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Abstract

First, we consider different kinds of representation of uncertainty and the meth-

ods for updating each of them by conditioning. We focus on the generic frame-

work of (conditional) plausibility spaces, since it generalises all the introduced

representations. Further, we select three frameworks and list the properties that

need to be added to a conditional plausibility space in order to recover each of

these frameworks. The main goal of this work, however, is to show how public

announcement on single-agent plausibility models, ranking structures, and pos-

sibility structures realised by their corresponding update mechanisms, can be

embedded into the framework of conditional plausibility spaces. At the very end

we briefly illustrate a general update model using plausibility measures.

Keywords : belief revision, dynamic logic, epistemic logic, plausibility space, pub-

lic announcement, uncertainty, update.



Abstrakt

Najprv sa budeme zaoberat’ rôznymi druhmi reprezentácie neistoty a metódami

aktualizácie pomocou kondicionalizácie. Zameriame sa na generický rámec (kon-

dicionálnej) plauzibility pre jeho schopnost’ generalizovat’ všetky ostatné repre-

zentácie. Následne sa lepšie pozrieme na tri štruktúry a uvedieme vlastnosti, ktoré

je nutné pridat’ rámcu kondicionálnej plauzibility, aby sme každú z nich dokázali

skonštruovat’. Hlavným ciel’om tejto práce je ukázat’, ako môže byt’ verejné vy-

hlásenie na jedno-agentových modeloch plauzibility,
”
ranking“ štruktúrach, a

”
possibility“ štruktúrach, v spojeńı s ich odpovedajúcimi mechanizmami zmeny,

vnorené do rámca kondicionálnej plauzibility. Na záver ešte stručne poṕı̌seme

všeobecný model zmeny postavený na miere plauzibility.

Kl’́učové slová: dynamická logika, epistemická logika, neistota, rámec plauzibility,

rev́ızia presvedčenia, verejné vyhlásenie, zmena neistoty.
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Introduction

Epistemic logic, a modal logic suitable for reasoning about knowledge, has re-

ceived quite the attention since the 1950s–1960s (thanks to G.H. von Wright, and

J. Hintikka, respectively). With a group of agents we are able to investigate their

individual knowledge, their knowledge about other agents’ knowledge, and the

alternatives an agent considers possible or impossible. What is more, we can even

study distributive and common knowledge within a group of agents, i.e., what

would they know if they put all their individual pieces of information together,

and what everybody knows that everybody knows that everybody knows. . . , re-

spectively. With more expressive dynamic epistemic logic we can capture the

social aspects between the agents, that is, how their knowledge (individual and

about the others) changes when they interact with each other via some kind

of action (the most common being communication and announcements, but also

including other ‘nonverbal’ actions as, for example, seeing somebody doing some-

thing).

An agent might not always be able to decide between the alternatives, she

simply does not know which ones are the case. However, she still might prefer

some of the alternatives more than the others, and thus she might be able to

make at least an assumption according to her beliefs. After all, that is what we,

people, usually do in real life – we decide according to our beliefs much more

often than according to a ‘bullet-proof’ piece of knowledge.

Actions do not necessarily lead to gaining knowledge, to learning. However,

they might still lead an agent to make a weaker yet more common kind of change,

namely, the change of beliefs. The agent can add new beliefs, remove some of

the old ones, or even revise them, so that in contrast with the first case, all

her beliefs stay consistent. If the agent inclines to one alternative and an event

takes place suggesting that the other alternative might be the case, she might

be willing to change her mind, revise her beliefs, and eventually decide for the

other alternative.

The first two chapters are based on the overview in [Hal03]. In the first chap-

ter we introduce different kinds of representations of uncertainty, some quan-

titative, some qualitative – including probability measures, ranking functions,

possibility measures, Dempster-Shafer belief functions, and the one generalising

all of them, namely, plausibility measures.
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Introduction

In the second chapter we show how updating of uncertainty works for each

of the representations mentioned in the first chapter. As the last one we present

a conditional plausibility space, which is (in a certain sense) a generalisation of

all the others described in this chapter.

In the third and main chapter we build our results on this generic framework.

Our goal is to show that being equipped with a conditional plausibility space with

appropriate additional properties, using conditioning we can ‘simulate’ certain

actions (e.g., public announcement and radical revision) on three other frame-

works for Baltag and Smets’ single-agent plausibility models (in [BaS08]), ranking

structures, and possibility structures, respectively.

In the fourth chapter we present a general model for revision using plausibility

measures as suggested in [MaL08]. Even though this topic is beyond the scope

of this thesis, we consider it very relevant and useful for future research in this

area.

8



Chapter 1

Representing Uncertainty: Different

Kinds of Representation

1.1 Language, Structures and Semantics

Let us first define several basic notions which are used on regular basis throughout

this thesis starting with the syntax.

Definition 1.1 (Doxastic language). For any countable set of atomic proposi-

tions Φ, we define doxastic language LΦ by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕϕ,

where p ∈ Φ and Bϕ is the conditional doxastic modality (conditional belief).

We use the usual abbreviations for the other boolean connectives as well as for

> and ⊥, and the abbreviation B for B>.

The atomic propositions (usually labeled by letters such as p and q) can be

intuitively thought of as representing statements about the basic facts of the

situation which must be either true or false (e.g., ”It is raining.” ”5 is a prime.”).

The core idea for all the upcoming formalisms comes from the well-known Kripke

semantics for modal logic.

Definition 1.2. Given a countable set of atomic propositions Φ and a finite set

of agents G, a Kripke model is a structure M = (W,R, π), where

1. W is a set of states. The set W is also called the domain D(M) of M .

2. R is a function, yielding for every i ∈ G an accessibility relation R(i) ⊆
W ×W .1

3. π : Φ → 2W is a valuation function that for every p ∈ Φ yields the set

π(p) ⊆ W of states in which p is true.

1Indeed, here × denotes a Cartesian product: A×B = {(a, b) : a ∈ A and b ∈ B}.

9



Chapter 1. Representing Uncertainty: Different Kinds of Representation

Since the main focus of this thesis is on belief and not knowledge, we restrict

ourselves to the simplified single-agent cases. Thus, we omit all the accessibility

relations except for the one (which obviously must be universal W × W , i.e.,

defined on all the pairs of worlds) and add a plausibility measure or a plausibility

relation, that is, a certain way of expressing plausibility.

The states in W are usually interpreted as possible worlds. Intuitively, they

are the worlds that an agent considers possible. For our purposes, the ‘objects’

that are known (or considered likely or possible or probable) are propositions.

Formally, a proposition is just a set of possible worlds, where it is true, i.e., a

proposition ”it is snowing in Prague,” would correspond to the set of possible

worlds where it is snowing in Prague.

The set of possible worlds that an agent considers possible can be viewed as a

qualitative measure of her uncertainty. The more worlds she considers possible,

the more uncertain she is as to the true state of affairs, and the less she knows.

Suppose that an agent’s uncertainty is represented by a set of possible worlds W .

She considers Upossible if U ∩W 6= ∅; and she knows U if W ⊆ U .

Let us define what it means for a propositional formula ϕ to be true at a

world w in model M . As far as the modal operator Bψ for conditional belief is

concerned, we shall define the exact condition for each of the selected frameworks

individually later on. However, the main idea is that ”. . . [c]onditional beliefs

‘pre-encode’ beliefs that [an agent] would have if [she] learnt certain things”

[Ben04, p. 11]. It means that if Bψϕ is true, then it is more likely that ϕ ∧ ψ is

the case rather than ¬ϕ ∧ ψ (i.e., if ψ, then typically ϕ).

Definition 1.3 (Satisfaction Relation). Let M = (W,R, π) be a Kripke model.

The satisfaction relation is given by, for w ∈ W, p ∈ Φ, ϕ, ϕ′ ∈ LΦ,

M,w |= p iff w ∈ π(p)

M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= ϕ ∧ ϕ′ iff M,w |= ϕ and M,w |= ϕ′

We write M |= ϕ to mean M,w |= ϕ for all w ∈ W . Further, |= ϕ (ϕ is valid)

means that M |= ϕ for all models M .

Last but not least, we will base some of the frameworks on sets of worlds

rather than on worlds themselves. For that purpose we define an algebra.

10



Chapter 1. Representing Uncertainty: Different Kinds of Representation

Definition 1.4. An algebra over W is a set F of subsets of W that contains W

and is closed under union and complementation, so that if U and V are in F ,

then so are U ∪ V and U .

Note that an algebra is also closed under intersection, since U ∩ V = U ∪ V .

Now we can proceed to the overview of frameworks based on [Hal03, ch. 2].

Naturally, we place more emphasis on those which will be used further on. The

rest is mentioned to stress the generality of the plausibility measures.

1.2 Probability Measures

Perhaps the best-known approach to getting a more fine-grained representation

of uncertainty is probability.

Definition 1.5. A probability space is a tuple (W,F , µ), where W is a non-empty

set of possible worlds, F is an algebra of measurable subsets of W (i.e., a set of

subsets closed under union and complementation to which we assign probability),

and µ is a probability measure, that is, a function µ : F → [0, 1] satisfying the

following properties:

P1. µ(∅) = 0.

P2. µ(W ) = 1.

P3. µ(A ∪B) = µ(A) + µ(B), if A and B are disjoint elements of F .

If F = 2W , then it suffices to define a probability measure µ only on the

elements of W ; it can then be uniquely extended to all subsets of W by taking

µ(A) =
∑

w∈A µ(w).2

Next, let us briefly justify probability. The classical approach to applying prob-

ability, which goes back to the seventeenth and eighteenth centuries, is to reduce

a situation to a number of elementary outcomes.

Definition 1.6. The principle of indifference is an assumption that all elemen-

tary outcomes are equally likely.

2If the argument is a singleton subset {w}, we often abuse notation and write µ(w) rather

than µ({w}).
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Chapter 1. Representing Uncertainty: Different Kinds of Representation

Intuitively, in the absence of any other information, there is no reason to

consider one more likely than another. Applying the principle of indifference, if

there are n elementary outcomes, the probability of each one is 1/n; the proba-

bility of a set of k outcomes is k/n. Clearly, this definition satisfies P2 and P3

(where W consists of all the elementary outcomes).

While taking possible worlds to be equally probable is a very compelling

intuition, the trouble with the principle of indifference is that it is not always

obvious how to reduce a situation to elementary outcomes that seem equally

likely.

What exactly is meant by the elementary outcomes? How should we choose

them? And why should they be equally likely? In light of these issues, philoso-

phers and probabilists have tried to find ways of viewing probability that do

not depend on assigning elementary outcomes equal likelihood. Perhaps the two

most common views are that (1) the numbers represent relative frequencies, and

(2) the numbers reflect subjective assessments of likelihood.

Definition 1.7. Let n be a fixed natural number. Relative-frequency interpre-

tation is an assumption that if an experiment is repeated n times, then the

probability of an event is taken to be the fraction of the n times the event oc-

curred.

It is easy to see that the relative-frequency interpretation of probability sat-

isfies the additive property P3. Moreover, it is closely related to the intuition

behind the principle of indifference. For example, in the case of a (fair) coin,

roughly half of the outcomes should be heads and half should be tails.

1.3 Ranking Functions

Another approach to representing uncertainty is given by so called (ordinal)

ranking functions.

Definition 1.8. A ranking function (or κ-ranking) κ on a set W of possible

worlds is a function 2W → N∗, where N∗ = N ∪ {∞}, satisfying the following

properties:3

3Based on ideas that go back to [Spo88].

12



Chapter 1. Representing Uncertainty: Different Kinds of Representation

Rk1. κ(∅) =∞.

Rk2. κ(W ) = 0.

Rk3. κ(A ∪B) = min(κ(A), κ(B)), if A and B are disjoint.

As with probability, a ranking function is characterised by its behaviour on

singletons in finite spaces; κ(A) = minw∈A κ(w). To ensure that Rk2 holds, it

must be the case that minw∈W κ(w) = 0, that is, at least one element in W must

have a rank of 0.

Intuitively, a ranking function assigns a degree of surprise to each subset of

worlds in W , where 0 means unsurprising and higher numbers denote greater

surprise (with ∞ denoting ‘so surprising as to be impossible’).

1.4 Possibility Measures

Possibility measures are yet another approach to assigning numbers to sets. They

are based on ideas of fuzzy logic.

Definition 1.9. Let the set of possible worlds W be finite and all sets measur-

able. A possibility measure Poss on W is a function 2W → [0, 1] satisfying the

following properties:

Poss1. Poss(∅) = 0.

Poss2. Poss(W ) = 1.

Poss3. Poss(A ∪B) = max(Poss(A), Poss(B)), if A and B are disjoint.

The dual of possibility, called necessity, is defined in the obvious way:

Nec(A) = 1− Poss(A),

where A is the complement of A in W .

It follows that, like the cases before, if W is finite and all sets are measurable,

then a possibility measure can be characterised by its behaviour on singleton

sets: Poss(A) = maxw∈A Poss(w). For Poss2 to be true, it must be the case that

maxw∈W Poss(w) = 1, that is, at least one element in W must have maximum

13



Chapter 1. Representing Uncertainty: Different Kinds of Representation

possibility. Moreover, in infinite spaces, in Poss3 supremum is considered instead

of maximum.

Perhaps the most common interpretation given to possibility and necessity

is that they capture, not a degree of likelihood, but a (subjective) degree of

uncertainty regarding the truth of a statement. Poss(A) estimates the degree

an agent believes the true world can be in A, while Nec(A) estimates the degree

the agent believes the true world should be necessarily in A.

1.5 Dempster-Shafer Belief Functions

The Dempster-Shafer theory of evidence, originally introduced by Arthur Demp-

ster and then developed by Glenn Shafer, provides another approach to attaching

likelihood to events. This approach starts out with a belief function (sometimes

called a support function).

Definition 1.10. Let all subsets of a set of possible worlds W be measurable.

A belief function Bel on W is a function 2W → [0, 1] satisfying the following

properties:

B1. Bel(∅) = 0.

B2. Bel(W ) = 1.

B3. Bel(∪ni=1Ai) ≥
∑n

i=1

∑
{I⊆{1,...,n}:|I|=i} (−1)i+1Bel(∩j∈IAj),

for n = 1, 2, 3, . . . .

Unlike the previous three cases, a belief function defined on 2W cannot be

characterised by its behaviour on singleton sets. Thus, its domain must be viewed

as being 2W (or some algebra over W ).

1.6 Other Notions of Uncertainty

A preference ordering on W is a strict partial order ≺ over W . Intuitively,

w ≺ w′ holds if w is preferred to w′. Preference orders have been used to provide

semantics for default (i.e., conditional) statements.

A parameterised probability distribution (PPD) on W is a sequence {Pri : i ≥ 0}

14



Chapter 1. Representing Uncertainty: Different Kinds of Representation

of probability measures over W . Such structures provide semantics for defaults

in ε-semantics.

More about these frameworks can be found in [FrH01].

1.7 Generic Framework: Plausibility Measures

Here we consider an approach that is a generalisation of all the approaches men-

tioned so far. The basic idea behind plausibility measures is straightforward. A

probability measure maps sets in an algebra F over a set W of possible worlds

to [0, 1]. A plausibility measure is more general; it maps sets in F to some

arbitrary partially ordered set. If Pl is a plausibility measure, Pl(A) denotes

the plausibility of A. If Pl(A) ≤ Pl(B), then B is at least as plausible as A.

