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NOTATION 

Bold typeset means tensor, vectors are denoted by arrow 

C Left Cauchy-Green stress tensor 
Cv specific heat 
ci, c2 parameters for Mooney-Rivling material 
dv, dv11 , dVfundamental volume ... 
dii, dA fundamental surf ace 
ei basis in JRN 
I Indentity 
F def ormation gradient 
i', j external f orces 
kn time step 
L, Total quantity fiux 
m Body mass 
M interna! production of angular momentum 
řiv unit outer norma! 
p pressure 
P Total quantity production 
P 1 st Piola-Kirchhoff stress tensor 

Eic 
q,Q -q,Q 
R 
s, s 
t 
T 
t ... 
u 
u ... 
Y.Jc .... v ... 
vk 
Vo 
V{t) 

V(t) 

w 
.... 
X 

.... 

FE basis functions 
heat flux 
interna! energy production 
Rotation part of deformation gradient 
Entropy 
time 
Temperature 
Cauchy stress tensor 
displacement 
Displacement part of deformation gradient 
FE basis functions 
velocity 
FE basis functions 
Referential volume 
Control volume 
Actual volume 
Free Energy 
deformation 

X material point in inital state 
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y arbitrary deforn1ation 

(3 density paramater 
r domain boundary 
E interna! energy 
T/ test functions 
e time integration pararneter 
A barycentrical coordinates 
µ viscosity -~ test functions 
II Dissipation energy 
{} Density 
( test functions 
<I>, rp General quantity 
\l! Helmholtz potential 
n Domain 



INTRODUCTION 

Mathematical modeling is a branch of math 111 tic d aling with th 
description and analysis of many processes around u . It tri to ch ra t riz 
these processes in other ways than experimental, and ther for i u ful 
mainly in branches where experimental knowledge can be destructiv . The 
application of this modeling approach in bio-engineering is one of many with 
very good results. 

The urgency of studying the human cardiovascular system is quite ap­
parent from the fact, that a great percentage of people of the western civili­
zation die of cardiovascular diseases. A good model of blood flow in arteries 
could help physicians to reveal arteriosclerosis, warn patients of the possible 
risk of heart attack, or help with the treatment of collapsible brain arteries. 

There are lot of problems connected with flow in the human body. They 
include many effects and interactions (mechanical, chemical, electrical). The 
journey to a model reasonably close to reality will probably be very long 
and difficult. In our work we will concentrate on the interaction of the 
velocity field with an elastic body, which seems to be the most essential in 
the description of artery flow. 

There exist many diffcrent ways to characterize this problem. Some of 
them reduce the problem to the description of the artery wall, as in (Štem­
bera, 2003). This problem is formulated as axially symmetric and the result 
is a one dimensional description of the deformation of the artery wall by 
the pulsating flowing fluid. The other models try to decompose the problem 
into two differcnt parts: the flowing fluid and elastic deformation of the wall. 
Both parts are treated separately with well known and well tested methods, 
and the problem is solved by moving from one part to the other with each 
iteration. This approach sometimes has problems with the description of 
the interacting boundary. It is common in technical practice to combine 
two commercial programs together. 

In our work, we will introduce a different approach. From the beginning 
the problem is formulated on a domain including the fluid and solid parts 
and is described by equations covering the deformation and velocity fields. 
This approach can be found e.g. in the work of (Hron, 2001). It is relatively 
difficult to derive this method because it has to overcome the differences 
between the description of the flowing fluid ( usually using the Euler cha­
racterization) and the solid deformation (Lagrange description). 

