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NOTATION

Bold typeset means tensor, vectors are denoted by arrow
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Indentity
deformation gradient

external forces

time step

Total quantity flux

Body mass

internal production of angular momentum
unit outer normal

pressure

Total quantity production

1%* Piola-Kirchhoff stress tensor
FE basis functions

heat flux

internal energy production

Rotation part of deformation gradient
Entropy

time

Temperature

Cauchy stress tensor

displacement

Displacement part of deformation gradient
FE basis functions

velocity

FE basis functions

Referential volume

Control volume

Actual volume

Free Energy

deformation

material point in inital state
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arbitrary deformation

density paramater
domain boundary
internal energy

test functions

time integration parameter
barycentrical coordinates
viscoslity

test functions
Dissipation energy
Density

test functions

General quantity
Helmholtz potential
Domain



INTRODUCTION

Mathematical modeling is a branch of mathematics dealing with the
description and analysis of many processes around us. It tries to characterize
these processes in other ways than experimental, and therefore is useful
mainly in branches where experimental knowledge can be destructive. The
application of this modeling approach in bio-engineering is one of many with
very good results.

The urgency of studying the human cardiovascular system is quite ap-
parent from the fact, that a great percentage of people of the western civili-
zation die of cardiovascular diseases. A good model of blood flow in arteries
could help physicians to reveal arteriosclerosis, warn patients of the possible
risk of heart attack, or help with the treatment of collapsible brain arteries.

There are lot of problems connected with flow in the human body. They
include many effects and interactions (mechanical, chemical, electrical). The
journey to a model reasonably close to reality will probably be very long
and difficult. In our work we will concentrate on the interaction of the
velocity field with an elastic body, which seems to be the most essential in
the description of artery flow.

There exist many different ways to characterize this problem. Some of
them reduce the problem to the description of the artery wall, as in (Stem-
bera, 2003). This problem is formulated as axially symmetric and the result
is a one dimensional description of the deformation of the artery wall by
the pulsating flowing fluid. The other models try to decompose the problem
into two different parts: the flowing fluid and elastic deformation of the wall.
Both parts are treated separately with well known and well tested methods,
and the problem is solved by moving from one part to the other with each
iteration. This approach sometimes has problems with the description of
the interacting boundary. It is common in technical practice to combine
two commercial programs together.

In our work, we will introduce a different approach. From the beginning
the problem is formulated on a domain including the fluid and solid parts
and is described by equations covering the deformation and velocity fields.
This approach can be found e.g. in the work of (Hron, 2001). It is relatively
difficult to derive this method because it has to overcome the differences
between the description of the flowing fluid (usually using the Euler cha-
racterization) and the solid deformation (Lagrange description).

In our work we will derive the most general model of fluid-structure
interaction, which we shall later simplify by adding two assumptions (well
accepted in biology) of incompressibility and isotermicity. Unfortunately the
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problem is too complicated for us to give any analytical properties, instead
of that we will try to give some numerical results. We will try to catch many
effects using 3D unstructured meshes.



ANATOMY

From the thermodynamic point of view, the human body is an open
system. It consists of many small elements (cells) and it interacts with the
environment (i.e. exchange of matter and energy between the body and the
environment). It is an organism, which transforms the energy extracted from
food to other forms, such as mechanical or mental work. The body consists
of great amounts of cells (osteocytes, myocytes, ganglions, etc.), which must
be nourished and the products of their metabolism must be drained. In the
body of mammals this function is ensured by the cardiovascular system - a
system of channels, which transports blood through out the whole body.
2.1 Cardiovascular system

The cardiovascular system (CVS) is a closed system of pipes, in which the
blood flows. This system is powered by the heart, which is literally a pump,
pumping the blood through the whole system. We may distinguish two types
of pipes, or blood channels - arteries, which distribute the blood from the
heart to the body, and veins, which convey the blood back from the body
to the heart.

2.2 The heart

We have already pointed out that the heart is the driving organ of the
whole CVS. Now let us describe its function in a more detailed way. The
heart consists of three main parts: myocardium, which is the central layer,
wrapped by endocardium and epicardium. The size of the heart depends
on the weight and height of the person - it is approximately 280-340 g for
men and 230-280 g for women. There are four hollows in the myocardium
- left and right atrium and left and right ventricle. Respective atriums and
ventricles are detached by aortic valves - there is the tricuspid valve between
the right atrium and the right ventricle, and the mitral valve between the
left ventricle and the left atrium. On the output of the right atrium there is
the pulmonary semilunar valve, on the left atrium output there is the aortic
semilunar valve. The heart is controlled by electrical impulses, which cause
rhythmical contractions of the myocardium, where one contraction is one
pulse. The amount of pulses per minute is called the heart frequency, which
is normally 60-100 pulses per minute.

Over the course or the heart cycle two periods alternate:

Systole - a contraction of myocardium, which causes the blood to flow
out of the heart

Diastole - a relaxation of myocardium, which causes the heart to fill with

blood.
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FiGc. 2.2.1. The Heart

Table 2.2.1 Systolic and diastolic pressure. Because of historical reasons
the pressure is usually given in Torrs, 1 Torr = 133 Pa

segment systolic pressure [Torr| diastolic pressure [Torr]
right atrium 8 2

right ventricle 15-30 0-8
pulmonary artery 10-30 0-15

left atrium 12 2

left ventricles 85 - 150 0-10

aorta 85-150 60-90

The heart cycle takes approximately 0.6-0.7 s, from which systole takes
approximately 0.35 s and diastole 0.45 s. In normal circumstances the heart
transfers approximately 5-7.5 1 of blood per minute. The systolic and di-
astolic pressure are very important quantities used to describe the function
of the heart, see the Table 2.2.1.

The heart cycle consists of five steps:

1. Systole of the atriums - A small amount of blood is forced to the ven-
tricles, which were filled passively before.

2. Tensoidal systole of the ventricles - By that contraction the pressure
in the ventricle increases, until the diastolic pressure in the artery is reached.
The tricuspid and mitral valves are closing, while the output valves are
opening. The blood is flowing from the heart into the body.

3. Systole of the ventricles - The volume of the ventricles reduces consi-
derably and the output valves stay open.

4. Diastole of the ventricles - The pressure decreases rapidly and the vo-
lume changes. When the pressure reaches the diastolic level, the output




THE ARTERIES 8

—— ventricle pressure —— atrium pressure aortal pressure

| | | |
1204 | |

|

|
804 |

|

|
40 —

1191 3 VI 5 Ml

A - mitral valve closed, D mitral valve closed
B - aortal valve open, C aortal valve closed

Fi1G. 2.2.2. Heart cycle

valves close. The pressure in the ventricle decreases further until it rea-
ches the pressure level at atriums, causing valves between the atriums and
ventricles to open.
5. Passive filling - The blood is flowing into the heart spontaneously.
The complete course of the cycle is shown at Fig. 2.2.2.

2.3 The arteries

The blood is streaming from the heart by two arteries. One of them is the
pulmonary artery leading from the right ventricle, and the other is aorta,
leading from the left ventricle. The heart itself is supplied with blood by
three coronary arteries, which detach directly from the aorta. The aorta is
later slitted into the Common carotid, Left subclarion artery, Thoratic aorta
and Aortic arch. The artery diameter is decreased by each division. This
part of CVS is known as the high pressure part, for the blood is transported
here by pressure strokes. The artery is conformable to this transport regime
by its internal structure. At Fig. 2.3.3 we may see three layers, forming
the artery wall. These layers are made of elastic material, which allows the
actual volume of the artery to increase as the pressure stroke passes.

The arteries are further divided into arterioles. The parameters of the
main arteries are noted in Table 2.2.1.