Because the ordering is partial, it could be that the plausibility of two different

sets is incomparable. An agent may not be prepared to order two sets in terms

of plausibility.

Definition 1.11. A plausibility space is a tuple S = (W,F , P l), where W is a

non-empty set of possible worlds, F is an algebra of measurable subsets of W ,

and Pl is a plausibility measure, that is, a function Pl : F → D, where D is

some domain of plausibility values partially ordered by a relation ≤D (so that

≤D is reflexive, transitive, and anti-symmetric). We assume that D is pointed,

that is, it contains two special elements >D and ⊥D, such that ⊥D ≤ d ≤ >D
for all d ∈ D. As usual, we define the ordering < by taking d1 < d2 if and only

if d1 ≤ d2 and d1 6= d2. The following properties are satisfied:

Pl1. Pl(∅) = ⊥D.

Pl2. Pl(W ) = >D.

Pl3. (A1.) If A ⊆ B, then Pl(A) ≤ Pl(B).

The last property says that a set must be at least as plausible as any of its

subsets, that is, plausibility respects subsets.

The domain D is deliberately suppressed from the tuple S, since the choice

of D is not significant here. All that matters is the ordering induced by ≤D on

15



Chapter 1. Representing Uncertainty: Different Kinds of Representation

the subsets in F . We may also omit the F when its role is not that significant,

and just denote a plausibility space as a pair (W,P l) rather than (W,F , P l).4

Definition 1.12. We say PL = (W,P l, π) is a plausibility structure5, if (W,P l)

is a plausibility space, and π : Φ → 2W is a valuation function that for every

p ∈ Φ yields the set π(p) ⊆ W of states in which p is true.

Clearly probability measures, possibility and necessity measures, and Demp-

ster-Shafer belief functions are all instances of plausibility measures, where we

have D = [0, 1], ⊥ = 0, > = 1, and ≤D is the standard ordering on the reals.

Ranking functions are also instances of plausibility measures; in this case, D = N∗

(where N∗ = N∪∞), ⊥ =∞, > = 0, and x ≤N∗ y if and only if y ≤ x under the

standard ordering on the ordinals.

Moreover, Friedman and Halpern in [FrH01] also show how to map prefer-

ence orderings and parameterised probability distributions on W to plausibility

measures on W in a way that preserves the truth values of defaults.

Plausibility measures are very general. Pl1–3 (see Definition 1.11) are quite

minimal requirements, by design, and arguably are the smallest set of properties

that a representation of likelihood should satisfy. It is, of course, possible to

add more properties, some of which seem quite natural, but these are typically

properties that some representation of uncertainty does not satisfy.

What is the advantage of having this generality? For one thing, by using

plausibility measures, it is possible to prove general results about properties of

representations of uncertainty. That is, it is possible to show that all represen-

tations of uncertainty that have property X also have property Y. Since it may

be clear that, say, possibility measures and ranking functions have property X,

then it immediately follows that both have property Y; moreover, if Dempster-

Shafer belief functions do not have property X, the proof may well give a deeper

understanding as to why belief functions do not have property Y.

4Recall that in cases of ranking functions and possibility measures we usually take F = 2W .
5Note that we use the notion of a structure in the same meaning as a model. Unification of

these two notions might have confused the terminology of the individual frameworks.
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Chapter 1. Representing Uncertainty: Different Kinds of Representation

1.7.1 Qualitative Plausibility Space

Definition 1.13. A plausibility space (W,P l) is qualitative if it also satisfies the

following conditions:

A2. If A,B and C are pairwise disjoint sets, Pl(A ∪B) > Pl(C), and Pl(A ∪
C) > Pl(B), then Pl(A) > Pl(B ∪ C).

A3. If Pl(A) = Pl(B) = ⊥, then Pl(A ∪B) = ⊥.

In that case, Pl is called a qualitative plausibility measure. We say PL =

(W,P l, π) is a qualitative plausibility structure, if (W,P l) is a qualitative plau-

sibility space, and π : Φ → 2W is a valuation function that for every p ∈ Φ

yields the set π(p) ⊆ W of states in which p is true. We denote SQPL the class

consisting of all qualitative plausibility structures.

Let us further denote SPL the class of all plausibility structures, and SPoss,

Sκ, Sp, Sε, the classes that arise from mapping possibility structures, ranking

structures, preferential structures, and parameterised probability distribution, re-

spectively, into plausibility structures. Interestingly enough, in [FrH01] Friedman

and Halpern have proved that all of them are composed of qualitative plausibility

structures.

Theorem 1.14. Each of SPoss, Sκ, Sp, Sr, and Sε is a subset of SQPL.

Further we introduce a rather important notion of a set of most plausible

worlds. As we shall see in the following chapters, this concept is closely related

to the satisfaction condition for (conditional) beliefs. The following proposition

shows that there cannot be more than one such set ([FrH97, p. 275]).

Definition 1.15. Let S = (W,P l) be a qualitative plausibility space. We say

that A ⊆ W is a set of most plausible worlds if Pl(A) > Pl(A) (where A is

the complement of A in W ) and for all B ⊂ A,P l(B) ≯ Pl(B). That is A is a

minimal set of worlds that is more plausible than its complement.

Proposition 1.16. Let S = (W,P l) be a qualitative plausibility space. If there

is a set of most plausible worlds A ⊆ W , then it must be unique.

17



Chapter 1. Representing Uncertainty: Different Kinds of Representation

Proof. Suppose that A and A′ are both most plausible sets. We now show that

Pl(A∩A′) > Pl(A ∩ A′). Since A and A′ are both most plausible sets of worlds,

this will show that we must have A = A′. To see that Pl(A ∩ A′) > Pl(A ∩ A′),
first note that A∩A′, A−A′ and A are pairwise disjoint. Since A and A′ are most

plausible sets of worlds, we have that Pl((A ∩A′) ∪ (A−A′)) = Pl(A) > Pl(A)

and Pl((A∩A′)∪A) ≥ Pl((A∩A′)∪ (A′−A)) = Pl(A′) > Pl(A′) ≥ Pl(A−A′).
We can apply A2 to get that Pl(A ∩ A′) > Pl((A− A′) ∪ A) = Pl(A ∩ A′).

In finite plausibility spaces (that is, ones with only finitely many worlds), it

is easy to see that there is always a (unique) set of most plausible worlds. In

general, however, a set of most plausible worlds does not necessarily exist. What

property needs to be added to a qualitative plausibility space to ensure that there

is a set of most plausible worlds? As it turns out, the sufficient and necessary

condition is for the set of possible worlds W to be (converse) well-founded, where

the ordering on worlds is induced by their plausibilities.

Proposition 1.17. Let S = (W,P l) be a qualitative plausibility space. There is

a set of most plausible worlds A ⊆ W if and only if the ordering on worlds W

induced by their plausibilities is (converse) well-founded (i.e., there is no infinite

ascending chain Pl(w0) < Pl(w1) < Pl(w2) < . . . 6).

Proof. The ‘if-direction’ is straightforward. Since W is (converse) well-founded,

just consider a set A = {w : there is no w′ ∈ W such that Pl(w′) > Pl(w)},
which is literally a set of most plausible worlds. The rest follows easily. The

opposite ‘only if-direction’, however, demands a little bit more work.

For contradiction let us consider the space S0 = (W,P l) with W containing

an infinite number of worlds W ′ = {wi |i ≥ 0} ordered in an infinite chain

such that Pl(w0) < Pl(w1) < Pl(w2) < . . . . By assumption, we have a set

of most plausible worlds A, that is Pl(A) > Pl(A). It is easy to see that A

must contain an infinite number of the worlds from W ′. Let us take an arbitrary

wi ∈ A ∩W ′. We want to show that Pl(A − {wi}) > Pl(A− {wi}), because

that would be in contradiction with the assumption that A is the set of most

plausible worlds. First note that A − {wi}, {wi} and A are pairwise disjoint

6To be precise, an ordering is well-founded if and only if it contains no countable infinite

descending chains; and therefore it may be more natural to consider a preference ordering:

. . . w2 ≺ w1 ≺ w0 as a counterpart to the ordering on plausibilities given above.
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sets. The desired inequality immediately follows from Pl((A− {wi}) ∪ {wi}) =

Pl(A) > Pl(A) and Pl((A− {wi}) ∪ A) = Pl(W − {wi}) > Pl(wi). The former

is given by assumption and for the latter there exists wi+1 ∈ W ′ such that

Pl(W − {wi}) ≥ Pl(wi+1) > Pl(wi) by A1. Hence, applying A2 we get that

Pl(A− {wi}) > Pl(A ∪ {wi}) = Pl(A− {wi}).

Since we would like there to be a set of most plausible worlds, let us investigate

the class of well-founded structures further. What is its relation to the following

property of richness?

Definition 1.18. We say that S is rich if for every collection ϕ1, . . . ϕn, n > 1,

of pairwise mutually exclusive and satisfiable propositional formulas, there is a

plausibility structure PL = (W,P l, π) ∈ S such that:

Pl([[ϕ1]]) > Pl([[ϕ2]]) > · · · > Pl([[ϕn]]) = ⊥,

where [[ϕ]] := {w ∈ W | PL,w |= ϕ}.

The richness requirement is quite mild. It says that S does not place a priori

constraints on the relative plausibilities of a collection of disjoint sets. Therefore,

it should not be surprising that all the classes of plausibility structures mentioned

above are indeed rich (proved in [FrH01, p. 13]).

Theorem 1.19. Each of SPoss, Sκ, Sp, Sr, Sε, and SQPL is rich.

Obviously, richness might be too mild to ensure that there is a set of most

plausible worlds.

Proposition 1.20. The class of all well-founded plausibility structures is rich.

However, not all rich classes consist of well-founded plausibility structures.

Proof. First we show that well-foundedness induces richness. Notice that well-

foundedness does not restrict the relative plausibilities of a (finite) collection of

disjoint sets. Moreover, in order to satisfy richness only a finite number of worlds

is required, and thus there is always a well-founded plausibility structure which

suffices the particular collection.

On the other hand, richness does not induce well-foundedness. Sp is the class

of all preferential structures, thus including also the ones which are not well-

founded. According to the previous theorem Sp is rich. Therefore, the result

follows.
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It is worth noticing that such non-well-founded structures can come quite

handy. Suppose S = (W,P l) is a qualitative plausibility space with an infinite

number of worlds W = {wi : i ≥ 1} ordered in an infinite chain such that

Pl(w1) < Pl(w2) < Pl(w3) < . . . . Let ϕ1, . . . , ϕn, n > 1, be arbitrary pairwise

mutually exclusive and satisfiable propositional formulas. We can construct a

mapping π that maps the first n−1 worlds in W to a truth assignment such that

[[ϕi]] = wn−i for all 1 ≤ i < n, and [[ϕn]] = ∅. As we can see this non-well-founded

qualitative plausibility space can ’accommodate’ (via appropriate mapping) all

such collections for an arbitrary n > 1.

Well-foundedness might not even be needed under a stronger yet for our purposes

suitable assumption: In general, we will assume that the set W of possible worlds

is finite.

With intention to focus on ranking functions and possibility measures we can

add even more properties. Notice that both of these measures are realised on

a totally ordered set (N∗, and [0, 1], respectively) and plausibility of a union is

determined by the minimum, and the maximum, respectively, of plausibilities of

its components.

Definition 1.21. We say that a plausibility measure Pl is a ranking if it satisfies

the following two properties:

A4. ≤D is a total order; that is, either Pl(A) ≤D Pl(B) or Pl(B) ≤D Pl(A)

for all sets A,B ∈ F .

A5. Pl(A ∪B) = max(Pl(A), P l(B)) for all sets A,B ∈ F .

Notice that ranked plausibility spaces, i.e., where the plausibility measure is

a ranking, are indeed qualitative. It is easy to verify that ranking functions and

possibility measures are both rankings. These properties shall prove very useful

in Chapter 3.

In this chapter we have introduced several ‘static’ frameworks with plausibility

spaces generalising them all. Now let us proceed further and show how we can

update uncertainty on each of these frameworks.
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Chapter 2

Updating Uncertainty

Agents continually obtain new information and then must update their beliefs

to take this new information into account. How this should be done obviously

depends in part on how uncertainty is represented. Each of the methods of

representing uncertainty considered in Chapter 1 has an associated method for

updating.1

2.1 Updating Knowledge

We start by examining perhaps the simplest setting, where an agent’s uncertainty

is captured by a set W of possible worlds, with no further structure. We assume

that the agent obtains the information that the actual world is in some subset U

of W . The obvious thing to do in that case is to take the set of possible worlds

to be W ∩ U .

Even in this simple setting, three implicit assumptions are worth bringing

out:

1. An agent does not forget.

2. What an agent is told is true.

3. The way an agent obtains the new information does not itself give the agent

information.2

The first assumption can be explained as follows. Suppose at some point the

agent has been told that the actual world is in U1, . . . , Un. The agent should

then consider possible precisely the worlds in U1∩ · · · ∩Un. If she is then told V ,

she considers possible U1∩· · ·∩Un∩V . This seems to justify the idea of capturing

1The following overview is taken from [Hal03, ch. 3].
2Indeed, there are exceptions to all three of them, e.g., memory-free agents, lying to an

agent, and public announcement made by an insider (that is, by one of the agents, not an

outsider who sees the whole situation ‘from above’), respectively.
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updating by U as intersecting the current set of possible worlds with U . (It is

not so clear that intersection is appropriate if forgetting is allowed.)

The second assumption is perhaps more obvious but nonetheless worth stress-

ing. What it says is that if the agent is told U then the actual world is in U . We

also assume that the agent initially considers the actual world possible. From

this it follows that if U0 is the agent’s initial set of possible worlds and she is

told U , then U0∩U 6= ∅ (since the actual world is in U0∩U). (It is not even clear

how to interpret a situation where the agent’s set of possible worlds is empty. If

the agent can be told inconsistent information, then clearly intersection is simply

not an appropriate way of updating.)

The third assumption simply regulates that making an observation may give

more information than just the fact that what is observed is true. If this is not

taken into account, intersecting may give an inappropriate answer. (e.g., Finding

out that my friend has my book may also give me an extra piece of information

that she has stopped by at my place where I left it.)

2.2 Probabilistic Conditioning

Suppose that an agent’s uncertainty is replaced by a probability measure µ on W

and then the agent observes or learns (that the actual world is in) U . How should

µ be updated to a new probability measure µ|U that takes this new information

into account? Clearly if the agent believes that U is true, then it seems reasonable

to require that all the worlds in U are impossible:

µ(U |U) = 0, (2.1)

where we write µ(U |U) rather than µ|U(U).

What about worlds in U? What should their probability be? One reasonable

intuition about the worlds in U is that the relative likelihood of worlds in U

should remain unchanged. That is, if V1, V2 ⊆ U with µ(V2) > 0, then

µ(V1)

µ(V2)
=
µ(V1 |U)

µ(V2 |U)
. (2.2)

As proved in [Hal03, p. 72], the equations (2.1) and (2.2) completely deter-

mine µ|U if µ(U) > 0.
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Proposition 2.1. If µ(U) > 0 and µ|U is a probability measure on W satisfying

(2.1) and (2.2), then

µ(V |U) =
µ(V ∩ U)

µ(U)
. (2.3)

Here µ|U is called a conditional probability (measure), and µ(V |U) is read

‘the probability of V given (or conditional on) U ’. Sometimes µ(U) is called the

unconditional probability of U .