In our work we will derive the most general model of fiuid-structure 
interaction, which we shall later simplify by adding two assumptions ( well 
accepted in biology) of incompressibility and isotermicity. Unfortunately the 
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problem is too complicated for us to giv any n lytic l prop rt · 11 te d 
of that we will try to give so1ne nurnerical r ult . W will try to c tch m ny 
effects using 3D unstructured meshes. 
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ANATOMY 

From the thermodynamic point of view, th hum i body is n op n 
system. It consists of many small elen1ents ( cells) and it int ract with th 
environment (i.e. exchange of matter and energy between the body and th 
environment). It is an organism, which transforms the energy xtract d frorn 
food to other forms, such a.s mechanical or mental work. Th body con i t 
of great amounts of cells ( osteocytes, myocytes, ganglions, tc.), which mu t 
be nourished and the products of their metabolism must be drained. In the 
body of mammals this function is ensured by the cardiovascular system - a 
system of channels, which transports blood through out the whole body. 
2.1 Cardiovascular system 

The cardiovascular system (CVS) is a closed system of pipes, in which the 
blood flows. This system is powered by the heart, which is literally a pump, 
pumping the blood through the whole system. We may distinguish two types 
of pipes, or blood channels - arteries, which distribute the blood from the 
heart to the body, and veins, which convey the blood back from the body 
to the heart. 

2.2 The heart 

We have already pointed out that the heart is the driving organ of the 
whole CVS. Now let us describe its function in a more detailed way. The 
heart consists of three main parts: myocardium, which is the centra! layer, 
wrapped by endocardium and epicardium. The size of the heart depends 
on the weight and height of the person - it is approximately 280-340 g for 
men and 230-280 g for women. There are four hollows in the myocardium 
- left and right atrium and left and right ventricle. Respective atriums and 
ventricles are detached by aortic valves - there is the tricuspid valve between 
the right atrium and the right ventricle, and the mitral valve between the 
left ventricle and the left atrium. On the output of the right atrium there is 
the pulmonary semilunar valve, on the left atrium output there is the aortic 
semilunar valve. The heart is controlled by electrical impulses, which cause 
rhythmical contractions of the myocardium, where one contraction is one 
pulse. The amount of pulses per minute is called the heart frequency, which 
is normally 60-100 pulses per minute. 

Over the course or the heart cycle two periods alternate: 
Systole - a contraction of myocardium, which causes the blood to flow 

out of the heart 
Diastole - a relaxation of myocardium, which causes the heart to fill with 

blood. 
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Tahle 2.2.1 Systolic and diastolic pressure. B ecause oj historical reasons 
the pressure is usually given in Torrs, 1 Torr == 133 Pa 

segment systolic pressure [Torr] diastolic pressure [Torr] 
right atrium 8 2 
right ventricle 15-30 0-8 
pulmonary artery 10-30 5-15 
left atrium 12 2 
left ventricles 85 - 150 O - 1 O 
aorta 85-150 60-90 

The heart cycle takes approximately 0.6-0.7 s, from which systole takes 
approxin1ately 0.35 s and diastole 0.45 s. In normal circumstances the heart 
transfers approximately 5-7.5 1 of blood per minute. The systolic and di­
astolic pressure are very important quantities used to describe the function 
of the heart, see the Table 2.2.1. 

The heart cycle consists of five steps: 
1. Systole of the atriums - A small amount of blood is forced to the ven­

tricles, which were filled passively before. 
2. Tensoidal systole of the ventricles - By that contraction the pressure 

in the ventricle increases, until the diastolic pressure in the artery is reached. 
The tricuspid and mitral valves are closing, while the output valves are 
opening. The blood is flowing from the heart into the body. 

3. Systole of the ventricles - The volume of the ventricles reduces consi­
derably and the output valves stay open. 

4. Diastole of the ventricles - The pressure decreases rapidly and the vo­
lume changes. When the pressure reaches the diastolic level, the output 
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FIG. 2.2.2. Heart cycle 

valves close. The pressure in the ventricle decreases further until it r a­
ches the pressure level at atriums, causing valves between the atriums and 
ventricles to open. 

5. Passive filling - The blood is flowing into the heart spontaneously. 
The complete course of the cycle is shown at Fig. 2.2.2. 