The coronary arterioles suppply oxygenated blood up to the individual
cells, so it is obvious that they are very small. Therefore we no longer speak
about flow, but rather about passive transport, for the arteriole is smaller
in diameter than the transported molecule. We shall not consider this type
of transport any further.

2.3.1 Remodelation

Every living tissue has the ability of persistent change and adaptation to
the external conditions (the so-called remodelation). This property is partly
enabled by the interaction (exchange of matter and energy) with environ-
ment. This interaction leads either to the preservation of the physiological
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Table 2.3.2 The list of arteries and their parameters

artery length [cm] inner diameter [cm| wall thickness [cm)]
Ascending aorta 4 1.45 0.163
Common carotid 8.9 0.37 0.063
Internal carotid 11.8 0.15 0.042
Aortic arch 2.0 1.12 0.132
Left subclarion artery 3.4 0.42 0.067
Aortic arch 3.9 1.07 0.127
Thoratic aorta 5.2 1.0 0.120

properties or to their damage and malfunction. The examination of those
properties is not possible without considering the dynamic effects of lowing
blood. That is the reason for adding a model of mater exchange to the
description of the artery wall in the next version of our model.

2.4 The veins

The blood with low oxygen volume and enriched by CO, is drained away
from the cells by the venues, which later merge into veins. The master vein
leads this blood into the right heart atrium. The structure of the vein is
shown at Fig. 2.4.4. Because we are interested in the blood flow in the
arteries, we shall not describe the veins any further.

2.5 The blood

Now let us briefly mention some basic facts concerning human blood, espe-
cially its composition and properties describing its characteristics as a fluid.
Blood is a concoction of leukocytes, erythrocytes, thrombocytes and blood
plasma, which consists mainly of proteins. The erythrocytes are elements
with approximately 8um in diameter and form the biggest part of blood
in percentage terms (approx. 5.10° cells per 1 mm?). These elements could
be deformed due to shear stress. They represents approx. 95% of all blood
elements. On the other hand there are much less leukocytes in human blood
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Fi1G. 2.4.4. Vein

- approx. 1 or 2 per 1000 erythrocytes. There are approx. 50-100 thrombo-
cytes per 1000 erythrocytes, but their size is only 2 to 4 um and at normal
flow they can barely influence the blood properties.

The basic model describing the fluid from a mechanical point of view is
the so-called Newton fluid. This theory assumes linear dependency of shear
stress on shear velocity. It is expressed by the following formula (for brevity
we use 1D approximation):

_dv
T =1 o =

The blood belogs to non-Newton fluids (that means the dependency of
shear stress on shear velocity is non-linear, n in not a constant) and its
rheological properties are still a subject of intensive research. It turns out
that to describe all properties of blood as a whole is a rather complicated
task. This is true because its properties vary significantly with shear velocity
(see Fig. 2.5.5). It is shown there that for 4 > 100 blood behaves almost like
a Newton fluid, but for ¥ <« 100 its behavior is significantly different. This is
because at lower velocities its properties as a concoction are significant and
different mechanical properties of respective elements begin to show. Let
us mention the Casson’s rheological model as an example of an empirical
model, which approximates well the behavior of blood at lower speeds:

T = a’y + 2a+/¥b + b.

This model is more suitable for the description of flow in blood veins, other
applications of this model are subject to debates ((J. Valenta et al., 1995)).
Because we shall consider the flow in big arteries, where big values of shear
velocity are reached due to the pulse flow, we shall use the Newton model
to describe the behavior of blood there.

2.6 Summary

In this chapter we have presented a rough insight into the anatomy of CVS,
especially regarding the structure and function of the heart and the arteries.
For computation purposes used in this work we have chosen the artery called
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carotid. In simplified form we may say we are interested in the flow of blood
an in elastic pipe 89 mm long, with inner diameter 3.7 mm and wall thickness

0.63 mm, as shown at the Fig. 2.6.6.

The pipe changes its profile in dependence on the flow. The profile copies
the pressure stroke caused by the contraction of myocardium.
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PHYSICAL PROBLEM FORMULATION

In this chapter we will formulate a general model of fluid flowing in a
solid tube. We will start in the most general manner, without any restrictive
assumptions. Later we will use assumptions commonly used in biology, na-
mely isothermalilty and incompressibility, and we will derive a simpler mo-
del, which will be used for numerical computations.

3.1 Continuum mechanics

First of all we have to find a way how to describe the fluid motion. Generally,
there are two well-known principles of that description, called Lagrangian
and Eulerian. But because our model requires a very special approach, we
will set up another one, known as the ALE method.

3.1.1 Motion description

Imagine a body with volume ), in some space. The body is free to move
and to change its shape in time ¢ € [0,7]. Let us choose an arbitrary,
but fixed configuration (which consists of the current position and shape
of the body). We will call it reference configuration and we will express
the motion and deformation of the body with respect to this configuration.
Because the configuration of the body may change in time, we can describe
the deformation process as a sequence of configurations.

More exactly : Let Vy € R? be the reference configuration of the body
and V() an actual configuration (an arbitrary configuration in time t). The
deformation is then defined as the mapping

il_;"v " Vo X [O, T] - V(t).

The mapping Ty depends on the choice of reference configuration. Let
us assume that the reference configuration will always be the non-deformed

Vi)
Vo V(l

FiG. 3.1.1. Deformation from reference state X (volume V) through in-
termediate state ; (some volume V(j)) to actual state T, (actual vo-

lume V(t) )
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s;tate_'of the body denoted Vy. In the words of formulas, we will assme that
=Ty = fvo.

Reference positions of atomic elements of the body (also called material
points) will be denoted X. Their respective actual positions in the space
are time-depend vectors denoted & = £(X, ).

Now, let us define the displacement vector field @, which will be useful
for the description of the properties of the deformed body

a(X,t) =z(X,t) - X. (3.1.1)

We shall also need the wvelocity field, defined as the time derivative of the

position vector I

ox

ot

The most important property of deformation is expressed by the defor-
mation gradient

7= (3.1.2)

B = 8—:?. and its determinant J = det F'.
0X

This newly defined quantity will be used to express the transformation
between the reference and actual state. Let us mention the transformations
of the fundamental surface and volume as an example:

dv = JdV di = FTJdA.

3.1.1.1 Lagrangian view This approach is used to describe the motion
of objects in some space. The main idea of this method can be explained
as follows: choose an arbitrary point X on the body and trace its motion
trough the space. The resulting trajectory is then given by the mapping
T = (X, t), where X denotes the initial position of the point in time ¢ = 0.
The coordinates X are also called Lagrangian or material coordinates.

The velocity of the material point is obviously given by the time deriva-
tive of its position:

. 0F(X¢t)

V=12 ot

With some additional assumptions (implicit function theorem) there also
exists an inverse mapping

. (3.1.3)

X = X(4,t), (3.1.4)

which allows us to derive (X,t) from (&, ).
Because the formulas 3.1.3 and 3.1.4 are inverse, it is obvious that
ozt 0X! ,  0X! Oz

7 Y
OXI Oxi % ozt 0XJ 2

where the tensor 3‘—9—% is the deformation gradient, denoted as F = F}.
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F1G. 3.1.2. ALE description; Material point X can be mapped to actual
position Z using arbitrary mapping ¢ : Vo x [0,T] — V|4 for description.

3.1.1.2  Eulerian view Euler’s method is suitable for the description of a
variable vector field in an invariant domain. It is based on the following
idea: choose an arbitrary point 7' in the space and inspect all the elements
passing through this point in time. The coordinates z* are called Euler or
spatial coordinates.