Conditioning is a wonderful tool, but it does suffer from some problems, par-

ticularly when it comes to dealing with events with probability 0. Traditionally,

(2.3) is taken as the definition of µ(V |U) if µ is an unconditional probability

measure and µ(U) > 0; if µ(U) = 0, then the conditional probability µ(V |U) is

undefined. This leads to a number of philosophical difficulties regarding worlds

(and sets) with probability 0. Are they really impossible? If not, how unlikely

does a world have to be before it is assigned probability 0? Should a world ever

be assigned probability 0? If there are worlds with probability 0 that are not

truly impossible, then what does it mean to condition on sets with probability 0?

Some of these issues can be sidestepped by treating conditional probability,

not unconditional probability, as the basic notion. A conditional probability

measure takes pairs U , V of subsets as arguments; µ(V, U) is generally written as

µ(V |U) to stress the conditioning aspects. What pairs (V, U) should be allowed

as arguments to µ? The intuition is that for each fixed second argument U ,

the function µ(. , U) should be a probability measure. In order to satisfy this

requirement we make use of the following definition.

Definition 2.2. A Popper algebra over W is a set F ×F ′ of subsets of W ×W
such that

Acc1. F is an algebra over W .

Acc2. F ′ is a nonempty subset of F .

Acc3. F ′ is closed under supersets in F : if V ∈ F ′, V ⊆ V ′, and V ′ ∈ F then

V ′ ∈ F ′.

Notice that F ′ need not be an algebra.
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Definition 2.3. A conditional probability space is a tuple (W,F ,F ′, µ) such

that F × F ′ is a Popper algebra over W and µ : F × F ′ → [0, 1] is conditional

probability measure that satisfies the following conditions:

CP1. µ(U |U) = 1 if U ∈ F ′.

CP2. µ(V1 ∪ V2 |U) = µ(V1 |U) + µ(V2 |U) if V1 ∩ V2 = ∅, V1, V2 ∈ F and

U ∈ F ′.

CP3. µ(U1∩U2 |U3) = µ(U1 |U2∩U3)×µ(U2 |U3) if U1 ∈ F and U2∩U3 ∈ F ′.3

CP4. µ(V |U) = µ(V ∩ U |U) if U ∈ F ′ and V ∈ F .

CP5. µ(U1 |U3) = µ(U1 |U2) × µ(U2 |U3), if U1 ⊆ U2 ⊆ U3, U2, U3 ∈ F ′ and

U1 ∈ F .

CP1 and CP2 are just the obvious analogues of P2 and P3 (see Definition 1.5).

CP3 is perhaps best understood through CP4 and CP5, since in the presence of

CP1, CP3 is equivalent to CP4 and CP5. CP4 just says that, when conditioning

on U , everything should be relativised to U . CP5 says that if U1 ⊆ U2 ⊆ U3, it is

possible to compute the conditional probability of U1 given U3 by computing the

conditional probability of U1 given U2, computing the conditional probability of

U2 given U3, and then multiplying them together.

If µ is a conditional probability measure, then we usually write µ(U) instead

of µ(U |W ). Thus, in the obvious way, a conditional probability measures deter-

mines an unconditional probability measure.

Probabilistic conditioning can be justified in much the same way that prob-

ability is justified. For example, if it seems reasonable to apply the principle of

indifference (i.e., a natural assumption that all elementary outcomes are equally

likely) to W and then U is observed or learned, it seems equally reasonable to

apply the principle of indifference again on W ∩U . This results in taking all the

elements of W ∩ U to be equally likely and assigning all the elements in W ∩ U
probability 0, which is exactly what (2.3) says. Similarly, using the relative-

frequency interpretation, µ(V |U) can be viewed as the fraction of times that V

occurs of the times that U occurs. Again, (2.3) holds.

3Notice that here × is used to denote multiplying; not to be confused with the cases of a

Cartesian product.
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One of the most important and widely applicable results in probability theory

is called Bayes’ Rule. It relates µ(V |U) and µ(U |V ).4

Proposition 2.4 (Bayes’ Rule). Given a conditional probability measure µ on W

and µ(U), µ(V ) > 0, the following holds:

µ(V |U) =
µ(U |V )µ(V )

µ(U)
.

2.3 Conditioning Ranking Functions

Defining conditional κ-rankings is straightforward, using an analogue of the prop-

erties CP1–3 that were used to characterise probabilistic conditioning above.

Definition 2.5. A conditional ranking function κ is a function mapping a Popper

algebra 2W ×F ′ → N∗ satisfying the following properties:

CRk1. κ(∅ |U) =∞ if U ∈ F ′.

CRk2. κ(U |U) = 0 if U ∈ F ′.

CRk3. κ(V1 ∪ V2 |U) = min(κ(V1 |U), κ(V2 |U)) if V1 ∩ V2 = ∅, V1, V2 ∈ F and

U ∈ F ′.

CRk4. κ(U1∩U2 |U3) = κ(U1 |U2∩U3)+κ(U2 |U3) if U1 ∈ F and U2∩U3 ∈ F ′.

Given an unconditional ranking function κ, the unique conditional ranking

function with these properties with domain 2W×F ′, where F ′ = {U : κ(U) 6=∞}
is defined via

κ(V |U) = κ(V ∩ U)− κ(U).

This, indeed, is a motivation for choosing + as the replacement for probabilistic×
in CRk4.

Notice that there is an obvious analogue of Bayes’ Rule for ranking functions:

κ(V |U) = κ(U |V ) + κ(V )− κ(U).

4The following proposition with a straightforward proof can be found in [Hal03, p. 79].
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2.4 Conditioning Possibility Measures

The definition of conditional possibility we present here takes as its point of

departure the fact that minimum should play the same role in the context of

possibility as multiplication does for probability (and addition for ranking func-

tions). In the case of probability, this role is characterised by CP3.

Definition 2.6. A conditional possibility measure Poss is a function mapping a

Popper algebra 2W ×F ′ → [0, 1] satisfying the following properties:

CPoss1. Poss(∅ |U) = 0 if U ∈ F ′.

CPoss2. Poss(U |U) = 1 if U ∈ F ′.

CPoss3. Poss(V1 ∪ V2 |U) = max(Poss(V1 |U), Poss(V2 |U)) if V1 ∩ V2 = ∅,
V1, V2 ∈ F and U ∈ F ′.

CPoss4. Poss(U1 ∩U2 |U3) = min(Poss(U1 |U2 ∩U3), Poss(U2 |U3)) if U1 ∈ F
and U2 ∩ U3 ∈ F ′.

CPoss4 is just the result of replacing µ by Poss and × by min in CP3 (cf.

Definition 2.3).

One approach that has been taken in the literature to defining a canonical

conditional possibility measure determined by an unconditional possibility mea-

sure is to make things ‘as possible as possible.’ That is, given an unconditional

possibility measure Poss, the largest conditional possibility measure Poss(. | .)
consistent with CPoss1–4 that is an extension of Poss is considered. This leads

to the following definition in the case that Poss(U) > 0:

Poss(V |U) =

{
Poss(V ∩ U) if Poss(V ∩ U) < Poss(U)

1 if Poss(V ∩ U) = Poss(U).

With this definition, there is no direct analogue to Bayes’ Rule; Poss(V |U)

is not determined by Poss(U |V ), Poss(U), and Poss(V ). However, it is imme-

diate from CPoss4 that there is still a close relationship among Poss(V |U),

Poss(U |V ), Poss(U), and Poss(V ) that is somewhat akin to Bayes’ Rule,

namely,

min(Poss(V |U), Poss(U)) = min(Poss(U |V ), Poss(V )) = Poss(V ∩ U).
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2.5 Conditioning Belief Functions and Others

We have omitted the conditioning method for belief functions, since it requires

a little bit more technical details which are beyond the scope of this overview.

The method can be found in [Hal03, ch. 3] together with those for conditioning

with sets of probabilities, and conditioning inner and outer measures.

2.6 Generic Framework: Conditional

Plausibility Space

We proceed in a manner similar in spirit to that for probability.

Definition 2.7. A conditional plausibility space (cps) is a tuple (W,F ,F ′, P l),
where F × F ′ is a Popper algebra over W , D is a partially ordered set of plau-

sibility values, and Pl : F × F ′ → D is a conditional plausibility measure (cpm)

that satisfies the following conditions:

CPl1. Pl(∅ |U) = ⊥.

CPl2. Pl(U |U) = >.

CPl3. If V ⊆ V ′, then Pl(V |U) ≤ Pl(V ′ |U).

CPl4. Pl(V |U) = Pl(V ∩ U |U).

CPl1–3 just say that Pl1–3 (see Definition 1.11) hold for Pl(. |U), so that

Pl(. |U) is a plausibility measure for each fixed U ∈ F ′. CPl4 is the obvious

analogue to CP4 (see Definition 2.3). Since there is no notion of multiplication

for plausibility measures yet, it is not possible to give an analogue of CP3 for

conditional plausibility.

Definition 2.8. A cps (W,F ,F ′, P l) is acceptable if V ∈ F , U ∈ F ′, and

Pl(V |U) 6= ⊥ implies V ∩ U ∈ F ′.

Acceptability is a generalisation of the observation that if µ(V ) 6= 0, then

conditioning on V should be defined. It says that if Pl(V |U) 6= ⊥, then con-

ditioning on V ∩ U should be defined. All the constructions that were used for
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defining conditional likelihood measures result in acceptable cps’s. On the other

hand, acceptability is not required in the definition of conditional probability

space (cf. Definition 2.3).

CPl1–4 are rather minimal requirements. Should there be others? The follow-

ing coherence condition, which relates conditioning on two different sets, seems

quite natural:

CPl5. If U ∩U ′ ∈ F ′, U, U ′, V, V ′ ∈ F , and Pl(U |U ′) 6= ⊥, then Pl(V |U ∩U ′)
≤ Pl(V ′ |U ∩ U ′) iff Pl(V ∩ U |U ′) ≤ Pl(V ′ ∩ U |U ′).

It can be shown that CPl5 implies CPl4 if F ′ has the property that characterises

acceptable cps’s. While CPl5 seems quite natural, and it holds for all conditional

probability measures, conditional possibility measures, and conditional ranking

functions, it does not hold in general for belief functions.

Given an unconditional plausibility measure Pl, is it possible to construct

a conditional plausibility measure extending Pl? It turns out that it is. The

idea is quite straightforward. Given an unconditional plausibility measure Pl

defined on an algebra F with range D, for each set U ∈ F , start by defining

a new plausibility measure PlU with range DU = {d ∈ D : d ≤ Pl(U)} by

taking PlU(V ) = Pl(V ∩ U). Note that >DU
= Pl(U). Thus, defining Pl(V |U)

as PlU(V ) will not quite work, because then CPl2 is not satisfied; in general,

PlU(W ) 6= PlV (W ). In [Hal03, pp. 99–101] it is shown how to overcome this

inconvenience and get the desired cps.

2.6.1 Algebraic Conditional Plausibility Space

The definitions of conditional ranking and conditional possibility were motivated

in part by considering analogues for ranking and possibility of addition and

multiplication in probability. In general, many plausibility spaces of interest

have ‘more structure’. There are analogues of addition and multiplication which

could be added to plausibility.

Definition 2.9. A cps (W,F ,F ′, P l) where Pl has range D is algebraic if it is

acceptable and there are functions ⊕ and ⊗ mapping D×D → D such that the

following properties hold:
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Alg1. Pl is additive with respect to ⊕, that is, Pl(V1 ∪ V2 |U) = Pl(V1 |U) ⊕
Pl(V2 |U) if V1 ∩ V2 = ∅, V1, V2 ∈ F and U ∈ F ′.

Alg2. Pl(U1 ∩U2 |U3) = Pl(U1 |U2 ∩U3)⊗Pl(U2 |U3) if U1 ∈ F , U2 ∩U3 ∈ F ′.

Alg3. ⊗ distributes over ⊕; that is, a⊗ (b1⊕· · ·⊕ bn) = (a⊗ b1)⊕· · ·⊕ (a⊗ bn)

if (a, b1), . . . , (a, bn), (a, b1 ⊕ · · · ⊕ bn) ∈ Dom(⊗) and (b1, . . . , bn), (a ⊗
b1, . . . , a⊗bn) ∈ Dom(⊕), where Dom(⊕) = {(Pl(V1 |U), . . . , P l(Vn |U)) :

V1, . . . , Vn ∈ F are pairwise disjoint and U ∈ F ′} and Dom(⊗) =

{(Pl(U1 |U2 ∩ U3), P l(U2 |U3)) : U1 ∈ F , U2 ∩ U3 ∈ F ′}.

Alg4. If (a, c), (b, c) ∈ Dom(⊗), a⊗ c ≤ b⊗ c, and c 6= ⊥, then a ≤ b.

If (W,F ,F ′, P l) is an algebraic cps, then Pl is called an algebraic cpm.

Alg1 and Alg2 are clearly analogues of CP2 and CP3 (cf. Definition 2.3).

Probability measures, ranking functions, and possibility measures are all addi-

tive. In the case of probability measures, ⊕ is +; in the case of ranking functions,

it is min; in the case of possibility measures, it is max. However, belief functions

are not additive, and thus they cannot be algebraic.5

Proposition 2.10. The constructions for extending an unconditional probability

measure, ranking function, and possibility measure to a cps result in algebraic

cps’s.

Many of the properties that are associated with (conditional) probability

hold more generally for algebraic cps’s. We consider three of them here ([Hal03,

pp. 103–104]). The first two say that ⊥ and > act like 0 and 1 with respect

to addition and multiplication. Let Range(Pl) = {d : Pl(V |U) = d for some

(V, U) ∈ F × F ′}.

Lemma 2.11. If (W,F ,F ′, P l) is an algebraic cps, then d⊕⊥ = ⊥⊕ d = d for

all d ∈ Range(Pl).

Lemma 2.12. If (W,F ,F ′, P l) is an algebraic cps, then for all d ∈ Range(Pl):

(i) d⊗> = d.

5In [Hal03, p. 102] a richer version of the following proposition can be found together with

its proof.
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(ii) if d 6= ⊥, then >⊗ d = d.

(iii) if d 6= ⊥, then ⊥⊗ d = ⊥.

(iv) if (d,⊥) ∈ Dom(⊗), then >⊗⊥ = d⊗⊥ = ⊥⊗⊥ = ⊥.

And the third property is an analogue of a standard property for probability

that shows how Pl(V |U) can be computed by partitioning into subsets.

Lemma 2.13. Suppose that (W,F ,F ′, P l) is an algebraic cps, A1, . . . , An is a

partition of W, A1, . . . , An ∈ F , and U ∈ F ′. Then

Pl(V |U) = ⊕{i:Ai∩U∈F ′}Pl(V |Ai ∩ U)⊗ Pl(Ai |U).

We conclude this section by abstracting a property that holds for all the

constructions of cps’s from unconditional plausibility measures (i.e., the con-

structions given in the case of probability, ranking functions, possibility, and

plausibility).

Definition 2.14. A cps (W,F ,F ′, P l) is standard if F ′ = {U : Pl(U) 6= ⊥}.

2.6.2 Jeffrey’s Rule

Up to now, we have assumed that the information received is of the form ”the

actual world is in U”. But information does not always come in such nice pack-

ages.6

Example 2.15. Suppose that an object is either red, blue, green, or yellow.