2.3 The arteries 

The blood is streaming from the heart by two arteries. One of them is the 
pulmonary artery leading from the right ventricle, and the other is aorta, 
leading from the left ventricle. The heart itself is supplied with blood by 
three coronary arteries, which detach directly from the aorta. The aorta is 
later slitted into the Common carotid, Left subclarion artery, Thoratic aorta 
and Aortic arch. The artery diameter is decreased by each division. This 
part of CVS is known as the high pressure part, for the blood is transported 
here by pressure strokes. The artery is conformable to this transport regime 
by its interna! structure. At Fig. 2.3.3 we may see three layers, forming 
the artery wall. These layers are rnade of elastic material, which allows the 
actual volume of the artery to increase as the pressure stroke passes. 

The arteries are further divided into arterioles. The parameters of the 
main arteries are noted in Tahle 2.2.1. 

The coronary arterioles suppply oxygenated blood up to the individua! 
cells, so it is obvious that they are very small. Therefore we no longer speak 
about flow, but rather about passive transport, for the arteriole is smaller 
in diameter than the transported molecule. We shall not consider this type 
of transport any further. 

2.3.1 Remodelation 

Every living tissue has the ability of persistent change and adaptation to 
the external condi tions ( the so-called remodelation). This property is partly 
enabled by the interaction ( exchange of matter and energy) with environ­
ment. This interaction leads either to the preservation of the physiological 
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The list oj arteries and their parameters 

length [cm) inner diameter [cm] wall thickn ss [cm] 
4 1.45 0.163 

8.9 0.37 0.063 
11.8 0.15 0.042 
2.0 1.12 0.132 
3.4 0.42 0.067 
3.9 1.07 0.127 
5.2 1.0 0.120 

properties or to their damage and malfunction. The examination of those 
properties is not possible without considering the dynamic effects of flowing 
blood. That is the reason for adding a model of mater exchange to the 
description of the artery wall in the next version of our model. 

2.4 The veins 

The blood with low oxygen volume and enriched by C02 is drained away 
from the cells by the venues, which later merge into veins. The master vein 
leads this blood into the right heart atrium. The structure of the vein is 
shown at Fig. 2.4.4. Because we are interested in the blood flow in the 
arteries, we shall not describe the veins any further. 

2.5 The blood 

Now let us briefly mention some basic facts concerning human blood, espe­
cially its composition and properties describing its characteristics a.s a fluid. 
Blood is a concoction of leukocytes, erythrocytes, thrombocytes and blood 
plasma, which consists mainly of proteins. The erythrocytes are elements 
with approximately 8µm in diameter and form the biggest part of blood 
in percentage terms (approx. 5.106 cells per 1 mm3). These elements could 
be deformed due to shear stress. They represents approx. 953 of all blood 
elements. On the other hand there are much less leukocytes in human blood 
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FIG. 2.4.4. Vein 

- approx. 1 or 2 per 1000 erythrocytes. There are approx. 50-100 thrombo­
cytes per 1000 erythrocytes, but their size is only 2 to 4 µni and at norma! 
flow they can barely influence the blood properties. 

The basic model describing the fluid from a mechanical point of view is 
the so-called Newton fluid. This theory assurnes linear dependency of shear 
stress on shear velocity. It is expressed by the following formula (for brevity 
we use lD approximation): 

dv . 
T = TJ dt = TJ{. 

The blood belogs to non-Newton fluids (that means the dependency of 
shear stress on shear velocity is non-linear, r; in not a constant) and its 
rheological properties are still a subject of intensive research. It turns out 
that to describe all properties of blood as a whole is a rather complicated 
task. This is true because its properties vary significantly with shear velocity 
(see Fig. 2.5.5). It is shown there that for i' > 100 blood behaves almost like 
a Newton fluid, but for i' << 100 its behavior is significantly different. This is 
because at lower velocities its properties as a concoction are significant and 
different mechanical properties of respective elements begin to show. Let 
us mention the Casson's rheological model as an example of an empirical 
model, which approximates well the behavior of blood at lower speeds: 

T = a2~ + 2a~ + b. 

This model is more suitable for the description of flow in blood veins, other 
applications of this model are subject to debates ((J. Valenta et al„ 1995)). 
Because we shall consider the flow in big arteries, where big values of shear 
velocity are reached due to the pulse flow, we shall use the Newton model 
to describe the behavior of blood there. 