Velocity in the spatial coordinates can be expressed using 3.1.4 as

7=19(X,t) = 0(X(Z t),t) =9z, ¢). (3.1.5)

Analogically, we may transform any function f ()2 ,t) to f(&,t) and vice
versa, where f ()? ,t) or f(Z,t) is a function describing any property of a
material or spatial point, respectively.

The material derivation of the property function f in the spatial coordi-
nates can be assessed from the derivation of a composite function

f(@t) = 8f(£’ 2 + v*(Z, t)%%—” (3.1.6)

3.1.1.3 ALE The ALE (Arbitrary Lagrange Euler) method is a gene-
ralization of the previously described methods. It is similar to the Euler
description, but the inspecting point Z' is not fixed anymore, and is free to
move along an arbitrary vector § with velocity vy, = %%.

It gives us the opportunity to establish the control volnme 1 which can
be deformed by deformation y. The deformation is expressed with respect
to the y* coordinate system.

Now look at Figure 3.1.2. The body V) is in the reference configuration,
which means it is in the non-deformed state. Let us deform the body in

time ¢ to the state V) by the deformation & = Z(X,t). We will describe
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this deformation using the coordinate system [y',y?, y°] connected with de-

formation ¢ = §(X, t) and deforming the control volume V/;). Now we have
to express position

J(X,t) = &7, t) - ¥(X, 1) (3.1.7)
and velocity
oy . . Ow ,
?’)_t =y =U~- E (318)

of the material point. Of course, such important property as the deformation
gradient cannot be omitted:

or*  Ox* 0X!

Oyl OXI Oy’

- Now we can try to express a material derivation of a function f in the

y" coordinate system. The idea is similar to the Euler description, but we
shall use the velocity described by 3.1.8. The result is

fan =200 @Y )

3.1.2 Balance Laws

To establish our model, we will also need equations describing the basic
physical principles, known as the balance laws. Because our approach is a
very general one, we will formulate them all in the ALE coordinates. The
following concept will be used later for the description of fluid structure
problems.

(3.1.9)

3.1.2.1 (General balance law in ALE coordinates For derivation purposes,
let us define a general extensive quantity ®(t):

<I>(t)=/ @(X,t)dV:/ gp(:i’,t)dvz/ p(y, t)dv,.
Vo Vi) Vit

The general balance law may be formulated in various ways. Let us choose

the following one:
Time change of extensive quantity is compensated by the sum of total

flux and total production.
If we denote the flux by £ and the production by P, we may write this

| :
law as follows 1®

= d = L(P) +P(D). (3.1.11)

Our next goal is to quantify the flux and the production in the reference
volume V), in order to obtain a local balance. Let us start with flux:

L(®) = LE(®)dAK = / *(®)day = / 15 (®) ity v, da.
aVo 6V(t) 8V(t)

The total production is given by the density of production %, o
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P(Q)):/ X(P)dV = a((b)dv=/ o(P)dv,.
Vo Vie) Vi

We may now compute the time change (time derivative) of ® over the
control volume V{;). This can be done using the 1** Reynolds transformation
theorem:

d

dt Jy,,

. d . . .
P(y, t)dv, = o ¢(y, t)dvy + / d)(v" - vf,t)nk,v,da.
Vie) OVie)

The boundary term on the right side of the previous equation means
that flux is flowing on a non-material surface, which is our case, because
the ALE control volume has nothing to do with the real boundary of the
volume.

And finally we will transform the equations from control volume (which
is changing in time) into the referential one (which is fixed in time) and put
the derivation inside the integral.

Bearing in mind the transformation formula of the fundamental volume
and surface, which is

dxl\
Oy*

dv _jde » vyda ——Jy dAK,

we will get

d 9,

= " ¢(7,t)dv, = o ¢( 7(X,t),1)5,dV = ¢(( 1), 8)5,dV.

b, Ot

We may now apply the same procedure on the boundary term:

i ax*s
¢( )(U - U{c/)n’k tha— ¢(y(X’t)’t)(Uk_ th)]y 8 k ——dAg.
M) ¥y
After substituting these two terms into 3.1.11 we get the balance law in
an integral form:

% OXK
—j dV+/ @'Uk—vktj——dA =
” ot 7Y - ( V) Y Oy* K
OXK
*(P /ocbjdv.
/VO (@) 57 o)

Assuming continuity of the integrand we can use the Gauss theorem,
and we will finally get the local form of the general balance law in the ALE

coordinates:

K
%(jy@) - 9 {[@(vk —vp,) — I5(®)] jy%—} — Jyo(®) =0}

oXK
(3.1.12)
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3.1.2.2  The balance of mass We may formulate this law as follows: The
tzme change of mass is zero. Imdgme a body with volume V and total mass
fv X t)dV = jv o(Z, t)dv. Therefore, if we substitute this mass

m 1nto general local balance formula 3.1.12, we shall get

0 . 0 ‘ o0X K
a(]yé)) + IXE {[Q(U" u(‘/t)] Jy——r o } 0

On the previous formula we can easily show that ALE is a generalization
of the Lagrangian and Eulerian view. Let V{;) be the static coutlol volume.

This means thgt 7= X, therefo.le :jy = 1 and da\; = —-\—,\, — 5%75('){{”
What remains is the Euler description:
9, I(ov*
0, ev’)
ot oxk

Now let V(;) be a flow, i.e. (§ = Z). This means that j, = j, Uy, = U and

-1
—g-aa)iK = Fli is inverse to the gradient FT. We can now substitute and see
the Lagrangian description:
J .
aum=0

3.1.2.3 The balance of linear momentum This balance expresses the equi-
librium of all forces involved in the system. We may derive it by substituting
the total momentum ¢ = pv' into the general balance law 3.1.12. The com-
pensating terms represent surface forces, expressed by (¥ ~ tki where t is
the Cauchy stress tensor. Forces are represented by the sources of f, in the
words of production o = pf*. After substitution we have

: o (| CooxKy
5 —(Jyov*) + === XK {[Q'U’('vk —of,) — t*] 4y o } - Jjyoft=0. (3.1.13)

The Lagrangian view can be derived in a way similar to the one we have
shown in 3.1.2.2. We use the Piola-Kirchhoff pseudo-stress tensor P = T =
THKiNg to describe the action of surface forces. It is required to depend only
on the reference configuration in order to meet the demands of constitutive
relations. We may write it as follows 757 = aX ITK ‘. The tensor 1 is called
the second Piola-Kirchhoff tensor.

The Lagrangian description takes the form

. . oTK:
- F) - = 0. 3.1.14

) (“ OXK (3.1.14)
3.1.2.4 The balance of angular momentum The angular momentum is
expressed as the external product of the vector £ — yy and momentum vector
oU'in 3.1.12 ¢ = [Z— | A o¥. We may split the sources of angular momentum
into two separate parts: into external volume forces [(Z — %) A of]¥ and all
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the other volume forces acting on dipoles, expressed by ¢M*. Generalised
fluxes have the form [(£ — gj) A t]. One of the possible ways to describe
the local balance is

0 =57 (& = d0) A 00]V) — jyoM™ — jy[(F — Go) A of ]
a - — —\'1, o o ko 57 d\/l\
_ &X—K{[[(w—-yo)/\QU]J(’Uk — )~ F - @) A5 G }

We can now simplify this formula by multiplying 3.1.13 by the position
vector (T — )

o, . . .8 Dok e OXEY
0 =5 (o) A (& = o) + 535 {[Q’U (0 —wy) = ]G5 }/\ (& = o)

- ijfi A (f - ?;70)
After subtraction and evaluation of the derivation of external product

we get

.
OXK

{[[(f—ﬁo)/\eﬂ”(vk—v’”v})-(f—:&‘o)/\t] ]yaa); }

8 i i1 - aXK - -
+a—)(7(‘ { [Q’U (’Ulc - ’U(C/t) — tk ] Jy ayk } A\ (.E — y()) == (),

and if we transform this into spatial coordinates, we shall get

9 — 9 = oM"Y, (3.1.15)

_ijMiJ' —

For non-polar materials (with M* = 0) 3.1.15 expresses the symmetry
of the stress tensor.