An agent initially ascribes probability 1/5 to each of red, blue, and green, and

probability 2/5 to yellow. Then the agent gets a quick glimpse of the object in a

dimply lit room. As a result of this glimpse, she believes that the object is prob-

ably a darker colour, although she is not sure. She thus ascribes probability .7

to it being green or blue and probability .3 to it being red or yellow. How should

she update her initial probability measure based on this observation?

Note that if the agent had definitely observed that the object was either blue

or green, she would update her belief by conditioning on {blue, green}. However,

6This topic can be found in [Hal03, pp. 105–107].
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her observation was not good enough to confirm that the object was definitely

blue or green (nor that it was red or yellow). Rather, it can be represented as

.7{blue, green}; .3{red, yellow}. This suggests that an appropriate way of updat-

ing the agent’s initial probability measure µ is to consider the linear combination

µ′ = .7µ|{blue, green}+ .3µ|{red, yellow}. As expected, µ′({blue, green}) = .7

and µ′({red, yellow}) = .3. Moreover, µ′(red) = .1, µ′(yellow) = .2, and

µ′(blue) = µ′(green) = .35. Thus, µ′ gives the two sets about which the agent

has information – {blue, green} and {red, yellow} – the expected probabilities.

Within each of these sets, the relative probability of the outcomes remains the

same as before conditioning.

More generally, suppose that U1, . . . Un is a partition of W (i.e., ∪ni=1Ui =

W and Ui ∩ Uj = ∅ for i 6= j) and the agent observes α1U1; . . . ;αnUn, where

α1 + · · · + αn = 1. This is to be interpreted as an observation that leads the

agent to believe Uj with probability αj, for j = 1, . . . , n. Moreover, since the

observation does not give any extra information regarding subsets of Uj, the

relative likelihood of worlds in Uj should remain unchanged. This suggests that

µ|(α1U1; . . . ;αnUn), the probability measure resulting from the update, should

have the following property for j = 1, . . . , n:

J. µ|(α1U1; . . . ;αnUn)(V ) = αj
µ(V )
µ(Uj)

if V ⊆ Uj and µ(Uj) > 0.

Taking V = Uj in J, it follows that

J1. µ|(α1U1; . . . ;αnUn)(Uj) = αj if µ(Uj) > 0.

Moreover, if αj > 0, the following analogue of (2.2) is a consequence of J (and

J1):

J2. µ(V )
µ(Uj)

= µ|(α1U1;...;αnUn)(V )
µ|(α1U1;...;αnUn)(Uj)

if V ⊆ Uj and µ(Uj) > 0.

Property J uniquely determines what is known as Jeffrey’s Rule of conditioning.7

Definition 2.16. We define Jeffrey’s Rule of conditioning as follows:

µ|(α1U1; . . . ;αnUn)(V ) = α1µ(V |U1) + · · ·+ αnµ(V |Un).

We take αjµ(V |Uj) to be 0 here if αj = 0, even if µ(Uj) = 0.

7It was defined by Richard Jeffrey.
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Definition 2.17. An observation is consistent with the initial probability, if it

does not give positive probability to a set that was initially thought to have

probability 0. Formally, if αj > 0 then µ(Uj) > 0.

As long as the observation is consistent with the initial probability Jeffrey’s

Rule is defined and gives the unique probability measure satisfying property J.

Note that µ|U = µ|(1U ; 0U), so the usual notion of probabilistic conditioning

is just a special case of Jeffrey’s Rule. However, probabilistic conditioning has one

attractive feature that is not maintained in the more general setting of Jeffrey’s

Rule. Suppose that the agent makes two observations, U1 and U2. It is easy to

see that if µ(U1 ∩ U2) 6= 0, then

(µ|U1)|U2 = (µ|U2)|U1 = µ|(U1 ∩ U2)

That is, the following three procedures give the same result: (a) condition on U1

and then U2, (b) condition on U2 and then U1, and (c) condition on U1∩U2 (which

can be viewed as conditioning simultaneously on U1 and U2). The analogous

result does not hold for Jeffrey’s Rule, because according to its definition the last

observation determines the probability of a certain set, so the order of observation

matters. Thus, if O1 6= O2 then (µ|O1)|O2 6= (µ|O2)|O1.

There are straightforward analogues of Jeffrey’s Rule for ranking functions

and possibility measures.

• For ranking functions, the analogue is based on the observation that +

and × for probability become min and + for ranking, and the role of 1 is

played by 0. Thus, for an observation of the form α1U1; . . . ;αnUn, where

αi ∈ N∗, i = 1, . . . , n and min(α1, . . . , αn) = 0,

κ|(α1U1; . . . ;αnUn)(V ) = min(α1 + κ(V |U1), . . . , αn + κ(V |Un)).

• For possibility measures, + and × become max and min. Thus, for an

observation of the form α1U1; . . . ;αnUn, where αi ∈ [0, 1] for i = 1, . . . , n

and max(α1, . . . , αn) = 1,

Poss|(α1U1; . . . ;αnUn)(V )

= max(min(α1, Poss(V |U1)), . . . ,min(αn, Poss(V |Un))).
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In this chapter we have introduced the methods for updating uncertainty on

the frameworks from Chapter 1. We have shown that conditional plausibility

spaces generalise the conditional extensions of all these frameworks. Based on

the ideas from probability, we have also formalised some additional algebraic

properties for cps’s.

”Conditioning is a wonderful tool, but. . . ” [Hal03, p. 74] As the last subsec-

tion shows, we can also update with weaker notions than knowledge when only

‘incomplete information’ in form of belief is available. In those cases Jeffrey’s

Rule might be applied.
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Chapter 3

Public Announcement by Conditioning

In this main chapter we show how public announcement on three different frame-

works can be embedded in a conditional plausibility space. We focus on frame-

works based on single-agent plausibility spaces (in [BaS08]), ranking functions,

and possibility measures (from Chapter 1), respectively. Each of them is studied

in a separate section. First we present their corresponding update mechanisms.

Then we list the properties which need to be added to a cps in order to recover

the particular framework. At the end of each section we prove that the ap-

propriate cps and the space corresponding to the framework in question remain

‘equivalent’ after public announcement.

Three qualitative belief revision policies have received substantial attention in dy-

namic epistemic logic: conditioning, lexicographic revision (also known as radical

revision), and minimal revision (also known as conservative revision). In particu-

lar, the first may be related (via its eliminative nature) to public announcement.1

Definition 3.1. Take a conditional plausibility space (W,F ,F ′, P l) and a set

P ∈ F ′ (representing the set of all the worlds where the corresponding proposition

P is true). Below we will call any w ∈ W ∩ P a ‘p-world’.2

• Conditioning of the conditional plausibility space (W,F ,F ′, P l) with the

set P results in removing all inconsistencies with P , i.e., the operation gives

a new conditional plausibility space (WP ,FP ,F ′P , P lP ), where WP includes

only the p-worlds, FP and F ′P include only the sets of the p-worlds, and

PlP is cut down to the new domain FP ×F ′P .

• Lexicographic revision of the conditional plausibility space (W,F ,F ′, P l)
with the set P results in keeping the same states in W but promoting all

the p-worlds to be more plausible than all those that are not p-worlds, and

within the two clusters the order remains unchanged.

1The idea of the following definition comes from [GHJ14].
2For reasons of convenience we use a standard notation p here, but note that a set P can

be represented by all the propositional formulas, not just atomic. We do not consider modal

formulas to avoid the issue of the well-known ’Moore-sentences’; see [DHK06].

34



Chapter 3. Public Announcement by Conditioning

• Minimal revision of the conditional plausibility space (W,F ,F ′, P l) with

the set P results in promoting the most plausible p-worlds to be the most

plausible overall, the rest of the order remaining the same. As in the case

of lexicographic revision, W stays the same throughout the process.

In this chapter we deal primarily with conditioning, since the other two types

of revision require a certain update model using plausibility measures. However,

we illustrate such a general model in Chapter 4.

Next, let us introduce public announcement on a conditional plausibility

space, which is basically an update by conditioning with P .

Definition 3.2. Public announcement !P is a function RPA that updates a

conditional plausibility state, i.e., it associates to any conditional plausibility

space (W,F ,F ′, P l) and any set P , such that W ∩P ∈ F ′, some new conditional

plausibility space

RPA((W,F ,F ′, P l), P ) := (WP ,FP ,F ′P , P lP ),

where WP = W ∩ P, FP = {U ∩ P : U ∈ F}, F ′P = {U ∩ P : U ∈ F ′ &

Pl(U |P ) 6= ⊥}, and PlP is Pl restricted to FP×F ′P , so that PlP (U) = Pl(U |P )

(by CPl4; see Definition 2.7).

It is easy to see that the resulting (WP ,FP ,F ′P , P lP ) is also a conditional

plausibility space, thus the update by public announcement is well defined. No-

tice that in principle we want to condition on P and take Pl(. |P ), but we also

need to leave the rest of the subsets of P in F ′P in order to be able to apply

several plausible public announcements one after another.

Now, let us define what it means for a formula ϕ ∈ LΦ to be true at a world w

in a conditional plausibility structure PL.

Definition 3.3 (Satisfaction relation). Let PL = (W, 2W ,F ′, P l, π) be a condi-

tional plausibility structure. The satisfaction relation for the propositional con-

nectives is standard (see Definition 1.3), and for the conditional belief is given

by, for w ∈ W , ϕ ∈ LΦ,

PL,w |= Bψϕ iff Pl([[ψ]]) = ⊥ or Pl([[ϕ ∧ ψ]]) >D Pl([[¬ϕ ∧ ψ]]),

where [[ψ]] := {w ∈ W : PL,w |= ψ}.
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In the presence of CPl5 we can equivalently write:

PL,w |= Bψϕ iff Pl([[ψ]]) = ⊥ or Pl([[ϕ]] |[[ψ]]) >D Pl([[¬ϕ]] |[[ψ]]).3

The implicit assumption here is that [[ψ]] ∈ F iff Pl([[ψ]]) 6= ⊥.

Recall that ”. . . [c]onditional beliefs ‘pre-encode’ beliefs that [an agent] would

have if [she] learnt certain things” [Ben04, p. 11]. Here the learnt information is

denoted by conditioning.

For the obvious similarities with default semantics in [FrH01] let us briefly

review the matter here.

3.1 Defaults

Defaults are statements of the form ”if ψ then typically/ likely/ by default ϕ”,

which is denoted ψ → ϕ. For example, the default ”birds typically fly” is repre-

sented Bird → Fly. According to the semantics stated above this is exactly how

we deal with a conditional belief Bψϕ. It means that ϕ ∧ ψ is more likely to be

the case than ¬ϕ ∧ ψ (i.e., if ψ then likely ϕ).

As it turns out our focus will eventually fall on conditional beliefs. Hence,

we state the following definitions for the upcoming purposes.

Definition 3.4. We say that two plausibility spaces (W,P l) and (W,P l′) (resp.

two plausibility structures (W,P l, π) and (W,P l′, π)) are order-equivalent if for

any A,B ⊆ W , we have Pl(A) ≤D Pl(B) if and only if Pl′(A) ≤D Pl′(B).

If all that we are interested in is default reasoning (including our conditional

beliefs), then all that matters is the relative plausibility of disjoint sets.

Definition 3.5. We say that two plausibility spaces (W,P l) and (W,P l′) (resp.

two plausibility structures (W,P l, π) and (W,P l′, π)) are default-equivalent if

for all disjoint subsets A and B of W , we have Pl(A) <D Pl(B) if and only if

Pl′(A) <D Pl′(B).4

Clearly, if structures (W,P l, π) and (W,P l′, π) are default-equivalent, then

they satisfy the same defaults, hence the same conditional beliefs in our case.

3As expected [[ϕ]] ∩ [[ψ]] = [[ϕ ∧ ψ]].
4< is the strict partial order determined by the corresponding ≤.
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3.2 Single-Agent Plausibility Space

Here we present a single-agent plausibility space (saps) as defined by Baltag and

Smets in [BaS08].5

Definition 3.6. A single-agent plausibility space (or frame) is a tuple (W,≤)

consisting of a set W of states and a well-preorder ≤, i.e., a reflexive, transitive

binary relation on W such that every non-empty subset has minimal elements.

Using the notation

Min≤P := {w ∈ P : w ≤ w′ for all w′ ∈ P}

for the set of ≤-minimal elements of P , the last condition says that for every set

P ⊆ W , if P 6= ∅ then Min≤P 6= ∅.
The usual reading of w ≤ v is that state w is at least as plausible as state v.

The minimal states in Min≤P are thus the most plausible states satisfying propo-

sition P . As usually, we write w < v iff w ≤ v but v � w, for the strict plau-

sibility relation. Similarly, we write w ∼= v iff both w ≤ v and v ≤ w, for the

equi-plausibility (or indifference) relation.

Observe that a single-agent plausibility space is just a special case of a Kripke

frame. So, as it is standard for Kripke frames in general, we can define a plausi-

bility model as follows.

Definition 3.7. Given a single-agent plausibility space (W,≤) a W -proposition

is any subset P ⊆ W . Intuitively, we say that a state w satisfies the proposition

P if w ∈ P . Then we can define a single-agent plausibility model (or structure)

to be a tuple (W,≤, π), consisting of a single-agent plausibility space (W,≤)

together with a valuation function π : Φ→ 2W mapping every element of a given

set Φ of atomic propositions into W -propositions.6

Let us give a brief interpretation. The elements of W will represent the

possible worlds. The atomic propositions p ∈ Φ represent ‘ontic’ (non-doxastic)

facts, which are true or false in a given world. The valuation tells us which facts

hold at which worlds. Finally, the plausibility relation ≤ captures the agent’s

5Cf. similar framework defined in [Ben04].
6Having a plausibility frame (S,≤) Baltag and Smets call them S-propositions.
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(conditional) beliefs about the world; if e.g., the agent was given the information

that the world is either w or v, she would believe it to be the most plausible of

the two. So, if w < v, the agent would believe the actual world was w; if v < w,

she would believe it was v; otherwise (if w ∼= v), the agent would be indifferent

about the two alternatives, she would not be able to decide to believe any one

alternative rather than the other.

The existence of minimal elements in any non-empty subset is simply the

natural extension of the above setting to general conditional beliefs, not only

conditions involving two states. More specifically, for any possible condition

P ⊆ W about a system W , the W -proposition Min≤P is simply a way to

encode everything that the agent would believe about the current state of the

system W , if she was given the information that the state satisfied condition P .

This brings us to the definition of what it means for a formula ϕ ∈ LΦ to be

true at a world w in a single-agent plausibility model M .

Definition 3.8 (Satisfaction relation). Let M = (W,≤, π) be a single-agent

plausibility model. The satisfaction relation for the propositional connectives

is standard (see Definition 1.3), and for the conditional belief is given by, for

w ∈ W , ϕ ∈ LΦ,

M,w |= Bψϕ iff M, v |= ϕ for all v ∈ Min≤[[ψ]],

where [[ψ]] := {w ∈ W : M,w |= ψ}. We write M |= ϕ to mean M,w |= ϕ for all

w ∈ W . Further, |= ϕ (ϕ is valid) means that M |= ϕ for all models M .

3.2.1 Saps: Update Mechanism

A belief update is a dynamic form of belief revision, meant to capture the actual

change of beliefs induced by learning; the updated belief is about the state of

the world as it is after the update. While in the case of (conditional) beliefs

the models were kept unchanged, now we have to allow for belief updates that

change the original model.