2.6 Summary 

In this chapter we have presented a rough insight into the anatomy of CVS, 
especially regarding the structure and function of the heart and the arteries. 
For computation purposes used in this work we have chosen the artery called 
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FIG. 2.6.6. Carotid in schematic view 

carotid. In simplified form we may say we are interested in the flow of blood 
an in elastic pipe 89 mm long, with inner diameter 3.7 mm and wall thickness 
0.63 mm, as shown at the Fig. 2.6.6. 

The pipe changes its profile in dependence on the flow. The profile copies 
the pressure stroke caused by the contraction of myocardium. 
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PHYSICAL PROBLEM FORMULATION 

In this chapter we will formulate a general n1od 1 of fluid flowing in a 
solid tube. We will start in the most general rnanner, without any r trictive 
assumptions. Later we will use assumptions commonly us d in biology, 
mely isothermalilty and incompressibility, and we will deriv a impl r ino~ 

del, which will be used for numerical computations. 
3.1 Continuum mechanics 

First of all we have to find a way how to describe the fluid motion. Generally, 
there are two well-known principles of that description, called Lagrangian 
and Eulerian. But because our model requires a very special approach, w 
will set up another one, known as the ALE method. 

3.1.1 Motion description 

Imagine a body with volume Vo in some space. The body is free to move 
and to change its shape in time t E (O, T]. Let us chaose an arbitrary, 
but fixed configuration ( which consists of the current position and shape 
of the body). We will call it reference configuration and we will express 
the motion and deformation of the body with respect to this configuration. 
Because the configuration of the body may change in time, we can describe 
the deformation process as a sequence of configurations. 

More exactly : Let V0 E IR3 be the reference configuration of the body 
and V{t) an actual configuration ( an arbitrary configuration in time t). The 
def ormation is then defined as the map ping 

iv : Vox [O, T]--+ V(t)· 

The mapping iv depends on the choice of reference configuration. Let 
us assume that the reference configuration \Vill always be the non-deformed 

-FIG. 3.1.1. Deformation from reference state X (volume Vo) through in-
termediate state x1 (some volume 1/(1)) to actual state X(t) (actual vo-
lume V(t))· 
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state of the body denoted V0 . In the words of forn1ul w will lll th t - - -X == XV = X Vo · 

Reference positions of atomic element of the body ( also call d 1naterial 
points) will be denoted X. Their r sp cti ve actu l po itions in th p c 
are time-depen<l vectors denoted x = x( X, t) . 

Now, let us define the displacement vector fi ld u which will be us ful 
for the description of the properties of the deforn1 d body 

u(X , t) = x(X, t) - X. (3 .1.1) 

We shall also need the velocity fie ld, dcfincd as the time derivative of th 
position vector i: 

_ éJx 
v== éJt . (3.1.2) 

The most import ant property of deformation is expressed by the dej or­
mation gradient 

F = [)~ and its determinant J = det F. ax 
This newly defined quantity will be used to express the transformation 

between the reference and actual state. Let us mention the transformations 
of the fundamental surface and volume as an example: 

dv = J dV dď = F - r J dÁ. 

3.1.1.1 Lagrangian view This approach is used to describe the motion 
of objects in some space. The main idea of this inethod can be explained -as follows: chaose an arbitrary point X on the body and trace its motion 
trough the space. The resulting trajectory is then given by the mapping - -i== x(X, t), where X denotes the initial position of the point in time t == O. -The coordinates X are also called Lagrangian or material coordinates. 

The velocity of the material point is obviously given by the time deriva­
tive of its position: 

_ . ox(X, t) 
v=x=---ot (3.1.3) 

With some additional assumptions (implicit function theorem) there also 
exists an inverse mapping 

X= X(x, t), (3.1.4) 

-which allows us to derive (X, t) from (i, t). 
Because the formulas 3.1.3 and 3.1.4 are inverse, it is obvious that 

éJxi éJX1 . 