3.1.2.5 The balance of mechanical of energy The total amount of me-
chanical energy can be written as ¢ = p 323 . We can formulate it wi-

thout flow through the boundary (I* = 0). Energy production is denoted by
o= gt]J + ov; ft. Then the local balance is

9 v2 9 v? 0 —ob) XK
o \Jve Toxrc 19\ 7 )W T | v
"
—-]y( drw +Qv,f>=0.

3.1.2.6 The balance of internal energy Let € be the internal energy per
unit mass. This energy can flow through the boundary due to heat fluxes
(I* = ¢*) and can be produced internally by o = t7*9% + g, where g can be
some other internal production e.g. radiation.

The local balance is

0 0 oXXK , Ovg
8t(]yQ€) 53(7 { [QE('UI" _ 'U{c/t) q ]]y a p } - Ty (tklaxl + q) = ().
(3.1.16)
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3.1.2.7  The balance of entropy This balance is a representation of the
2"4 Thermodynamic law. It will be useful for “validating” the constitutive
relations. It is not an equality, but an inequality. Let s be the entropy
per unit mass. Total fluxes are (¥ = —%, where 7' is temperature. Entropy

production is nonnegative and can be determined by o = ps+ d—% (%k) —% >
0.
The local balance follows simply from 3.1.12

o 0 ok 4] oxR
0 <5, (ves) + 55 {[QS(U‘ —oy) + ?} T gk }

. . o [(¢* q
e 0)-D

3.1.2.8 Density of dissipation energy Energy dissipation is used more of-
ten then the balance entropy production as a representation of 2°4 Thermo-
dynamic law. It can be derived from entropy balance by eliminating heat
fluxes and substituting internal energy balance.

First of all we need to express X(S) and for that we need to transform
flux from and into ref. configuration:

_, OyF S ) L
qk:]ylaXKQk> Qk:jy 8yk qk-

Now we can eliminate heat fluxes. We rewrite internal energy balance
3.1.16 with transformed fluxes:

o . 0 , BX% 0 g OV ~
g1 oee) g {0 (0 =) G+ @~ gk - Q=0

Now we can write the entropy production in reference configuration:

. o [1 1 0 Q
= y K———— == —m—————— K——--—>
E(5) = s+ Q7 53R (T>+T8XKQ 720

o (1
— B & K_~ [
= Pivi T HxK (T)

! 4 ) Y k k . 8XK . Lkl a’Ul
— —_— _ ., ) ou > |

Density of dissipation energy is defined by IT = T2(.5):

0< N =TE(5)=
J 1 0
Y K—_ - D .
Tpjys +TQ K (T> 5 (Jype)

8 . (9XK . 81)1
~giew e (0 — Vet
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I'e

pfs

i

Fi1G. 3.2.3. Domain notation

3.2 General model of material system

Now we can formulate equations describing the solid deformation and the
fluid motion. The idea of Fluid Structure Interaction in this model is very
clear. The deformation of solid material will be described by the Lagrange
method and the motion generated by deformation will be ’the arbitrary’
motion of control volume in the ALE coordinates used for fluid motion
description.

Remark 3.1. Concerning notation Now we are going to describe the motion
and deformation in the solid and fluid parts of our body. Let Q0 be the body
- you can imagine a vessel filled with blood (see 3.2.3). For brevity we use
the upper index * behind a letter to describe the solid part and ' for the fluid
part and we use lower index ; behind a letter to desribe actual configuration.
We cannot forget to notate the boundary : I''® is the boundary connecting
the fluid and solid parts, I'j means input, I'p output and the remaining part
will be noted as I'g.

3.2.1 Motion and deformation

This will be the basis of our model. The deformation of the solid part will
be described by the mapping

8 x [0,T) — 825,

We calculate the displacement vector @®, which will be unknown in our
model, from the relation

i(X,t) =2(X,t) - X.
The velocity vector 0° is the time change of the position vector

ey o (Xt
(X, t) = ————-——(at )

The main unknown in the fluid part will be the velocity field "/ defined in
Of
oz, t) : F x [0,T] — R®.

For the description of change of domain 2/ we introduce the mapping ¥
7: 0 x[0,T] — Qf,

which will be useful for defining the displacement vector «/ in Qf
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g

i'(X,t) = g(X,t) - X. (3.2.17)

The first paragraph in Chapter 3.2 reveals the main idea of our model. A
part of this paragraph can be precisely formulated by prescribing properties
for the virtual mapping

J(X,t)=2(X,t) WX t) el x[0,7T) (3.2.18)

The second consequence of that paragraph concerns the velocity. Our
model aims to describe the viscous flow interacting with the solid material.
Remember what does the viscous assumption mean for the velocity boun-
dary condition. Sometimes it is called “no slip”, it prescribes zero velocity
on solid boundary. Next, imagine that we are moving the solid boundary
with displacement «* and with velocity . It is clear, that we have to “copy”
this motion in fluid, which directly leads to the interacting version of the
non-slip boundary condition

i = on F{S.
When we denote Q = Q% U Qf we can define new fields

a@:0Qx[0,T] — R
v €)X [0,T]—>R3,

by the following prescription

L I > in §2°

v ¢/ in
\

. I @ in §2°

4= \ i in Q7.

The consequence of the relations 3.2.17 and 3.2.18 is the continuity across
the boundary I'/*.

But the unification in not over yet. We can continue by introducing only
one deformation gradient F' and its determinant j

F =1+ Vuq, (3.2.19)
j =det F. (3.2.20)

Now we can start formulating the equations describing the behavior of
unknown functions. Unknowns in this model are (besides @,7): density /”, /_)f,
temperature 7', 7"/, dissipative energy I1°, I1/ internal energy -* and -/.

Equations describing the solid part will be in Lagrange form, so the
balance law can be simplified as previously shown on the example with

mass balance
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(
(It
The linear momentum balance follows

(p")) = 0. (3.2.21)

UUPRENPR . Rt
PG ) o = 0. (3.2.22)

Balance of internal energy

S (‘2 S Y I I S E ‘
(T ) - s (7 Q) (ke Q) — 0. (3.2.23)

And the remaining balance is the dissipative energy balance

(2/\ 07T A (-)(‘,
s gXx»h ONNK -

T p" (178" — %) > (), (3.2.24)
The equation describing grid deformation is also very important. In the
solid part it is a natural definition of velocity
o'
— =, (3.2.25)
Ot
A more complicated situation arises in the fluid part. We have already
said that we use the ALE coordinates here. Now we must state what will be
“the arbitrary” position vector exactly. We know, that it must correspond
to the deformation of the solid part, therefore we use time derivative of
displacement #. Into the balance law we will put a substitution using 3.2.25.
This mapping transforms the equations into referential configuration, which
is the only one in which it is possible to write computable formulas.
In this way the balance of mass can be expressed as

() - () Jub\NT oXh
= (p'j) - R H/) (:,, ry >J I } . (3.2.26)

The balance of linear momentum will be

o O ([ ;. (5 O 1 oXh L
~ (") + —— Fpi (o — Z— ) b 22— 8 g/ =,
o )+ GxT 1{” ' (' 1 > ] S [

(3.2.27)