With the setting given by Kripke models, the idea for ‘dynamic beliefs’ is to

use the same type of formalism that was used to model ‘static beliefs’. Thus, we

model (epistemic or doxastic) actions in essentially the same way as (epistemic)
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states. In the context of our richer doxastic-plausibility structures, we intro-

duce plausibility preorders on actions and develop a notion of action plausibility

models.

As we shall see further (for ranking functions and possibility measures), this

approach is usually based on a quantitative interpretation. However, Baltag

and Smets’ notion of update product is a purely qualitative one. Their anti-

lexicographic ordering of pairs consisting of input-state and action, gives priority

to the new, incoming information (i.e., to actions). This choice is justified by

interpreting the action plausibility model as representing the agent’s ‘incoming’

belief, i.e., the belief-updating event which ‘performs’ the update by ‘acting’ on

the prior beliefs.

Definition 3.9. An action plausibility model is a tuple (Σ,≤, P re) consisting of

a single-agent plausibility space (Σ,≤) together with a precondition map Pre :

Σ → Prop associating to each element of Σ some doxastic proposition Pre(σ).

We call the elements of Σ (basic) doxastic actions, preordering ≤ the action

plausibility relation, and Pre(σ) the precondition of action σ.

The basic actions σ ∈ Σ are taken to represent deterministic belief-revising

actions of a particularly simple nature. Intuitively, the precondition defines the

domain of applicability of action σ; it can be executed on a state w if and only if

w satisfies its precondition. The relation ≤ gives the agent beliefs about which

actions are more plausible than others. ”But this should be interpreted as beliefs

about changes, that encode changes of beliefs.” ([BaS08, p. 41]) In this sense,

we use such ‘beliefs about actions’ as a way to represent doxastic changes; the

information about how the agent changes her beliefs is captured by the action

plausibility relation. So we read σ < σ′ as saying that if an agent is informed

that either σ or σ′ is currently happening, then she cannot distinguish between

the two, but she believes that σ is in fact happening. Notice that we only deal

here with pure belief changes, i.e., actions that do not change the ‘ontic’ facts of

the world, but only the agent’s beliefs.

Now we have both – static and dynamic – components and we can proceed

to the action-priority update.

Definition 3.10. Let M = (W,≤, π) be a single-agent plausibility model and let

Σ = (Σ,≤, P re) be an action plausibility model. We define their update product
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to be the single-agent plausibility model M ⊗Σ = (W ⊗ Σ,≤, π′), where

1. W ⊗ Σ = {(w, σ) ∈ W × Σ : M,w |= Pre(σ)}.

2. π′(p) = {(w, σ) ∈ W × Σ : w ∈ π(p)}.

3. (w, σ) ≤ (w′, σ′) iff either σ < σ′, or else σ ∼= σ′ and w ≤ w′.7

Basic actions in this action model are assumed to be deterministic, that is,

for a given input-state and a given action, there can only be at most one output-

state. More specifically, we select the pairs which are consistent, in the sense that

the input-state satisfies the precondition of the action. The updated valuation

is essentially given by the original valuation from the input-state model, which

expresses the fact that we only consider there ‘purely doxastic’ actions, i.e., pure

belief changes which do not affect the ‘ontic’ facts of the world (captured here by

atomic sentences). The updated plausibility relation is indeed anti-lexicographic

preorder relation induced on pairs (w, σ) ∈ W × Σ by the preorders on M and

on Σ. In other words, the updated plausibility order gives priority to the action

plausibility relation (thus resulting in the action-priority update), and apart from

this it keeps the original order on states.

In the special case of (truthful) public announcement !P , there is only one

action in the action model Σ with precondition P . The resulting saps M ⊗ Σ

consists only of the p-worlds, since they satisfy the proposition P , and the new

ordering is the original one restricted to the new domain. Notice that in this

case the agent actually gains some knowledge, not just belief (i.e., the update

mechanism processes public announcement as designed).

3.2.2 Saps: Equivalence with cps

As the following proposition shows by adding certain properties to a conditional

plausibility space we can recover a single-agent plausibility space.8 The obvious

obstacle is that a cps is defined on Popper algebra, with its unconditional version

being defined on an algebra, whereas a single-agent plausibility space is defined on

7We use the same notation for all three orderings, since their roles are rather obvious.
8To show that saps’s are, indeed, instances of cps we can use the idea for a preference

ordering in [FrH01, p. 9].
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worlds. Once we make sure that all singletons {w} for w ∈ W are measurable, we

also need to make sure that they (resp. their plausibilities) are well-preordered.

Since a preorder is already induced by ≤D on Pl(w) for w ∈ W , we only need to

add a requirement that every non-empty subset consisting of these plausibilities

Pl(w) has maximal elements.9 After that we add some extra properties in order

for the cps to deal with arbitrary (plausible) public announcement and to process

implausibility the same way as a saps does.

Proposition 3.11. Let (W,F ,F ′, P l) be a conditional plausibility space (defined

by CPl1–CPl5; see Definition 2.7). In order to recover a single-agent plausibility

space (W,≤) the following properties need to be added:

1. F = 2W .

2. DW = {Pl(V ) : V ∈ F} is totally ordered by ≤D: either Pl(A) ≤D Pl(B)

or Pl(B) ≤D Pl(A) for all sets A,B ∈ F .10

3. Pl(A ∪B) = max(Pl(A), P l(B)) for all sets A,B ∈ F .

4. The given cps (W,F ,F ′, P l) is standard.

5. Pl(A) = ⊥ iff A = ∅.

Proof. For all w ∈ W we have a plausibility value Pl({w} |W ), also written as

Pl(w), which is given by Pl : 2W ×F ′ → D, where W ∈ F ′, because F ′ is closed

under supersets in F . Then we take an order ≤ on W to be the inverse of ≤D
on the corresponding elements in D, that is, v ≤ w iff Pl(w) ≤D Pl(v) for all

v, w ∈ W . It is easy to see that ≤ is a well-preorder on W . It is reflexive and

transitive, because its inverse is a partial order on D11. Notice that {Pl(w) :

w ∈ W} ⊆ DW which is totally ordered by ≤D. From the first three properties

we have that Pl(A) = maxw∈A Pl(w) for all A ∈ F . Therefore every non-

empty subset of W has ≤-minimal elements, because the corresponding subset

9Notice that the order on worlds and the one on their plausibilities are in a certain sense

reversed; while the best worlds in a saps are the minimal ones, in a cps they have the maximal

plausibility.
10Notice that by CPl5 it is also the case that either Pl(A |U) ≤D Pl(B |U) or Pl(B |U) ≤D

Pl(A |U) for all U ∈ F ′, i.e., PlU places a total order on sets of F .
11w ≤ w iff Pl(w) ≤D Pl(w), and if u ≤ v and v ≤ w then also Pl(v) ≤D Pl(u) and

Pl(w) ≤D Pl(v) and by transitivity Pl(w) ≤D Pl(u) which is iff u ≤ w.
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of plausibilities in D has ≤D-maximal elements. Thus, the resulting plausibility

space (W,≤) is in fact a single-agent plausibility space.

The fourth property ensures that we can update the cps with every plausible

public announcement. It shall become clearer below together with the purpose

of the fifth property.

Our aim is to show that a cps on W with the properties stated above is such

that if it is equivalent to a saps on W then these spaces will remain equivalent

even after they both undergo public announcement !P . To be precise, by equiva-

lent we mean that for a fixed valuation π their corresponding structures continue

satisfying the same formulas after the update.

Let the updated versions be (WP ,FP ,F ′P , P lP , πP ) for a cps and (WP ,≤P , πP )

for a saps, where WP = W ∩P , and πP and ≤P are obtained from the original π

and ≤ by restricting them to the new domains WP , and WP ×WP , respectively.

We want to make sure that for all ϕ ∈ LΦ: (WP ,FP ,F ′P , P lP , πP ) |= ϕ if and

only if (WP ,≤P , πP ) |= ϕ. Propositional cases (i.e., atoms, negation and con-

junction) are straightforward since we have the same universe WP and the same

valuation πP . The only case left to be checked is conditional belief Bψϕ. How-

ever, a statement such as Bψϕ is determined by the global plausibility measure.

Thus, the set of worlds that satisfy Bψϕ is either the empty set or W :

(i) A single-agent plausibility model:

(WP ,≤P , πP ) |= Bψϕ iff (WP ,≤P , πP ), v |= ϕ for all v ∈ Min≤[[ψ]].

(ii) A conditional plausibility structure:

(WP ,FP ,F ′P , P lP , πP ) |= Bψϕ iff PlP ([[ψ]]) = ⊥ or PlP ([[ϕ ∧ ψ]]) >D

PlP ([[¬ϕ ∧ ψ]]).

Therefore, in order to make sure that both cps and saps on W (resp. their

structures) satisfy the same formulas after public announcement, we only need

to make sure that they satisfy the same conditional beliefs. For that reason let

us first define an ordering on sets of worlds for a saps.

Definition 3.12. Let (W,≤) be a single-agent plausibility space and V, U ⊆ W .

We define that V ≤S U iff either there exist v ∈ Min≤V and u ∈ Min≤U such

that v ≤ u, or if U = ∅. We write V <S U iff V ≤S U and U �S V , and V ∼=S U

iff both V ≤S U and U ≤S V .
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Clearly, ≤S is a well-preorder on sets, and it extends ≤: v ≤ u iff {v} ≤S {u}.
It is also the case that <S extends <.

Now we can redefine the satisfaction condition for conditional beliefs on a

saps from above as: (WP ,≤P , πP ) |= Bψϕ iff [[ψ]] = ∅ or [[ϕ∧ψ]] <S [[¬ϕ∧ψ]].

The following proposition proves that it is well defined.

Proposition 3.13. Given a single-agent plausibility model (W,≤, π) and formu-

las ϕ, ψ ∈ LΦ, we claim that the following are equivalent:

(i) (W,≤, π), v |= ϕ for all v ∈ Min≤[[ψ]].

(ii) [[ψ]] = ∅ or [[ϕ ∧ ψ]] <S [[¬ϕ ∧ ψ]].

Proof. (i)→(ii): We want to prove that either [[ψ]] = ∅ or [[ϕ ∧ ψ]] <S [[¬ϕ ∧ ψ]],

which by Definition 3.12 is iff either there exist v ∈ Min≤[[ϕ ∧ ψ]] and u ∈
Min≤[[¬ϕ ∧ ψ]] such that v < u, or [[¬ϕ ∧ ψ]] = ∅ (and [[ϕ ∧ ψ]] 6= ∅). However,

from (i) we have that the minimal [[ψ]]-worlds satisfy also ϕ. If [[ψ]] = ∅ then we

are done. Otherwise, let w be one of these worlds. Notice that w is exactly the

witness we need, since w ∈ Min≤[[ϕ ∧ ψ]] and either [[¬ϕ ∧ ψ]] = ∅, or there is

some u ∈ Min≤[[¬ϕ ∧ ψ]], in which case it must be that w < u, because all the

minimal [[ψ]]-worlds are in [[ϕ ∧ ψ]]. Thus, [[ϕ ∧ ψ]] <S [[¬ϕ ∧ ψ]].

(ii)→(i): We want to prove that (W,≤, π), w |= ϕ for all w ∈Min≤[[ψ]]. However,

from (ii) we have that either [[ψ]] = ∅, or [[ϕ ∧ ψ]] <S [[¬ϕ ∧ ψ]]. The first

case is trivial. In the second case either there exist v ∈ Min≤[[ϕ ∧ ψ]] and

u ∈ Min≤[[¬ϕ ∧ ψ]] such that v < u, or [[¬ϕ ∧ ψ]] = ∅ (and [[ϕ ∧ ψ]] 6= ∅). In

the former case the minimal [[ψ]]-worlds must be all in [[ϕ ∧ ψ]] and as such they

satisfy ϕ. In the latter case there are only [[ψ]]-worlds which satisfy ϕ.

Let us define an analogue to default-equivalence between two plausibility spaces.

Definition 3.14. We say that a conditional plausibility space (W,P l) (resp.

conditional plausibility structure (W,P l, π)) and a single-agent plausibility space

(W,≤) (resp. single-agent plausibility model (W,≤, π)) are default-equivalent if

for all disjoint subsets A and B of W it holds Pl(A) <D Pl(B) if and only if

B <S A.

Clearly, if a structure (W,P l, π) and a model (W,≤, π) are default-equivalent,

then they satisfy the same conditional beliefs.
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Proposition 3.15. Any conditional plausibility space (W,F ,F ′, P l) satisfying

the conditions in Proposition 3.11 is default-equivalent to the recovered single-

agent plausibility space (W,≤).

Proof. We want to show that for all disjoint subsets A and B of W , we have

Pl(A) <D Pl(B) in the cps if and only if B <S A in the saps. It is rather obvious

that our construction of the saps in Proposition 3.11 leads to this conclusion.

The first property of the proposition makes sure that all subsets of W are

measurable and the second property subsequently enables their comparison. The

third property regulates Pl(A) so that the correlation on worlds can be lifted onto

sets of worlds. Recall that we have constructed the saps via the relation v ≤ w

iff Pl(w) ≤D Pl(v) on the worlds w ∈ W . Therefore, the minimal elements

in the saps have maximal plausibility in the cps, and vice versa. Notice that

subsets A ⊆ W in the saps are ordered according to their minimal elements in

Min≤A, and their plausibilities in the cps are ordered according to the elements

with maximal plausibility, since Pl(A) = maxw∈A Pl(w). What is more, the fifth

property ensures that Pl(∅) <D Pl(B) iff B <S ∅. Thus, it follows that the cps

and the recovered saps are default-equivalent.

Theorem 3.16. Any conditional plausibility space (W,F ,F ′, P l) satisfying the

conditions in Proposition 3.11 is such that the following property holds:

If Pl(P ) 6= ⊥ and the cps is default-equivalent to a saps (W,≤), then the new cps

(WP ,FP ,F ′P , P lP ) is default-equivalent to the saps obtained by updating (W,≤)

with public announcement !P . Moreover, the new cps also satisfies the conditions

in Proposition 3.11.

Proof. First of all, note that according to Proposition 3.11 (fourth property) the

cps (W,F ,F ′, P l) is standard. Hence, W ∩P ∈ F ′ and we can apply the function

RPA of public announcement in Definition 3.2. The single-agent plausibility

space (its model, to be precise), on the other hand, is modified by the update

mechanism as described in Subsection 3.2.1.

Further, we need to make sure that the updated cps (WP ,FP ,F ′P , P lP ) also

satisfies the conditions in Proposition 3.11:

1. FP = {U ∩ P : U ∈ F}, and so if F = 2W , then FP = 2WP .
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2. DP = {PlP (V ) : V ∈ F} is indeed totally ordered by ≤D. We have that

either Pl(A) ≤D Pl(B) or Pl(B) ≤D Pl(A) for all sets A,B ∈ F . Since

F is an algebra, A ∩ P,B ∩ P ∈ FP ⊆ F . Thus, notice that by CPl5 (see

Definition 2.7) it is also the case that either Pl(A |P ) ≤D Pl(B |P ) or

Pl(B |P ) ≤D Pl(A |P ), i.e., PlP also places a total order on sets of F .