8X1 8xi = ój, 
oX1 OXi I 

8xi OXJ = 5J• 

where the tensor ff I~ is the dej ormation gradient, denoted as F - Fj. 
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-FIG. 3 .1. 2. ALE description; Material point X can be inapp d to actual 
position x using arbitrary mapping y: Vo x (O, T] --1> V(t) for de cription. 

3.1.1.2 Eulerian view Euler's method is suitable for the description of a 
variable vector field in an invariant domain. It is based on the following 
idea: chaose an arbitrary point x in the space and inspect all the element 
passing through this point in time. The coordinates xi are called Euler or 
spatial coordinates. 

Velocity in the spatial coordinates can be expressed using 3.1.4 as 

v== v(X, t) == v(X(x, t), t) == v(x, t). (3.1.5) 

-Analogically, we may transform any function f(X, t) to f (x, t) and vice -versa, where f(X, t) or f(x, t) is a function describing any property of a 
material or spatial point, respectively. 

The material derivation of the property function f in the spatial coordi­
nates can be assessed from the derivation of a composite function 

!·(- ) _ of(x, t) i(- )of(x, t) 
x,t - é) +v x,t a-· . t xi 

(3.1.6) 

3.1.1.3 ALE The ALE (Arbitrary Lagrange Euler) method is a gene­
ralization of the previously described methods. It is similar to the Euler 
description, but the inspecting point i is not fixed anymore, and is free to 
move along an arbitr ary vector y with velocity vVi == Wi. 

I t gi ves us the opport unity to establish the < ·c > 11 t rc >I \'( > l 1111 w \ ·1, w hich can 
be deformed by deformation y. The deformation is expressed with respect 
to the yi coordinate system. 

Now look at Figure 3.1.2. The body Vo is in the reference configuration, 
which rneans it is in the non-deformed state. Let us deform the body in 

-+ 

time t to the state V(t) by the deformation x == x(X, t). We will describe 
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this deformation ~sing the coordinat yst n1 (y 1 y2 y 3] oni 
formation y == y(X t) and deforming the control volurn V{t}· 
to express position 

g(X , t) == x(x t) - w( - t) 

and veloci ty 
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t d ith d 
ow v 

(3.1.7) 

ag _ _ aw () 
()t = VVi =V - fit 3.1.8 

of the material point. Of course, such important property as the deforn1 tion 
gradient cannot be omitted: 

&xi fJxi 8X1 

ay) EJx 1 fJyj · 
(3.1.9) 

Now we can try to express a material derivation of a function f in th 
yi coordinate system. The idea is similar to the Euler description, but w 
shall use the velocity described by 3.1.8. The result is 

!. (- ) - 8 f ( x, t) ('' i - i ) (- ) {) f ( x, t) 
X, t - f)t + U VVi X, t OV . (3.1.10) 

3.1.2 Balance Laws 

To establish our model, we will also need equations describing the ba.sic 
physical principles, known as the balance laws. Because our approach is a 
very general one, we will formulate them all in the ALE coordinates. The 
following concept will be used later for the description of fluid structure 
problems. 

3.1.2.l General balance law in ALE coordinates For derivation purposes, 
let us define a general extensive quantity <I>(t): 

<I> ( t) = r <I> (X' t) dV = r r.p (X, t) dv = r r.p (fj, t) dvy. 
J Vo J Vc1> J V(tJ 

The general balance law may be formulated in various ways. Let us chaose 
the following one: 

Time change of extensive quantity is compensated by the sum of total 
flux and total production. 