The balance of internal energy is formally more complicated

o (. (v . o R
(= 5}- <_/Q/ (-;)— } 5-/)> s 4 (g-/!', f (/)
0 N i ; ] OXN
1 ' / — = Koo o f/s/ ) A . -
G HQ <2 - ) <’ (')f> S ]’ O }

The most complicated formula in the whole work is the dissipative energy
in fluid, if you don’t believe it, continue reading
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| ) o ) [ ( f* %
0 < '/‘f‘(_('/'/),/'\vf) LT ( Iif,\f (("v )il )ll()‘\ \1

M Ok J

(‘ (./'i”f ;f) ( fi); , <{'k )i > I ( \ 1

; (M .t I
e U 1 O,
[.f(t)/\‘ — - | .//;./_;;.
AR [ J.rh

The remaining equation is the grid deformation. Here we can prescribe
any equation, which can be easily solved, because there is no physical prin-
ciple behind this. We choose the Laplace equation

dut Ry
At ONTONT

As you can easily calculate we have 12 unknown functions and only 10
equations. It still remains to prescribe the terms ¢t and P. This is all done
by closing equations and constitutive relations. We deal with it in the next
chapter.

(3.2.28)

Remark 3.2 (About pressure). You might have noticed there is no pres-
sure tn the list of unknowns. But this quantity is the only one which is 1m-
portant for technicians or doctors. Pressure p* and p/ comes into the model
through constitutive relations (e.g. Cauchy stress tensor t = t(p,...)). For
more detatled description, refer to Chapter3.3.

3.2.2 Closing equations

For our purposes, there should be two types of closing equations. The first
one is not closing but simplification and will be stated by the assumption
that the internal energy is constant. The second one is a group of closing
relations called the state equations.

3.2.2.1 State equations This kind of equations is used for the description
of fluids or solids where they change their phase. The formulas are deri-
ved from statistical physics and they are based on detailed study of the
microscopical structure of material. We will not talk about derivation, in-
stead we recommend to the reader to read (Marsik, 1999). For completeness
we introduce

= — « — 19 ﬁ == L.
p(T,p)=-3Ka(T T)+IA((’OO 1) (3.2.29)
P2 pRT
p(T,p) = — (KZ) S Taiey (3.2.30)
p(T,p) = EFA%T- = pRT. (3.2.31)

These equations describe three phases : 3.2.29 solid materials (like steel),
3.2.30 is van der Waals equation, which can be used for the description of
fluids even in phase changes and 3.2.31 gases with temperatures high above

the condensing temperature.
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3.2.2.2  Internal energy The remaining closing equation will concern in-
ternal energy. This simply means the assumption: the internal energy de-
pends only on temperature 7',

(T =Ty) + 2 (3.2.32)
L=l (T -TY) + &7, (3.2.33)

where ¢, = (%)Q 1s specific heat.

3.3 Constitutive relations
3.3.1 Fluid Constitutive Relations

In our work the constitutive relations mean the specification of ¢/. This
formula will characterize the internal properties of fluid - dependence on
pressure, velocity, etc. For testing purposes there is a very well known model
of fluid - the Newtonian one

| . ‘ l \
t! = —pJ I+ 4 <T1” SAVENT ?li\'(l")l>, (3.3.34)

\

which assumes linear dependence, as we have discussed in the previous
chapter.

3.3.2 Constitutive Relations for Flastic Material

The characteristics of solid material is described by the First Piola-Kirchhoff
pseudo-stress tensor P, as we have already mentioned. In this general part
we only list some kinds of formulas, which are commonly used, but later
in paragraph 3.5 we will introduce full derivation under some additional
assumptions.

The prescription of P° is

O

P =—jprF "4 jor—,
J1 J L OF

(3.3.35)
where ¥ is the Helmholtz potential. It can be shown, that ¥ depends only
on the Left Cauchy-Green stress tensor C' (= F? F) and with this tensor we
can describe the real reaction of material. The dependence can be written
as U = ¥(C). We list two commonly used materials (neo-Hookean 3.3.36

and Mooney-Rivlin 3.3.37)

¥ = % (7% -1) +a (o -3), (3.3.36)
U=c;(I.—3)+c(IIc—3)—dlnj+c(j — 1)°, (3.3.37)

where I and [Io are the first and second invariants of C' and d, 3, ¢, c2
are parameters. For more information about this topic see (Marsik, 1999)

or (Humphrey, 2002).
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3.4 Simple model

It is obvious, that the general model is too complicated for any practical
use. Now we start with our simplification. There are two assumptions in
biology, which are not far from reality: isotermicity, incompressibility.

3.4.1 Consequences of assumptions

These assumptions simply mean ¢ = const. and 7" = const. The simplifi-
cation will be reflected in the equations and also in the constitutive relations.
Some of the equations can even be omitted.

3.4.2 Model formulation

Now we take the equations from the general model one by one and apply
our assumptions to them.
The balance of mass also known as the continuity equation is

0=, 1, (3.4.38)
() axn
0= — ot . 3.4.¢
The balance of linear momentum reduces to
ot 1 orh
i, (3.4.40)

dt Jor QXN

' 0 ot Ll ONh
= v St - —) =t : 3.4.41
Ot gxh { {I | Ot ) } ark (3 )

The grid deformation equation follows

Au’

— =, (3.4.42)
u' 7!

Jr  ONTONT 34.48)

The unknowns ¥, @ and p must fulfil the boundary conditions

=" on I/ (3.4.44)

i=0 only (3.4.45)

@=0 onTlp (3.4.46)

t'* =0 onl% (3.4.47)

t 7> = —t/ii/ on I (3.4.48)

=0 onl% (3.4.49)

=0 onT% (3.4.50)

§=0 onlJ (3.4.51)

-g% =0 onlY%. (3.4.52)

We have prescribed velocity on the input and on the output. There is a
free boundary condition. The various boundary conditions for velocity on

input and output are discussed in the next chapter.
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3.5 Fluid Constitutive Relations
For the fluid part we only prescribe incompressible Newtonian fluid

t/) = —p/T + p (V& + V). (3.5.53)

3.6 Constitutive Relations for Elastic Material

We promised the total derivation of P under the assumptions of isotermicity
and incompressibility. The results follow.

3.6.1 The First Piola-Kirchhoff pseudo-stress tensor

3.6.1.1 Helmholtz potential A very common method of prescribing consti-
tutive relations lies in the specification of free energy or Helmholtz potential
V. We have to use some thermodynamic basics:
Internal energy can be expressed by using the thermodynamic potential
as
e=V+Ts,

where s is entropy and T temperature.
It is obvious, that any constitutive relation must correspond to the 1%
and 2" Thermodynamic Laws, where the 2°¢ can be represented by

Theorem 3.3 (Clausius-Duhem inequality).