3. Since A∩P,B∩P ∈ FP ⊆ F we have Pl((A∩P )∪(B∩P )) = max(Pl(A∩
P ), P l(B ∩ P )). Thus, it must be either Pl((A ∪ B) ∩ P ) = Pl(A ∩ P )

which by CPl5 is iff Pl((A ∪ B) |P ) = Pl(A |P ), or Pl((A ∪ B) ∩ P ) =

Pl(B ∩ P ) which is iff Pl((A ∪ B) |P ) = Pl(B |P ). Indeed it depends

on a relation between Pl(A ∩ P ) and Pl(B ∩ P ). Notice that by CPl5

also Pl(A ∩ P ) ≤ Pl(B ∩ P ) iff Pl(A |P ) ≤ Pl(B |P ). It follows that

Pl((A ∪ B) |P ) = max(Pl(A |P ), P l(B |P )), which can be written as

PlP (A ∪B) = max(PlP (A), P lP (B)).

4. If F ′ = {U : Pl(U |W ) 6= ⊥} then F ′P = {U ∩ P : Pl(U |W ) 6= ⊥
& Pl(U |P ) 6= ⊥}, which (by CPl4) can be also written as F ′P = {U ∩ P :

Pl(U ∩ P |W ∩ P ) 6= ⊥}. Thus, the updated cps (WP ,FP ,F ′P , P lP ) is

standard.

5. If PlP (A ∩ P ) = ⊥ then by CPl5 we have Pl(A ∩ P ) = ⊥ and from the

properties of the original cps it follows that A ∩ P = ∅. The opposite

direction is straightforward.

The next step is to show that if the original plausibility spaces were default-

equivalent, then their updated versions are also default-equivalent, i.e., that for

all disjoint subsets A and B of WP we have PlP (A) <D PlP (B) iff B <S A.

Then, indeed, their corresponding structures satisfy the same conditional beliefs:

(i) A single-agent plausibility model:

(WP ,≤P , πP ) |= Bψϕ iff [[ψ]] = ∅ or [[ϕ ∧ ψ]] <S [[¬ϕ ∧ ψ]].

(ii) A conditional plausibility structure:

(WP ,FP ,F ′P , P lP , πP ) |= Bψϕ iff PlP ([[ψ]]) = ⊥ or PlP ([[ϕ ∧ ψ]]) >D

PlP ([[¬ϕ ∧ ψ]]).12

12Notice that in this case πP as defined for a saps in Subsection 3.2.1 is in accordance with

a valuation π relativised to the new domain WP .
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Recall that for both spaces the ordering on (plausibilities of) sets of worlds is

determined by the ordering on (plausibilities of) worlds. We also know that

public announcement !P simply eliminates the ¬p-worlds, but otherwise leaves

the original ordering on the p-worlds. Hence, it is easy to see that both updates

with public announcement preserve default-equivalence between the spaces, in

particular, between their structures (see the summarising picture below).

It is rather straightforward that these updated structures satisfy the same

formulas in LΦ, since the propositional cases are obvious and we have also proved

the case of conditional belief.

-�

-�

? ?

Default-equivalent

Default-equivalent

Public announcement !P

cps

(W,F ,F ′, P l, π)
saps

(W,≤, π)

cps
(WP ,FP ,F ′P , P lP , πP )

saps
(WP ,≤P , πP )

3.3 Kappa-ranking

In this section we present similar results for ranking functions as we did in the

previous section for single-agent plausibility spaces. First, we introduce the up-

date mechanism with its static and dynamic components, and then the relation

between a space for ranking function and a conditional plausibility space after

public announcement on both of them.

3.3.1 Kappa-ranking: Update Mechanism

The core idea of the update mechanism for (conditional) ranking functions (also

called ordinal (conditional) functions) originally comes from W. Spohn in [Spo88],

but the update mechanism introduced below has been defined in [Auc03].13

13In [Auc07] an analogue of such update mechanism for probability can be found.
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With the richer doxastic-plausibility structures, epistemic changes require as

their input not only propositions but also their degree of plausibility14. We shall

note this input as a pair (A,α) where A is the proposition and α the degree

of plausibility with which the formula should be believed by an agent after her

revision of beliefs.

Definition 3.17. Let κ be a conditional ranking function on W and A ⊆ W .

The A-part of κ is the function κ(. |A) defined on A for which for all w ∈ A,

κ(w |A) = κ(w)− κ(A).

We could say that the A-part of κ is the restriction of κ to A shifted to 0,

that is, in such a way that κ(A |A) = 0.

Using this concept, we can now define the conditional ranking function κA,α

representing the new state of belief:

Definition 3.18. Let A be a proposition such that A 6= ∅, A 6= W , and α an

ordinal15. Then we define κA,α the (A,α)-conditionalisation of κ as follows:

κA,α(w) =

{
κ(w |A) if w ∈ A
α + κ(w |A) if w ∈ A

Thus the (A,α)-conditionalisation of κ is the union of the A-part of κ and the

A-part of κ shifted up by α degrees of plausibility. It follows from the definition

that κA,α(A) = 0 and κA,α(A) = α. Hence we say that A is believed in κA,α with

firmness α. Importantly, notice that the (A,α)-conditionalisation of κ leaves the

A-part as well as the A-part of κ unchanged, they are only shifted relatively to

each other.

In order to define the update mechanism in [Auc03], first we need to briefly

introduce its static and dynamic components. Since we are only interested in

a single-agent case, we provide a simplified version by removing the epistemic

relations {∼j: j ∈ G}, for a finite set of agents G. We also omit the actual

world w0, and the actual action σ0, respectively, from the corresponding ‘pointed’

models.

For the static part we define a belief model rather naturally.

14Spohn refers to it as a degree of firmness.
15For our purposes α ∈ N suffices.
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Definition 3.19. A belief model M = (W,κ, π) is a tuple where:16

1. W is a set of possible worlds (or states) of the model.

2. κ is an operator, ranging on natural numbers from 0 to Max, defined on

all the worlds.

3. π is a valuation.

The ranking function κ ranges from 0 to Max, where Max is an arbitrary

fixed natural number. The more a world is plausible for the agent, the closer

its plausibility value is to 0, and the less plausible a world is the closer it is to

Max. The intuition behind introducing a natural number Max is that beyond

a certain degree of plausibility the agent cannot distinguish two different worlds

of different plausibility.17

As for the dynamic part, we define a belief action model following the same

pattern as above.

Definition 3.20. A belief action model Σ = (Σ, κ∗, P re) is a tuple where:18

1. Σ is a set of simple actions.

2. κ∗ is a function from the set of simple actions to the set of natural numbers

ranging from 0 to Max, where at least one of the actions is assigned the

plausibility 0.

3. Pre is a function from the set of simple actions to the formulas of LΦ (resp.

doxastic propositions).

By simple actions we mean that they cannot be decomposed into ‘smaller

(sub)actions’ whose succession would form the original action. The ranking func-

tion κ∗ expresses the plausibility preference that the agent has among actions

that she cannot objectively distinguish. Pre assigns to each simple action a pre-

condition that a world must fulfill in order for this action to be performed in this

world (e.g., One can hardly read a book in the world where there are no books.).

This brings us to the definition of what it means for a formula ϕ ∈ LΦ to be

true at a world w in a belief model M (resp. in a ranking structure).

16Originally it is a belief epistemic model M = (W, {∼j : j ∈ G}, {κj : j ∈ G}, π, w0).
17However, the main reasons for introducing Max were, indeed, technical.
18Originally it is a belief epistemic action model Σ = (Σ,∼j , κ

∗
j , P re, σ0).

48



Chapter 3. Public Announcement by Conditioning

Definition 3.21 (Satisfaction relation). Let M = (W,κ, π) be a belief model

(resp. a ranking structure). The satisfaction relation for the propositional con-

nectives is standard (see Definition 1.3), and for the conditional belief is given

by, for w ∈ W , ϕ ∈ LΦ,

M,w |= Bψϕ iff κ([[ψ]]) =∞ or κ([[ϕ ∧ ψ]]) < κ([[¬ϕ ∧ ψ]]),

where [[ψ]] := {w ∈ W : M,w |= ψ}.

We have now defined two main components. First, the belief model M as

a formal counterpart of the way an actual situation s is perceived by the agent

according to her beliefs and knowledge. Second, the belief action model Σ as

a formal counterpart of the way an actual action a is perceived by the agent

according to her beliefs and knowledge. In reality the agent updates her knowl-

edge and beliefs according to these two pieces of information: situation s and

action a, giving rise to a new actual situation s × a. Formally, this update is

determined by a ‘mathematical model’ ⊗ such that M ⊗Σ is a new belief model

and a formal counterpart of s× a.

Definition 3.22. Given a belief model M = (W,κ, π) and a belief action model

Σ = (Σ, κ∗, P re) we define their update product to be the belief model M ⊗Σ =

(W ⊗ Σ, κ′, π′) where:

1. W ⊗ Σ = {(w, σ) ∈ W × Σ : M,w |= Pre(σ)};

2. π′(p) = {(w, σ) ∈ W × Σ : w ∈ π(p)};

3. κ′(w, σ) = CutM(κ∗(σ) + κ(w)− κ(Pre(σ))) where

κ(Pre(σ)) = min{κ(v) : M, v |= Pre(σ)} and

CutM(x) =

{
x if 0 ≤ x ≤Max

Max if x > Max

A new possible world (w, σ) in the resulting model corresponds to the re-

sulting situation of performing the action corresponding to σ in the world cor-

responding to w. However, the action σ can be performed in w only if the

precondition Pre(σ) of the action σ is satisfied in the world w. Actions cannot
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be performed in an arbitrary world, they presuppose some ‘material’ precondi-

tions in the world. We essentially take the same valuation as the one of the input

model. This means that here we consider only the actions which do not change

the facts (i.e., ‘purely doxastic’ actions).

Recall that a domain and a valuation in a single-agent plausibility model are

updated the exact same way. However, that is not the case for an order ≤ and

a ranking function κ, respectively.

The core of the update is κ∗(σ)+κ(w)−κ(Pre(σ)). CutM is only a technical

device assuring that the new plausibility assignment fits in the range of the

plausibility scale of the new belief model. κ(w) is plausibility for the agent that

w is the actual world and κ∗(σ) is plausibility for the agent that σ is the actual

action taking place in w.

Let us take a better look at the part of this ‘conditioning’: −κ(Pre(σ)) =

−min{κ(v) : M, v |= Pre(σ)}. The idea is to relativise the ordinal assignment

to the relevant worlds, that is, the worlds where σ can take place. Indeed, the

former ordinal assignment κ made sense only if we considered all the worlds

that may correspond for the agent to the actual situation w. However, since

the action σ is taking place, the agent needs to restrict her attention only to

the worlds where σ can take place, and obviously the other ones do not play a

role any more. So the agent must relativise her plausibility ordering to this set

by rescaling the ordinal assignment in order to start again and deal with the

action σ with a self defined plausibility ordering.

As for a single-agent plausibility space, in the special case of (truthful) public

announcement !P we obviously have only one action in the belief action model Σ

with precondition P and plausibility κ∗(σ) = 0. It means that in the updated

belief model M⊗Σ we have reduced worlds of M to the p-worlds, since W ⊗Σ =

{(w, σ) ∈ W × {σ} : w ∈ P}. Moreover, the update results in a new ranking

which has shifted the p-worlds to 0 (cf. Definition 3.17): κ′(w, σ) = κ(w) −
min{κ(v) : v ∈ P} = κ(w)− κ(P ).19

19If we considered a conditional ranking function κ, in the case of public announcement !P

we could take κ′(w, σ) = κ(w |P ).
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3.3.2 Kappa-ranking: Equivalence with cps

As we have already seen in the previous chapters, ranking functions are indeed

instances of a (conditional) plausibility measure. However, what properties do we

need to add to a cps to actually recover a κ-ranking20? Recall that a κ-ranking is

defined on 2W , ranges over N∗ = N∪∞ with 0 being the best and∞ denoting the

worst plausibility (it is usually explained in terms of surprise), and plausibility of

a union is determined by the plausibilities of its components (see Definition 1.8).

Notice that the following proposition lists the same properties as Proposition 3.11

except for the last one dealing with implausibility of non-empty sets. We discuss

the matter at the end of this chapter.

Proposition 3.23. Let (W,F ,F ′, P l) be a conditional plausibility space (defined

by CPl1–CPl5; see Definition 2.7). In order to recover a ranking function κ on W

the following properties need to be added:

1. F = 2W .

2. DW = {Pl(V ) : V ∈ F} is totally ordered by ≤D: either Pl(A) ≤D Pl(B)

or Pl(B) ≤D Pl(A) for all sets A,B ∈ F .

3. Pl(A ∪B) = max(Pl(A), P l(B)) for all sets A,B ∈ F .

4. The given cps (W,F ,F ′, P l) is standard.

Proof. Let κ be a function mapping subsets of W to N∗ = N ∪ ∞ such that

for all A,B ⊆ W we define κ(A) ≤ κ(B) iff Pl(B) ≤D Pl(A). According

to the first two properties this way κ is well-defined on all subsets of W as

desired. The third property determines plausibility of a union as the maximal

plausibility of the two components. Clearly, it follows that for plausibility κ we

have κ(A ∪B) = min(κ(A), κ(B)). Last but not least, for all A ⊆ W we require

that κ(A) = 0 iff Pl(A) = > and κ(A) =∞ iff Pl(A) = ⊥. Notice that it must

be the case that minw∈W κ(w) = 0. Hence, the resulting plausibility measure κ

is in fact a ranking function.

The fourth property ensures that we can update the cps with every plausible

public announcement. It shall become clearer below.

20We use the notion of κ-ranking to refer to the ranking function κ as well as the correspond-

ing space (W, 2W , κ).
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As in the case of a single-agent plausibility space, we want to show that if a

conditional plausibility structure on W with the properties stated above and a

ranking structure on W satisfy the same formulas they continue to do so even

after public announcement. For the same reason as before (see Subsection 3.2.2),

we only need to focus on conditional beliefs.

Let us define an analogue to default-equivalence between two plausibility

spaces.

Definition 3.24. We say that a conditional plausibility space (W,P l) (resp.

conditional plausibility structure (W,P l, π)) and a κ-ranking (W,κ) (resp. a

ranking structure21 (W,κ, π)) are default-equivalent if for all disjoint subsets A

and B of W it holds Pl(A) <D Pl(B) if and only if κ(B) < κ(A).

Clearly, if the structures (W,P l, π) and (W,κ, π) are default-equivalent, then

they satisfy the same conditional beliefs.

Proposition 3.25. Any conditional plausibility space (W,F ,F ′, P l) satisfying

the conditions in Proposition 3.23 is default-equivalent to the recovered κ-ranking

(W, 2W , κ).

Proof. We want to show that for all disjoint subsets A and B of W , we have

Pl(A) <D Pl(B) if and only if κ(B) < κ(A). However, their default-equivalence

follows directly from the construction of κ-ranking in Proposition 3.23.

Now we can proceed to the main theorem. The idea is that if a cps is

default-equivalent to a κ-ranking and they are updated with plausible public an-

nouncement !P , the updated versions of these spaces are also default-equivalent.

Whereas the cps is updated according to Definition 3.2, the κ-ranking is modi-

fied by the update mechanism defined in Subsection 3.3.1 and results in a new

space (WP , 2
WP , κP ). What is more, the properties in Proposition 3.23 are also

preserved.