If we denote the flux by .C and the production by P, we may write this 
law as follows: 

d<I> . 
dt =<I>= .C(<I>) + P(<I>). (3.1.11) 

Our next goal is to quantify the flux and the production in the reference 
volume Vo in order to obtain a local balance. Let us start with flux: 

The total production is given by the density of production ~'a 
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P ( <P ) = f L: ( <l>) dV = { a ( <P ) d = { a ( ) d y . 
J Vo lv«> J 11« > 

We may now compute the tirr1e cha1 g ( ti1n d riv tiv ) of ov r th 
control vol ume V(t) . T his can be done u ing th l · t R ynold tr i forn1 tion 
theorem: 

~ r r/J ('fl, t)dvy = ~ r r/J ('fl, t)dvy + r </>(vk - vt,)nk,v,da. 
J Vc.•i J v«J J av<•J 

The boundary t erm on the right sid of the pr viou quation n1 ns 
that flux is flowing on a non-material surface, which i our ca.s , becau e 
the ALE control volume has nothing to do with the real boundary of th 
vol ume. 

And finally we will transform the equations from control volum (which 
is changing in time) into the referential one (which is fixcd in time) and put 
the derivation inside the integral. 

Bearing in mind the transformation formula of the fundamental volume 
and surf ace, which is 

we will get 

dd f r/J('fl,t)dvy = ~ f r/J(Y(X,t),t)JydV = f ! rp (y(X ,t),t)jydV. 
t Jv(tJ ut lv0 lvo 

We may now apply the same procedure on the boundary term: 

{ r/J('fl, t)(vk - vtJnk,v,da = { <P(Y(X, t), t)(vk - vti)jy aax: dAK· 
J av(tJ Javo Y 

After substituting these two terms into 3.1.11 we get the balance law in 
an integral f orm: 

l éJ . 1 k k). éJXK 3<1>JydV + <P(v - Vv, ]y a k dAK = 
~ t ~ y 

{ zk(<P)jy a:: dAK + { a(<P)jydV. 
lvo Y lvo 

Assuming continuity of the integrand we can use the Gauss theorem, 
and we will finally get the local form of the general balance law in the ALE 
coordinates: 



3.1.2.2 The balance oj mass We may fonnul t thi 1 w ~ follo The 
time change ol mass is zero. In1agin a body with vol um V nd t t l 1 

m(t) == I~o e(X, t)dV == fv e(i t)dv. Ther fore if w sub titut thi ~ ... ...... '---...., ...... 
(t) 

m in to general lo cal balance formula 3 .1.12, w shall g t 

a . a { k k . ax }{} 
Ot(JyQ) + ()XK [Q(v -vv.)]Jy ()yk =0. 

On the previous formula we can easily show that ALE i a g ner lization 
of the Lagrangian and Eulerian view. Let V(t) be the static control volun1 . 
Th. th t - - X- h f · 1 d axK ~K a a a ' is means a y - , t ere ore Jy == an V == u k' axK == axt axk. 
What remains is the Euler description: 

8Q 8(Qvk) _ 
0 at + éJxk - . 

Now let V{t) be a flow, i.e. (y== x). This means that Jy == j, vv(t) ==v and 
-1 

a~: == F ~ is inverse to the gradient FT. We can now substitute and see 
the Lagrangian description: 

! (jQ) =O. 

3.1.2.3 The balance oj linear momentum This balance expresses the equi­
librium of all forces involved in the system. We may derive it by substituting 
the total momentum </> == evi into the general balance law 3.1.12. The com­
pensating terms represent surface forces, expressed by lk r-v tki, where t is -the Cauchy stress tensor. Forces are represented by the sources of f, in the 
words of production a== pfi. After substitution vle have 

a ( . i) a { [ i ( k k ) ki] . ax K } . Ji 0 Ot )y{}V + OXK {}V v - VVi - t )y ()yk - )y{} = . (3.1.13) 

The Lagrangian view can be derived in a way similar to the one we have 
shown in 3.1.2.2. We use the Piola-Kirchhoff pseudo-stress tensor P ==Ti == 
yKi N K to describe the action of surface forces. It is required to depend only 
on the reference configuration in order to meet the demands of constitutive 
relations. We may write it as follows TK1 == ~:: yKi. The tensor T is called 
the second Piola-Kirchhoff tensor. 

The Lagrangian description takes the form 

K. 