. a (QF Q
4 _ > () 3.6.54
E(5) = pos oXK ( T ) T~ (3.6.54)
or equivalently
dW d1 dF 1
_ s o e | e P e = DT 2 1, 3.6.55
Po ( dt ° dt ) dt T il ( )

For our purposes, the second formula will be very important. We exclude
heat fluxes, due to the isotermicity assumption,
dW¥ rdF
00 7 + P 7 >
The equipressential axiom ensures that P and ¥ depend on all state quan-
tities. Using our assumption of isotermicity and disregarding heat fluxes,
both quantities depend on the components of F'.
Now we assume only elastic deformation (there will be an equality in 3.3
and in 3.6.56) and we use the dependence of P on the components of F' in

the derivative

0. (3.6.56)

d¥ 0V dF
dt OF dt’
which results in
ov .\ dF
el — VF.
< pap tF ) i ="

Because of the free choice of F', it is clear, that the term in brackets must
be identically equal to zero. We expressed P with respect to ¥
ov

5) O

P=p0
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3.6.1.2 Stress Energy We have shown that ¥ = V(F'), which we can use
for the description of the isothermal elastic deformation of a homogene-
ous body. Using the 1% Thermodynamic Law we can easily show, that for
1sothermal processes the stress energy W per unit mass is

0¥ (F) = W(F). (3.6.57)

3.6.1.3 Properties of ¥ It is natural to omit the dependence of ¥ on
motion. We can do this using the decomposition of the deformation gradient

F=RU, C=F"F=U%sV¥=y(C),

where R is pure rotation and U is displacement. It remains to derive

ov ov ow .
=2—F" h P=2—FT
oFT ~ “acT T oC
The last assumption, which helps us to specify the final form of the
constitutive relation, is incompressibility. Assume det F' = 1 and therefore
det C' = 1. We introduce p as the Lagrange multiplier. We get the following
dependence

~

U = V(F) - p(detF — 1),
and in 3.6.56 we get

ov , dF _ dp
— g — + FT4plr)— 4 P — 1) e = V(F.p).
( po(?F FobJ P) dt polJ )dt 0 (F.p)

Because F' and p are chosen arbitrarily, we get

oV R .
P=po<a—ﬂ-—JPF 1>, j=1}

3.6.1.4 Application to constitutive relations Now we have to take care
of g—%, which is in the balance of linear momentum in the form of Div PT.
Using the facts in the last paragraph we can write

ov oW
T _ L pF T = i T L g = —ipF~T 4 2{F——
P _p0< pF ) JpF +jp8F JpF~" + 245 F 3C

where gy was absorbed into the pressure p.

In the main constitutive relations it remains to specify W and compute
%%/—. For example if we use the Mooney-Rivlin material, and we use simplified
3.3.37, we obtain

W=01(IC—3)+02(110—3).

For the computation of the derivative term %% we use the Caley-Hamilton
theorem (tensor fulfils its own characteristic polynom)
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~C? 4+ IcC? - IIoC + I11cI = 0. (3.6.58)
If we multiply 3.6.58 by C~! and apply the trace operator tr, we get
tr(C?) — Ictr(C) + o tr(I) = [11otr(C7Y).

Therefore, (using the definition of the second invariant), it is obvious that

_ Ic
tr(C™ 1) = —.
{C) = T

If we now differentiate 3.6.58 with respect to C' and use the definitions of
tensor’s invariants, we get the following formulas

dlc .
2 3.6.99
,0C ! (30.59)
IIC T . A
- v — \3.6.60
Be e .
C T a0 0
=111 3.6.61
5C cC ( )

We are interested in the %_vé/_ term, but this is very simple now

oW
3C = il + o tr(C)I — o C.
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MATHEMATICAL PROBLEM FORMULATION

Now we have to formulate our problem more precisely from the mathe-
matical point of view. We wish to prepare it for numerical computations,
so we will start with the classical formulation. Then we will prepare the di-
mensionless version and at the end we will introduce the weak formulation.

We recall equations from last chapter, but for brevity we change notation
from Cartesian components to vector.

4.1 Classical formulation

4.1.1 Model equations

We take Newtonian fluid and elastic material and then the main problem
will be formulated as follows :

Problem 4.1. Find @,0,p%,p’ to satisfy

QE_ U wn S
ot | Ai in )

I_'l_,</)\/\) m Q°
O - ¢) / " ‘ - / P + ‘Nl —~ '/’\) p f
=(p'j) + Div (/*‘ =S F ) il
ov _ [-LDivpP! - F in Q°
8t | —(VAE - F T LDivgt F )~ F in M

with 1nitial conditions

and boundary conditions

7= U on F{,
u=0 on FI; FO;
P=10 onI'y, T'p,
o =
57% = [ on Fé,
t8ﬁ=0 on FE,

with constitutive relations
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t/) = —p/ I+ pu(Vi+ v'o),
s ow
Pl = —jpFT 4+ 2jF—
JD J oC
Remark 4.2 (About fluid constitutive relations). Stress tensor !/,
which we prescribed, must be transformed into reference configuration and
simplified using div v = 0. We write

Div(jt! F~7) = Div (—jp/ F " + ju (Vi+ Vi) F'FT)
= Div (—jpfF'T) + Div (j/LV'UF_lF_T)
+ Div (juVIoF'F~T),

where the underlined term vanishes, because of

0 an 0 v
;; (3931') = % (div ).

0

4.1.2 Dimensionless formulation

For numeric computation it is suitable to reformulate our problem to a
dimensionaless formulation. You can easily imagine, that to compute i.e.
sin(10 kg) is not possible. Therefore we introduce the characteristic length
L* and velocity V*. We multiply all quantities by their characteristic versi-
ons. When we need to multiply by density, we choose o/. We arrive to the
following formulas

1 1
U =1 T = ’_:"——
(9 _V* €T JL*
u
7= —
L* "
Y =po: b=t
V*2 L*
ts/ —T 1 ﬁ — L
pr*z ! nd
1 1
/ = W/ — W ¥
1 'u/)fV*L* pr*2

Now we must compute all quantities without primes and substitute them
into Problem 4.1. It is practical to denote primed quantities as non primed.

After that we have a new
Problem 4.3. Find @,0,p°,p/ to satisfy the following:

Equations relevant to §2° :

il

=5 4.1.1
o = (4.1.1)
() 'f","j — l (4'1'2)
v 1 P HH') e

s e =t F L F - F 4.1.3
TRT Div < P Y] ile ( )
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Equations relevant to Q7

VT

T (4.1.4)
0 =Div (j¢F ') (4.1.5)
v . i

vr , n - VU .
p Ve (F ) </ Y ) (4.1.6)

1 . .
t=Div (- jp' F "y uNCF 'FE Y O F
J

with initial and boundary conditions from Problem 4.1

4.2 Weak formulation

We multiply equations in Problem 4.3 by test functions 6',7),{, integrate
over the domain ! and over the time interval [0,7]. We use the Green

theorem on some terms. For the correctness of integral forms we will as-

sume 2 € L?((0,T] x ) and assume external forces F has to be from

L? go, T, (W12

or the formulation of the problem corresponding to Problem 4.3 we need
to specify propertles of test functions ¢ and f with respect to the boundary.
We prescribe ¢ = 0 on I';,I'p and f =0 on I'; and I';,. We provide a more

precise discussion later in Chapter 4.4.
Now we integrate the equations of Problem 4.3 and we get

T p ' p

/ /— ¢dvdt = / / ¢ CdVdt = / / Vi - VdVdt  (4.2.7)
0 JO JO JQS

f) = / / g —1)-ndVdt + / / Div (jo#F ") -1 dVdt (4.2.8)

. . 5
/ (j/ f—)— '>dt.+/ /(—I- E)ydt = (4.2.9)
() 0

i
/ / jpF T VEAVdt
0 JAO
’/“//z —./F((‘(L VEdVdt
[ e e G dava
B // / JpVER VeVt
Jo Jaf

A ~ ) Zh Lo
— / </ 'ff, {> dt — / <}.F £> dt.
J0 v

il
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For the problem formulation we have to define the following function
spaces

U={aeL®I W)}, d=0o0nl;Iu},
={p e L*(1,L*(Q))},
V={te L*(I,[W"3Q)]}) n L=, [L*())*), 5 =0 on [';,[')}

and have to define the space for test functions
T =C>([0,T] x Q).

For the energy estimates, which are required for the spaces definitions,
please see (Hron, 2001).