Theorem 3.26. Any conditional plausibility space (W,F ,F ′, P l) satisfying the

conditions in Proposition 3.23 is such that the following property holds:

If Pl(P ) 6= ⊥ and the cps is default-equivalent to a κ-ranking (W, 2W , κ), then

the new cps (WP ,FP ,F ′P , P lP ) is default-equivalent to the κ-ranking obtained by

21In the previous subsection we called it a belief model.
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updating (W, 2W , κ) with public announcement !P . Moreover, the new cps also

satisfies the conditions in Proposition 3.23.

Proof. As expected the proof follows almost identical path to the one in the case

of a single-agent plausibility space in Theorem 3.16. Note that since the cps is

standard we can apply the function RPA of public announcement in Definition 3.2

and get the new cps (WP ,FP ,F ′P , P lP ).

On the other hand, the ranking function κ is modified by the update mecha-

nism as described in Subsection 3.3.1: κP (w) = κ(w)−κ(P ). This time, however,

we omitted the limitation Max and included the value ∞ instead. The mecha-

nism works as it did before with only one exception – if a world has plausibility

of value ∞, it is also assigned plausibility∞ as the resulting value (if κ(w) =∞
then κP (w) = ∞), even in the case when all the finite values are being shifted

towards 0.22 Notice also that it cannot be the case that κ(P ) = ∞, since the

original spaces are default-equivalent and it is given that Pl(P ) 6= ⊥.

Further borrowing the arguments from Theorem 3.16, we can conclude that

the new cps satisfies the conditions in Proposition 3.23, since they have already

been proved. The only thing left to show is that both spaces remain default-

equivalent after the update with public announcement !P , i.e., for all disjoint

subsets A and B of WP we have PlP (A) <D PlP (B) iff κP (B) < κP (A). Then,

indeed, their corresponding structures satisfy the same conditional beliefs:

(i) A ranking structure:

(WP , 2
WP , κP , πP ) |= Bψϕ iff κP ([[ψ]]) =∞ or κP ([[ϕ∧ψ]]) < κP ([[¬ϕ∧ψ]]).

(ii) A conditional plausibility structure:

(WP ,FP ,F ′P , P lP , πP ) |= Bψϕ iff PlP ([[ψ]]) = ⊥ or PlP ([[ϕ ∧ ψ]]) >D

PlP ([[¬ϕ ∧ ψ]]).23

Recall that for both spaces the ordering on plausibilities of sets of worlds is de-

termined by the ordering on plausibilities of worlds. Public announcement !P

eliminates the ¬p-worlds and what is more, in the case of a κ-ranking it also

shifts all the ‘surviving’ p-worlds towards 0 (except for those with plausibil-

ity∞). However, the original orderings on the p-worlds remain the same in both

22In the spirit of the motto: If something is ‘∞-implausible’, it cannot be recovered.
23Notice that in this case πP as defined for a κ-ranking in Subsection 3.3.1 is in accordance

with a valuation π relativised to the new domain WP .

53



Chapter 3. Public Announcement by Conditioning

spaces. And as such both updates with public announcement preserve default-

equivalence between the spaces, in particular, between their structures (see the

summarising picture below).

It is rather straightforward that these updated structures satisfy the same

formulas in LΦ, since the propositional cases are obvious and we have just proved

the case of conditional belief.
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3.4 Possibility

In this section we present similar results for possibility measures as we did in the

two previous sections for single-agent plausibility spaces, and ranking functions,

respectively.

3.4.1 Possibility: Update Mechanism

Let us slightly modify conditioning in possibility and briefly introduce its poten-

tial. There are several conditioning methods in possibility theory, and here we

adopt the one in [DuP93] (as suggested in [MaL08]).

We take Poss to be a conditional possibility measure satisfying CPoss1–

CPoss4 as stated in Definition 2.6, but in CPoss4 we substitute × for min. It

results in the following form of conditioning:

Poss(U1 |U2 ∩ U3) =
Poss(U1 ∩ U2 |U3)

Poss(U2 |U3)
, (3.1)

with an additional condition that Poss(U1 |U2 ∩ U3) = 0 if Poss(U2 |U3) = 0.
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A counterpart of Spohn’s (A,α)-conditionalisation was suggested in possibility

theory in [DuP93] (resp. in [MaL08]) for change of an agent’s current belief Poss

when the new evidence claims that Poss′(A) = 1 and Poss′(A) = 1− α (which

implies that Nec′(A) = α).24

Definition 3.27. Let A be a proposition such that A 6= ∅, A 6= W , and α ∈ [0, 1].

Then we define PossA,α the (A,α)-conditionalisation of Poss as follows:

PossA,α(w) =

{
Poss(w |A) for w ∈ A
(1− α)Poss(w |A) for w ∈ A

(3.2)

We can derive that Poss(w |A) = Poss(w)/Poss(A) from (3.1) with U1 being

a singleton {w}, U2 = A, U3 = W .

In order to state a theorem similar to the previous ones (Theorem 3.16 and

Theorem 3.26, respectively) we are missing an actual update mechanism for

possibility measures. However, for our purposes we can abstract the core idea

from the counterpart of Spohn’s (A,α)-conditionalisation introduced above, the

same way it has been done in the update mechanism for ranking functions (cf.

Subsection 3.3.1).

In the case of (possible) public announcement !P we are left only with the

upper branch in (3.2) simply conditioning the possibility of a given p-world to

the possibility of the set P of all the p-worlds: Poss(w |P ) = Poss(w)/Poss(P ).

Obviously, this way possibility of the individual p-worlds can only increase (ex-

cept for those of possibility 0 which remain the same), but the original ordering

on them is preserved.

This brings us to the definition of what it means for a formula ϕ ∈ LΦ to be

true at a world w in a possibility structure PS.

Definition 3.28 (Satisfaction relation). Let PS = (W,Poss, π) be a possibility

structure. The satisfaction relation for the propositional connectives is standard

(see Definition 1.3), and for the conditional belief is given by, for w ∈ W , ϕ ∈ LΦ,

PS,w |= Bψϕ iff Poss([[ψ]]) = 0 or Poss([[ϕ ∧ ψ]]) > Poss([[¬ϕ ∧ ψ]]),

where [[ψ]] := {w ∈ W : PS,w |= ψ}.
24Recall that Poss(A) estimates the degree an agent believes the true world can be in A

while Nec(A) = 1− Poss(A) estimates the degree the agent believes the true world should be

necessarily in A.

55



Chapter 3. Public Announcement by Conditioning

3.4.2 Possibility: Equivalence with cps

As we have already seen in the previous chapters, possibility measures are indeed

instances of a (conditional) plausibility measure. However, what properties do

we need to add to a cps to actually recover a possibility measure? Recall that

Poss is defined on 2W , ranges over [0, 1] with 0 being the worst and 1 being the

best possibility, and possibility of a union is determined by the possibilities of

its components (see Definition 1.9). Notice that we select the same properties as

for ranking functions in Proposition 3.23, which in return are those for saps’s in

Proposition 3.11 except for the last one dealing with implausibility of non-empty

sets. We discuss the similarities at the end of this chapter.

Proposition 3.29. Let (W,F ,F ′, P l) be a conditional plausibility space (defined

by CPl1–CPl5; see Definition 2.7). In order to recover a possibility measure Poss

on W exactly the properties from Proposition 3.23 need to be added.

Proof. Let Poss be a function mapping subsets of W to [0, 1] such that for all

A,B ⊆ W we define Poss(A) ≤ Poss(B) iff Pl(A) ≤D Pl(B). Again, the

first two properties in Proposition 3.23 ensure that this way Poss is defined on

all subsets of W as desired. The third property then determines possibility of

a union as Poss(A ∪ B) = max(Poss(A), Poss(B)). Further for all A ⊆ W

we additionally require that Poss(A) = 1 iff Pl(A) = > and Poss(A) = 0 iff

Pl(A) = ⊥. Notice that it must be the case that maxw∈W Poss(w) = 1. Hence,

the resulting plausibility measure Poss is in fact a possibility measure.

The fourth property ensures that we can update the cps with every plausible

public announcement. It shall become clearer below.

Let us define an analogue to default-equivalence between two plausibility

spaces.

Definition 3.30. We say that a conditional plausibility space (W,P l) (resp.

conditional plausibility structure (W,P l, π)) and a possibility space25 (W,Poss)

(resp. a possibility structure (W,Poss, π)) are default-equivalent if for all disjoint

subsets A and B of W it holds Pl(A) <D Pl(B) if and only if Poss(A) <

Poss(B).

25We use this notion to refer to the corresponding space for a possibility measure Poss.
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Clearly, if the structures (W,P l, π) and (W,Poss, π) are default-equivalent,

then they satisfy the same conditional beliefs.

Proposition 3.31. Any conditional plausibility space (W,F ,F ′, P l) satisfying

the conditions in Proposition 3.23 is default-equivalent to the recovered possibility

space (W, 2W , Poss).

Proof. We want to show that for all disjoint subsets A and B of W , we have

Pl(A) <D Pl(B) if and only if Poss(A) < Poss(B). However, their default-

equivalence follows directly from the construction of Poss.

The idea of the following theorem is that if a cps is default-equivalent to a pos-

sibility space and they are updated with plausible public announcement !P , then

the updated versions of these spaces are also default-equivalent. Whereas the

cps is updated according to Definition 3.2, the possibility measure follows (A,α)-

conditionalisation stated above and results in a new space (WP , 2
WP , PossP ) re-

stricted to the new domain of the p-worlds. What is more, the desired properties

of the cps are also preserved.

Theorem 3.32. Any conditional plausibility space (W,F ,F ′, P l) satisfying the

conditions in Proposition 3.23 is such that the following property holds:

If Pl(P ) 6= ⊥ and the cps is default-equivalent to a possibility space (W, 2W , Poss)

then the new cps (WP ,FP ,F ′P , P lP ) is default-equivalent to the possibility space

obtained by updating (W, 2W , Poss) with public announcement !P . Moreover, the

new cps also satisfies the conditions in Proposition 3.23.

Proof. As expected we follow the path of the previous proofs for a single-agent

plausibility space in Theorem 3.16 and a ranking function in Theorem 3.26.

Therefore, we can update the standard cps with the function RPA of public

announcement in Definition 3.2.

Further, the possibility measure is modified by (A,α)-conditionalisation as

described above in (3.2): PossP (w) = Poss(w)/Poss(P ) for all w ∈ P . Notice

that it cannot be the case that Poss(P ) = 0, since the original spaces are default-

equivalent and it is given that Pl(P ) 6= ⊥.

In Theorem 3.16 we have also proved that the new cps satisfies the condi-

tions in Proposition 3.23. Hence, the only thing left to show is that the both
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spaces remain default-equivalent after the update with public announcement !P ,

i.e., for all disjoint subsets A and B of WP we have PlP (A) <D PlP (B) iff

PossP (A) < PossP (B). Then, indeed, their corresponding structures satisfy the

same conditional beliefs:

(i) A possibility structure:

(WP , 2
WP , PossP , πP ) |= Bψϕ iff PossP ([[ψ]]) = 0 or PossP ([[ϕ ∧ ψ]]) >

PossP ([[¬ϕ ∧ ψ]]).26

(ii) A conditional plausibility structure:

(WP ,FP ,F ′P , P lP , πP ) |= Bψϕ iff PlP ([[ψ]]) = ⊥ or PlP ([[ϕ ∧ ψ]]) >D

PlP ([[¬ϕ ∧ ψ]]).

Recall that for both spaces the ordering on plausibilities (resp. possibilities) of

sets of worlds is determined by the ordering on plausibilities (resp. possibilities)

of worlds. Public announcement !P eliminates the ¬p-worlds and what is more, in

the case of possibility measures it also shifts all the ‘surviving’ p-worlds upwards

towards 1 (expect for those with possibility 0). However, the original orderings on

the p-worlds remain the same in both spaces. And as such both updates by public

announcement preserve default-equivalence between the spaces, in particular,

between their structures (see the summarising picture below).

It is rather straightforward that these updated structures satisfy the same

formulas in LΦ, since the propositional cases are obvious and we have just proved

the case of conditional belief.

-�

-�

? ?

Default-equivalent

Default-equivalent

Public announcement !P

cps

(W,F ,F ′, P l, π)(W, 2W , Poss, π)

cps
(WP ,FP ,F ′P , P lP , πP )(WP , 2

WP , PossP , πP )

26We have relativised the rest of the possibility space to the p-worlds denoting it as WP ,

2WP , and πP , respectively.
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3.5 Embedded Update Mechanisms

3.5.1 Simulation of Public Announcement

In the previous sections we have shown that having a conditional plausibil-

ity space (W,F ,F ′, P l) defined by CPl1–CPl5 (see Definition 2.7) with certain

additional properties, we can recover a single-agent plausibility space (W,≤),

κ-ranking (W, 2W ,κ), and possibility space (W, 2W , Poss), respectively. Indeed,

the added properties are far from random. Let us discuss them one by one:

1. F = 2W .

All three frameworks stated above are defined on worlds. After all, their

update mechanisms work on worlds as they take for their input a pair of

world and action.

2. DW = {Pl(V ) : V ∈ F} is totally ordered by ≤D: either Pl(A) ≤D Pl(B)

or Pl(B) ≤D Pl(A) for all sets A,B ∈ F . What is more, by CPl5 we have

that for all U ∈ F ′, PlU places a total order on sets of F .

3. Pl(A ∪B) = max(Pl(A), P l(B)) for all sets A,B ∈ F .

In [FrH01] an unconditional plausibility measure Pl is defined to be a rank-

ing, if it satisfies the second and third property listed here (see Defini-

tion 1.21). Therefore, it is easy to verify that for all U ∈ F ′, PlU is a

ranking.27

Having all three properties, i.e., a ranking on 2W , the plausibility of a set A

is determined by the plausibilities of the worlds w ∈ A.28

4. The given cps (W,F ,F ′, P l) is standard.

This property enables conditioning for an arbitrary plausible public an-

nouncement as defined by RPA in Definition 3.2.

5. Pl(A) = ⊥ iff A = ∅.
This property has its roots a bit deeper in the philosophical ground. As we

27Not to confuse this notion with a ranking function κ. Indeed, the latter is an instance of

the former.
28Recall that in the case of a saps we have defined an ordering on sets in this fashion.
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have already discussed in Section 2.2 on probabilistic conditioning, condi-

tioning on sets with plausibility ⊥, i.e., on implausible sets, is undesirable.

Dealing with conditional belief Bψϕ ∈ LΦ, both ranking functions and

possibility measures take the case when ψ is satisfied only in implausible

(resp. impossible) worlds (i.e., [[ψ]] = ∞, and 0 respectively) to be trivial

resulting in Bψϕ being true for an arbitrary ϕ. However, a single-agent

plausibility space takes the minimal elements of a given set, which means

that if [[ψ]] consists only of ‘implausible’ (i.e., the maximal) worlds, they are

(all) considered as the minimal. The only trivial case for a saps is [[ψ]] = ∅,
then indeed Bψϕ is true for an arbitrary ϕ. This is the reason for the extra

fifth property to be required in the case of a saps.

However, from a practical point of view, we could allow the worlds to have

as little plausibility as needed, but saving the value ⊥ (∞, and 0 respec-

tively) of implausibility only for the empty set. One could simply argue

that as far as beliefs are concerned these irreversibly implausible worlds are

rather dispensable anyway.

