO’/‘
[ I
Hy hy
F Po
B b
R r

g

g

0

N

surface energy, per unit area
misfit strain

Young modulus

Poisson ratio

cartesian coordinates

height of the film surface

time

size of the periodic box
wavenumber of the periodic box
constant deposition rate

vertical deposition rate

lattice constant of the substrate
lattice constant of the film
stress tensor

strain tensor

unit outer normal

strain energy density

velocity normal to the interface
atomic volume

surface diffusion flux

curvature

surface stiffness

surface energy chemical potential
elastic energy chemical potential
wetting energy chemical potential
corner energy chemical potential
total chemical potential

initial film height

perturbation amplitude
transition wetting parameter
corner regularization parameter
strength of surface anisotropy
surface energy minima

tangent angle

number of grid points
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