Now we have everything ready for variational problem formulation.
Problem 4.4. Find (d,p,v — v;) € U x P x V, such that equations 4.2.7,
4.2.8, 4.2.9 are satisfied for all ($n,€) € (T]® x T x [T)°.

4.3 What does the model remind you of?

At first glance Problem 4.4 is too complicated. But after some simplification
we see, that it is nothing else than deformed Navier-Stokes. Now try to forget
the interaction terms. It means @ = 0 and so F = I, j = 1. We omit 4.2.7
and see, what is left.

The equation 4.2.8 will change into

<
0= / / Div () - npdVdt. (4.3.10)
JOo o JQf

The equation 4.2.9 will be

i T :
/ <” >(|r—/ / p- VEAVdL (4.3.11)
Jo Ot /0 O/
ror
- /< . V)ie dVdt

/ / AR VAV,

The system of equations 4.3.10 and 4.3.11 is the well-known Navier-
Stokes. We can use a lot of techniques for solving our problem with methods
normally used for NS.

4.4 Boundary Conditions

We formulated our problem for one kind of input/output boundary condi-
tions. But there are more types, which we can prescrlbe We omitted 4 now

and we will talk only about velocity ¢ /" and pressure /.
This chapter is about the possible BCs in fluid. For brevity we will talk

about equations 4.3.10 and 4.3.11 instead of 4.2.8 and 4.2.9.
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4.4.1 Velocity on the input

The velocity on the input can be prescribed using the Dirichlet boundary
condition. We used this technique in our formulation. We can prescribe any
values, but it is always required to relate to some physical background. We
have viscous flow, therefore on solid boundary the velocity has zero value.
Hence it is natural to copy this in the prescription of velocity on the input.

A well known example is Poisson’s flow (see (Brdicka, 2000)). We use
this for a numerical experiment, which can be found in Chapter 5.3. For the
flow in a tube the velocity vector field has a parabolic profile.

4.4.2 Velocity on the output
The velocity on the output can be prescribed in the same way as the input
one. It means using the Dirichlet condition. The change for our formulation
will be as follows.

In boundary conditions

Uv=v0 only
i = 'U]O on F(),

where U7p is defined as

. v; only
Vio = \ «
vo on ['p.

In the definition of function spaces
V = {7 e LXI, [W"(Q)]) N Lo(, [L*(S%)]*),7 = 0 on I, Lo}

And in the variational formulation

Find (’[L’,p,f)’- 610) ceUxPxV.

In our formulation we used a different type of BC. It is called the free
boundary prescription and it is represented by Neumann condition. It means
the prescription of behavior of velocity derivative with respect to the outer
normal. If we prescribe zero value, it means no change in the outer direction

- free outflow.
Now we take care about this condition in greater detail. If we change from

classical formulation into variational, we need to use the Green formula it
the following way

/(—u&ﬁ—&—Vp-F(ﬁ-V)U)'gdU:

Q

:/ <pﬁ—,ugg> -de+/VG-V{—pdivf+(U-V)z7-{dv,
I'o a’n N

where the boundary condition is

5=
piit — “5‘;; — 0. (4.4.12)
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4.4.3 Flow by pressure gradient

But there is another way how to start the motion in a tube. We will not
prescribe velocity on input nor output. Look carefully on condition 4.4.12.
[f we imagine the term %; = 0, we can prescribe pressure p on the boundary.
If we prescribe higher value of pressure on input and lower value on output
the flow starts in the direction of the pressure gradient.

Changes in the formulation will be as follows.

In the boundary conditions

. ou
P — [ o 0.

In function spaces definition
V = {0e L*I,[W"3(Q)*) n L1, [L*(SW)]°) }-

And in variational formulation
Find (d,p,v) € U x P x V.
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NUMERICAL METHOD

The main target of this work are numerical experiments based on Pro-
blem 4.4. For this we must discretize the problem. The discretization will
be in time and in space. To obtain the solution we wrote a program, which
is algorithmicaly equivalent to the numerical method described below. We
also need space description - the meshes. At the end of the chapter we give
simple a paragraph about getting meshes for fluid-structure interaction pro-
blems.

5.1 Problem Discretization

We start with time discretization and then we formulate space discretization
using the FEM method.

5.1.1 Twme discretization

For the time discretization we use the implicit Euler method and semi im-

plicit Crank-Nicholson method. We use the Crank-Nicholson method for the

main computations but it has a disadvantage: it is only conditionally stable.
We have the time interval (0,7"). We divide it into n subintervals I, =

[t", t"*1] with constant time step k, = t"*1 — ¢".

Remark 5.1 (About notation). With superscript ™ we denote the quan-

tity on time level t™.

We rewrite Problem 4.4 for the time interval [t",¢"*!] and we approxi-
mate the time derivation %f by central differences,

af _ fn+1 _ fn
o~k

or by higher order

af _ 3fn+1 _4fn+fn-—1
ot 2k, '

We approximate time integrals using the Newton-Cotes formulas, espe-
cially by the trapezoidal rule (6 = 1)

t’n+1

/t Fdt e (1 = ) {05 + (1 0) F(E)

n

Remark 5.2 (Notation).

F* =14 Vu" g™ = det ™
(a,b); = ./;M a-bdV o (a,b) = [, a-bdV  (a,b) = fQ a-bdV
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5.1.1.1  Crank-Nicholson scheme To obtain the Crank-Nicolson scheme
we will put 8 = 0.5 into the following scheme and Problem 4.4 will take
following form.

Grid deformation equation 4.2.7

0 =(a""", <) — (a"9) (5.1.1)
. 9}“"(( 1 1 ) . (1 . 9)1\:71“?“.\)_\
+ 0k, (\“u"" V) + (1= 0)ka(Vi". Vo) .

We consider the continuity equation 4.2.8 implicitly to prevent numerical
oscillations. This effect is known from the NS problem.
We use the Piola identity in (), to rewrite Div (jz')'F"T) = jV7- F !,

0 == <./'u-+l l//)\+ <./'I/.]\—'('n.l (l‘m»l) ]_I/>/, (512)
The linear momentum equation 4.2.9

o= (1. - (1) 613

+ (JiruAl(—;n»l g‘) , _ < am &,,) /'

— 'l' -

—k' ( n«l)n l(Frul) Iv£ /—kn<,/”'] :/+1(an) V{)

_0<vwr ] (FIHI)' l ((771*] o [711) \54)./. . (1_9)< ‘-*II(FII) 1 (!7”'1 B (7” ‘

L OW
oC

+9k (2/”’[F!I~
‘ ~u.lv~¢u'l Fu']‘ I F11~| '/‘.v{'
/i (./ C(ETT)(FT) k)f

oW
( _ N u____
"\—‘)Hl 0>k”< el V“)]\

+ 0k, .
+/I </HV‘_’H <FI)) l /FH) Y‘ )
f

+(1—9)kn{(./”"‘w""(F" 1yt )/+( T (FT) 1F”.{>f}
=0k () FE) = (U= k() F )

/
— 0k (1) PG —-(I—H)kn<d_/“]~"”',£>s.

&

5.1.1.2 Implicit Euler scheme 'The Problem 4.4 will take following form

0= p) — (W @) =k {(0"7 )} + ka { (V" .Ve)},  (5.14)

0 = (J-n,nrl 1. ’/)S 4+ (_]',HIV(’”; 1 (],w»* l) ~1 I}) /{, (515)
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O _ < j‘/.” o1 (_““ ‘ l. i.‘> o ( ;./'u('.'r/. iq> (516)
n ('/.,/ : 1(‘.‘1/ ' ]. i‘> — (yl/'”l"’/. i)
f ‘ f

— k(" () ".Ti‘),“kn(/”‘ p () ee)
(vr"" (F") ‘(ff”“ | >> ,_
+kn{(/“"\‘""‘ (F") 'f"’"-i'),}
kn{(/ L ]i>/}
({0 )

5.1.2  Space discretization

In the next step we will prepare the discretization in space using the Finite
Element Method. We will approximate the domain {2 by the polyhedric
domain 2, which can be divided into tetrahedrons. By 7; we will denote
the set of tetrahedrons covering §2,. We will assume the regularity of 7,
which means that every two elements are disjoint or have a common face,
edge or point. By T' we will denote the reference element (see Figure 5.1.1
for details).