Corollary 3.33. Let (W, 2W ,F ′, P l) be a standard conditional plausibility space,

where Pl(. |W ) is a ranking, and Pl∗ is a ranking function κ or a possibility

measure Poss. Then the following property holds:

If Pl(P ) 6= ⊥ and the cps is default-equivalent to (W, 2W , P l∗), then the new

cps (WP , 2
WP ,F ′P , P lP ) is default-equivalent to the plausibility space obtained by

updating (W, 2W , P l∗) with public announcement !P .

(*) If moreover Pl(A) = ⊥ implies A = ∅, then the property above also holds

when a single agent plausibility space (W,≤) is substituted for (W, 2W , P l∗).

The new cps is standard and Pl(. |P ) is a ranking. In the case (*) additionally

Pl(A |P ) = ⊥ implies A ∩ P = ∅.

Proof. Straightforward from the theorems 3.16, 3.26, and 3.32 (see the summaris-

ing picture below).

We have shown that public announcement realised by the corresponding up-

date mechanisms on single-agent plausibility models, ranking structures, and

possibility structures, respectively, can be embedded in a cps with certain addi-

tional properties (i.e., a ranking Pl(. |W ) on 2W ). While on all the structures
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of these three classes we apply their update mechanisms, the cps is in principle

updated purely by conditioning. We need to restrict the rest of the space, so

that the result is a cps on WP , but the main idea is to simply condition on P

after a (plausible) public announcement !P .

-�

-�

? ?

Default-equivalent

Default-equivalent

Public announcement !P

cps

(W, 2W ,F ′, P l, π)
≤, κ, Poss

(W, 2W , P l∗, π)

cps
(WP , 2

WP ,F ′P , P lP , πP )
≤P , κP , PossP

(WP , 2
WP , P l∗P , πP )

In a certain sense, we can simulate public announcement on single-agent plau-

sibility models, ranking structures, and possibility structures, respectively, by

conditioning on a conditional plausibility structure. At each step of the update

process on the cps (e.g., in case there are several plausible public announcements

in a row), we can construct a structure of one of these three classes which will

satisfy the same formulas as it would if we had a structure of this class satisfy-

ing the same formulas as the original cps and applied its corresponding update

mechanism all the way from the beginning.

3.5.2 Simulation of Radical Revision

Recall, that radical revision (resp. lexicographic revision) results in keeping the

same states in W , but promoting all the p-worlds to be more plausible than all

the ¬p-worlds, and within the two clusters the order remains unchanged. Since

in our selected structures the order on plausibilities (resp. possibilities) of sets

is determined by the order on plausibilities (resp. possibilities) of worlds, again

default-equivalence between the structures will be preserved.

The idea for the update mechanisms would be to take an action model Σ

with two plausible actions, one with precondition P and the other one with

precondition P . This way, all the worlds stay in model, but we can shift the

two clusters relatively to each other. Obviously we shift the p-worlds upwards
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towards the top. But how much do we need to shift the ¬p-worlds to ensure that

the two clusters are kept separated as required? In other words, what plausibility

should we assign to the latter action to get the results of radical revision?29

Notice that the update mechanism for single-agent plausibility models (with

anti-lexicographic ordering) does not succumb to this challenge and with its

qualitative nature accounts for this kind of revision. On the other side, the

quantitative update mechanisms for ranking structures, and possibility struc-

tures, respectively, do not necessarily behave in accordance with radical revision.

Based on Spohn’s (A,α)-conditionalisation, in each case we would have to fix an

‘appropriate penalty’, i.e., a sufficient α for A, to ensure that the best worlds in

A are still worse than the worst worlds in A.

In order to aim for some general results on this matter, in the following

chapter we present an update model using plausibility measures.

29Cf. Jeffrey’s Rule in Subsection 2.6.2.
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Extra Algebraic Properties

In the previous chapter we have seen how public announcement on single-agent

plausibility models, ranking structures, and possibility structures, respectively,

can be embedded in a conditional plausibility space. However, in order to ac-

count for different kinds of revision (e.g., radical or conservative) we need to

define an actual update mechanism using cpm’s. The update mechanism for

Baltag and Smets’ single-agent plausibility spaces is qualitative and as such uses

the orderings. On the other hand, the update mechanisms for κ-rankings and

possibility spaces are quantitative and naturally they make use of the present

algebraic properties. Let us illustrate some kind of a generalisation of such a

quantitative approach to updating.

4.1 General Model for Revision using

Plausibility Measures

In this section we briefly present a revision model for epistemic state change using

plausibility measures as suggested in [MaL08]. This model is general enough

to subsume the conditionalisation of ranking functions (see Subsection 3.3.1),

Jeffrey’s Rule of probability updating (see Subsection 2.6.2), and the revision

operator (3.2) in possibility theory.1

To make the subsequent discussion easier, we have the following. Let A be

any set, for any binary relation ≤ over A×A, < is defined as a < b iff a ≤ b and

b � a, and = is defined as a = b iff a ≤ b and b ≤ a, for a, b ∈ A.

First, we need to define some simple and rational properties for operator ⊗.

Definition 4.1. Let S = (W,F , D, P l) be a plausibility space, a, b, c be any

elements in D and ⊗ be a mapping D ×D → D, then ⊗ is called

1Note that this topic is beyond the scope of this thesis, but we consider it very relevant and

include the main results (without proofs) of J. Ma and W. Liu for future research in this area.

Understandably, this chapter is rather sketchy.
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• reversible iff there exists a mapping ⊗−1 such that a ⊗−1 b ⊗ b = a and

a⊗ b⊗−1 b = a for b 6= ⊥.

• commutative iff a⊗ b = b⊗ a.

• associative iff a⊗ (b⊗ c) = a⊗ b⊗ c.

• equal-ranking iff (a⊗ b)⊗−1 c = (a⊗−1 c)⊗ b for c 6= ⊥.

• right-sign-keeping iff a⊗ c <D b⊗ c for a <D b.

• left-sign-keeping iff c⊗ a <D c⊗ b for a <D b.

• sign-keeping iff ⊗ is both right-sign-keeping and left-sign-keeping.

Property equal-ranking says that an operation ⊗ and its reversing opera-

tion ⊗−1 have the same level of operation grade, such as, ‘+’ and its reverse ‘−’

have the same level of arithmetic calculation grade and they are a grade lower

than ‘×’ and ‘/’.

Note that if ⊗ is reversible, then by setting U3 = W in Alg2 (see Defini-

tion 2.9), we obtain a conditional plausibility as follows

Pl(U1 |U2) = Pl(U1 ∩ U2)⊗−1 Pl(U2).

The reason we need to have both the right-sign-keeping and left-sign-keeping

conditions is that some operators may not be associative, so these two conditions

are not totally equivalent.

Proposition 4.2. Let S = (W,F , D, P l) be a plausibility space and ⊗ be a

reversible and right-sign-keeping mapping D × D → D, then ⊗−1 is right-sign-

keeping.

Note that if ⊗ is commutative, then ⊗ is right-sign-keeping iff ⊗ is left-

sign-keeping. But we still differentiate the two situations as there may be non-

commutative operators, e.g., ⊗−1.

Definition 4.3. Let S = (W,F , D, P l) be a plausibility space and ⊗ be a map-

ping D ×D → D, then ⊗ is called a rational mapping iff it satisfies reversible,

commutative, associative, equal-ranking, and sign-keeping.
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Proposition 4.4. Let S = (W,F , D, P l) be a plausibility space and ⊗ be a

rational mapping D ×D → D, then for any a, b, c, d ∈ D and b, c 6= ⊥, we have

(i) a⊗−1 b⊗−1 c = a⊗−1 c⊗−1 b.

(ii) a⊗ (d⊗−1 c) = a⊗ d⊗−1 c.

(iii) b⊗−1 b = >.

In fact, when probability functions, ranking functions and possibility func-

tions, are viewed as plausibility functions, the corresponding ⊗s (which are ‘×’,

‘+’, and ‘×’ respectively) are indeed rational mappings.

We define the revision model by plausibility measures as follows.

Definition 4.5. Let S = (W, 2W , D, P l) be a plausibility space for the prior

state, and Se = (W,Fe, D, P le) be the plausibility space for new evidence where

Fe = 2{A1,...,An} is the powerset of a partition of W , then the revised plausibility

measure, denoted as Plre, is

Plre(w) = Ple(Ai)⊗−1 Pl(Ai)⊗ Pl(w), w ∈ Ai, 1 ≤ i ≤ n.

Proposition 4.6. Let S = (W, 2W , D, P l) be a plausibility space for the prior

state, and Se = (W,Fe, D, P le) be the plausibility space for new evidence where

Fe = 2{A1,...,An}, then we have

Plre(Ai) = Ple(Ai), 1 ≤ i ≤ n.

This proposition shows that the above definition indeed preserves the value

Ple(Ai) from the evidence, so it satisfies the general requirement in revision that

the new evidence has to be preserved.

Here are some general properties of the revision by plausibility measures.

Proposition 4.7. Let S = (W, 2W , D, P l) be a plausibility space for the prior

state and Se1 = (W,Fe1, D, P le1), Se2 = (W,Fe2, D, P le2) be two plausibility

spaces for two new pieces of evidence such that Fe1 = Fe2 = 2{A1,...,An}, then we

have (Plre1)re2 = Plre2.
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This proposition reveals that if two pieces of evidence are about the same

event but differ on the strengths, then the evidence arriving last will suppress

the former (cf. Jeffrey’s Rule in Subsection 2.6.2).

When new evidence is given on Fe = 2{A,A} within a plausibility space, the

above revision is reduced to the well known (A,α)-conditionalisation of ranking

functions ([Spo88], [DuP93]), which is the revision when Se = (W, 2{A,A}, D, P le)

such that Ple(A) = > and Ple(A) = α. Thus we have

PlA,α(w) =

{
Pl(w)⊗−1 Pl(A) for w ∈ A
α⊗−1 Pl(A)⊗ Pl(w) for w ∈ A.

Definition 4.8. Let ⊕ be a mapping D × D → D, then ⊕ is called bounded-

additive if and only if it follows: >⊕ d = d⊕> = > for all d ∈ D.

For convenience, if Pl is associated with a bounded-additive ⊕, then we

simply call Pl bounded-additive. It is clear to see that ranking functions and

possibility measures are bounded-additive, but unfortunately, the probability

measure is not bounded-additive.

The revision by Definition 4.5 (using Proposition 4.6) can be equivalently

rewritten as

Plre(w)⊗−1 Pl(w) = Plre(Ai)⊗−1 Pl(Ai), w ∈ Ai, 1 ≤ i ≤ n.

It is a counterpart of so called probability kinematics in probability theory.2 It

has been proved that Jeffrey’s Rule follows probability kinematics.3 Hence the

revision strategy described here can be called plausibility kinematics.

We give the formal definition of plausibility kinematics as follows.

Definition 4.9. Suppose that two plausibility measures Pl and Pl∗ disagree on

the plausibility values they assign to a set of mutually exclusive and exhaustive

events A1, . . . , An. The distribution Pl∗ is said to be obtained from Pl by plau-

sibility kinematics on A1, . . . , An, if and only if for any w ∈ Ai, 1 ≤ i ≤ n, it

holds

Pl∗(w)⊗−1 Pl(w) = Pl∗(Ai)⊗−1 Pl(Ai).

2Originally from Jeffrey, R. C. The Logic of Decision. New York: McGraw-Hill, 1965. 2nd

ed. Chicago: University of Chicago Press, 1983.
3In Chan, H., and A. Darwiche. ”On the Revision of Probabilistic Beliefs using Uncertain

Evidence.” Artificial Intelligence 163 (2005): 67–90.
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Obviously, the revision strategy in Definition 4.5 shows that the revised plau-

sibility measure is obtained from the prior plausibility measure by plausibility

kinematics.

Next it is proved that the revision strategy does achieve a minimal change.

Namely, we show that among all revision strategies, the plausibility measure ob-

tained by plausibility kinematics has the shortest distance to the prior plausibility

measure.

First, we define a distance function, which is generalised from its probability

counterpart (ibid. footnote 3).

Definition 4.10. Let Pl and Pl∗ be two plausibility measures on 2W , then the

distance between Pl and Pl∗ is defined as

d(Pl, P l∗) = �(maxwPl
∗(w)⊗−1 Pl(w))−�(minwPl

∗(w)⊗−1 Pl(w)),

where we define ⊥ ⊗−1 ⊥ = >, and � is a mapping D → R and satisfies the

following:

1. �(a⊗−1 b) = �a−�b.

2. if a < b, then �a < �b.

3. �⊥ =∞.

Pl and Pl∗ are said to have the same support if for all w it holds Pl(w) 6= ⊥
iff Pl∗(w) 6= ⊥. If Pl and Pl∗ do not have the same support, as �⊥ = ∞, we

can conclude that d(Pl, P l∗) =∞.

Proposition 4.11. d(Pl, P l∗) defined in Definition 4.10 is a distance function.

A common perspective on revision strategies is to have a minimal change

between the prior belief (resp. epistemic state) and the revised belief (resp.

epistemic state). The theorem below shows that the suggested revision strategy

is optimal in the sense that it satisfies this common perspective.

Theorem 4.12. The plausibility distribution Pl∗ obtained from Pl by plausibility

kinematics on partition A1, . . . , An of W is optimal in the following sense. Among

all possible plausibility distributions that agree with Pl on the plausibility values

of events A1, . . . , An, Pl∗ is the closest to Pl according to the distance measure

by Definition 4.10.
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Conclusion

At the beginning we have introduced different kinds of representations of uncer-

tainty. Then, we have shown how to update each of these frameworks. In both

cases we have focused on a (conditional) plausibility space, since it generalises

all the other representations. We have also presented algebraic properties and

Jeffrey’s Rule, both based on the ideas from probability theory.

The third chapter is the core of this thesis. We have selected three frameworks

and for each of them listed the properties that need to be added to a conditional

plausibility space in order to recover these frameworks. We have proved that

public announcement on single-agent plausibility models (in [BaS08]), ranking

structures, and possibility structures, respectively, realised by their correspond-

ing update mechanisms can be embedded in the framework of conditional plau-

sibility spaces. It has turned out that the focus falls on a satisfaction condition

for conditional beliefs. This has lead to the definition of default-equivalence

between a structure of one of the classes stated above (resp. its space) and a

conditional plausibility structure (resp. space). At the end of the chapter we

have also discussed radical revision on the selected frameworks and its poten-

tial to be embedded in a conditional plausibility space in similar way as public

announcement. However, the update mechanisms of quantitative nature do not

necessarily behave according to radical revision unless an ’appropriate penalty’

is fixed in each case. In order to investigate this matter further we have aimed

for some kind of a generalisation of quantitative update mechanisms.

In the fourth chapter we have briefly presented a revision model for epistemic

state change using plausibility measures as suggested in [MaL08]. It has similar

features as the quantitative update mechanism for ranking structures, but it

deals only with mutually exclusive and exhaustive events (i.e., on a partition

of the set of worlds W ). After all, this revision model has been created in the

spirit of Jeffrey’s Rule and Spohn’s (A,α)-conditionalisation. This topic, while

beyond the scope of this thesis, is considered very relevant and provides grounds

for future research.

”Conditioning is a wonderful tool. . . ”[Hal03, p. 74] with great potential. A little

bit more polishing and the dark corners of uncertainty shall become its light. . .
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