The specificity of our approach is in computing the F'S interaction simul-
taneously, in the sense of using one velocity and one displacement vector for
the whole domain. Now there is the question of what kind of elements we will
use for pressure, velocity and displacement. As we have written in Chapter
4.3, our system has certain similarities with the Navier-Stokes system. The-
refore we will have to use a stable pair of pressure/velocity elements. The
stability arguments are based on the solenoidal velocity spaces (spaces with
zero divergence), which physically means incompressibility. But our solid
material is incompressible too, so we can use the same kind of elements for
displacement as for velocity.

One stable combination of elements on tetrahedrons is P, P;. We will
describe it more precisely.

5.1.2.1 P, element This element means approximation by a continuous
piecewise linear function. In the words of spaces it will be

Ph = {.p.z & CO(Qh)s : Bi[KiE P](Kz) VKZ c 77;}
Py

span{z_yl, e Bn}’ dim P, =n , where n is the number of vertices.
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[-1,-1,1]

=1, == IR

[-1,1,-1]

F1G. 5.1.1. Referential element 7"

If we use p, as space base we can write pressure p; as

We will use the affine equivalence for practical computation. The local
basis on the reference element can be derived from barycentrical coordinates

(in this case the base functions are barycentrical coordinates - we will denote
them by A;).

_CL'1+CI?2+.’173+1

V.
Fl@) = dol@) = 21
(@) = Xa(@) = 2
Fu@) = (@) = 2

5.1.2.2 P, element In this case the approximation will by done by a se-
cond order polynom on each element.
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Vi = {T; € [CH0)]%; 8, k.€ [P2(K)) VK, € Ty}
.. »/wn} Iwi(Qj) - 6ii

dim W), = n, where n is the number of vertices

W), = span{wy, .

y e
.

Vh = Spa‘n{gwl’ O) 0)7 (Oa wr, O)a (0’ Oa (wl) ) (07 0’ /w")’ Q37l+1’ '

v
Y

1<)

2 l—73

dim Vh =m

1 < 3n
n<it<m

U; . .. correspond to vertices
U, ... correspond to mid-edges

The velocity U;, can be written in the basis v, as

m
Uy = E CkUp

k=1

and the displacement in a similar way

m
Up = E bkuh-
k=1

39

v ’-’lzﬂl}

(5.1.7)

(5.1.8)

The local form of base functions can be derived from barycentrical coor-

dinates, too.

f1(Z) = M(2)(2M(Z) - 1)
f2(Z) = A2(Z)(2X2(Z) — 1)
f3(Z) = A3(Z)(2A3(Z) — 1)
f4(f) = /\4(55)(2/\4(55) - 1)
fs(f) - 4/\1(5)/\2(5)
f6(Z) = 4Xa(T)A3(T)
f1(Z) = 4X3(Z) M1 (T)
f8(Z) = 4\ (Z)A\(T)
fo(Z) = 4A2(Z) A\ (T)
flo(f) = 4/\3(5)/\4(5)

Look at Fig 5.1.2 for better space view.
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/

4

Fi1G. 5.1.2. Degrees of freedom for P;,P;

5.1.2.3 Muinielement Another stable pair of element spaces is sometimes
called minielement. It is continuous P, pressure and linear velocity with
bubble function. The local basis follows

_.’E1+£E2+£L'3+1

2
£l@) = Dal@ = 20—
(@) = ho(#) = L
Fu@) = M) = 2L
f5(Z) = A (Z) A2 (T)A3(Z) Ao (7).

After time discretization we have to solve the problem on each time level.
We will approximate the spaces V,P,U on the time interval [t",t""!] in the
case of the P;,P, pair

Vi = {T, € [C'(W)])° : Tplk.€ [Po(K3)] VKi € Ty, Ty, = 0onI';,I%}
Ph = {Bz € CO(Qh) g Ei[f(ie Pl(Kz) \V/Kz = 7;;}
ﬁh = {4, € [C’l(ﬂh)]?’ Uy [k, € [PQ(K,-)]3 VK; € T, Uy, = 0 on 'y, Tot.

Let us denote by v} the approximation of ¥(t,), similarly by «} the
approximation of %(¢,,) and finally by p}' the approximation of p(t,).

Remark 5.3 (INotation).
Fr=14Vd;y j*=detF"

We will insert the basis v},,p, 4, into 5.1.1,5.1.2,5.1.3 as test functions
and obtain a nonlinear algebraic set of equations
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0 (17”2+1 ah) (l-[,hl?—@h) (519)
- Qk { I f'/i/, ).\} - (1 - g)kn {('lhﬂh)*}

+t9kn{ T(/;I'I.VL/,,)f} +(1=0) {(Na;,. Ny, }

—h

[ = <./ - 1, ./_)h>\ -+ (\'/"" AUTERN AR | ) >/_, (5.1.10)

0: ())/u l—’;:*l :/) ())/”(_,"’; _("_/I)'\ (5111)
+( ”'l{b’/,,)’I _‘) .”—‘/,),‘:h>_j
k(7 () V) k(0 () )
—0 (W;: E) ) )
f
— (=) (Vi (F) (@ @) ),

n-+1 gon-+ 1(” . ML u(_”_
+0{<2/ F 5 .V )'\}—F(l 0)kn, {(/F 30 , Vi, h

o (i () () Tvs,)

+ 0 /

(PO P 0)

+(1- H)kn{(./"“w" (F) L)+ (v (En v';,'w:,,)/}
— (1= O)ka (/" 7.1 )
f /

0 kn(’f,/"'"' | F 1.L—;h>5 _ (1 — H)kn()"j"fw.ﬁ/,)ﬁ,

Ok, ( lagkangl f)

where T, and p;, will be substituted by @, = Sa't}, @), = SJ@, and
k k
pr = LK'p

Problem 5 4. In each time step we will have to find X = (T, @@+, pit!) €
U, x Vi, x P, satisfying system 5.1.9, 5.1.10 and 5.1.11 - shortly

-

R(X) = 0. (5.1.12)

5.2 Nonlinear solver

We will use a method from numerical optimalisation for the solution of our
nonlinear Problem 5.4. The basic task for these methods is the problem of
finding a minimum of the function F : RY — R , but after a very simple
correction can be used for the solution of nonlinear equations.

These methods can be characterized by the following algorithm:

1. Find the direction of sy (direction of decline)
2. Find «; (the step length) so that &} + ayS) is better in some sense
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3. Xkt1 = Xk + a8y

Iterate these steps until you find X* such that F(X*) < F(X) VX.

In the next part we will use the following notation: [F' is the minimalised
function, § = VF, G = V*F.

The first step of our algorithm can be performed in various ways. For
our problem we will use the Newton method, which is defined by

—p —

§i= -G 1(X)g(X).

For details about other methods see (Luksan, 2004).

Generally, the second step cannot be arbitrary. If it satisfics some condi-
tions, at least local convergence can be proved.
Theorem 5.5. The step length oy, @ € N, satisfies the Wolfe condition, if
there exist numbers 0 < € < 1/2 and €; < €3 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>