(
.. ') 8T i 

{2 if - :P - OX K = o. (3.1.14) 

3.1.2.4 The balance oj angular momentum The angular momentum is 
expressed as the external product of the vector x - Yo and momentum vector 
ev in 3.1.12 </> == [x-y0 ]/\ev. We may split the sources of angular momentum 
into two separate parts: into external vol ume forces ( ( x - y0 ) /\ g J]ij and all 
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the other vol ume forces acting on dipole xpr d by g ij. G n rali d 
fiuxes have the form ((i - Yo) /\ tiJ] . One of the po ibl w y to d rib 
the local balance is 

o=! (Jy[(i - Yo) A eV]ij) - )yeMij - )y[(- - Yo) A ef]ij 

- (j~K { [[(i-Yo) A eVJií (vk - vt,) - (i-Yo) A tkr1 )y {j&y~\} . 
We can now simplify this fonnula by rnultiplying 3.1.13 by th po ition 

vector (i - y0 ) 

O a ( . i) (- - ) a { [ i( k k ) ki] . ax K } (- _) = at ]y(!V A X - Yo + 8XK (!V v - VVt - t ]y 8yk A X - Yo 

- Jy{}fi /\ (x - 'Yo). 

After subtraction and evaluation of the derivation of external product 
we get 

. Mij a { [ [ ( - - ) ;11 ij ( k k ) ( _ _ ) k] ij . a x K } - )yf! - ax K X - Yo A f2VJ v - VVt - X - Yo A t ]y 8yk 

a { [ i( k k) ki] . axK} (- - ) 0 + ax K (!V v - VVt - t ]y 8yk A X - Yo = . 

and if we transform this into spatial coordinates, we shall get 

(3.1.15) 

For non-polar materials (with Mij - O) 3.1.15 expresses the symmetry 
of the stress tensor. 

3.1.2.5 The balance oj mechanical oj energy The total arnount of me­

chanical energy can be written as </> = (} (v;) . We can formulate it wi-

thout fiow through the boundary (lk _O). Energy production is denoted by 
a == vi ~~; + {}Viji. Then the local balance is 

! (Jye(~2 )) + a~K {[e(~
2

) (vk-vtJ]j/~:} 
-jy ( vi ~:; + evdi) =o. 

3.1.2.6 The balance oj internal energy Let c be the interna! energy per 
unit mass. This energy can fiow through the boundary due to heat fiuxes 
(lk == qk) and can be produced internally by a== tji~ + q, where q can be 
some other interna! production e.g. radiation. 

The local balance is 

a . a { [ k k k] . axK} . ( kl avk -) at (Jyf!E) + OXK ec(v - vVt) - q ]y 8yk - ]y t Oxl + q =O. 

(3.1.16) 
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3.1.2.7 The balance oj entropy This b· 1 n i r pr , nt tion of th 
2nd Thermodynamic law. It will be u ful for v· li ating th con titutiv 
relations. It is not an equality but n inequality. Let · b th e1 tropy 
per unit mass. Total fiuxes are [k = - ~ wh r T i t mp r tur . Entropy 

production is nonnegative and can b determin d by a = {! · + AXk ( ~ ) - ~ > 
O. 

The local balance follows simply fro1 i 3.1. 12 

<- . , a . , k k q · . ax 8 { [ k] K} o -at(Jy{!S) + ()XK es(v - vv.) + T )y ()yk 

. . q q 
( a ( k) -) - Jy gs + 8 xk T - T · 

3.1.2.8 Density oj dissipation energy Energy dissipation is used n1ore of­
ten then the balance entropy production as a representation of 2nd Thermo­
dynamic law. It can be derived from entropy balance by eliminating heat 
fluxes and substituting interna! energy balance. 

First of all we need to express E(S) and for that we need to transform 
flux from and into ref. configuration: 

k ·- 1 8yk Qk 
q == Jy BXK ' 

k . axK k 
Q = )y ()yk q . 

Now we can eliminate heat fluxes. We rewrite interna! energy balance 
3.1.16 with transformed fluxes: 

Now we can write the entropy production in reference configuration: 

_ . K a (~) _!_ a K_ Q > 
L,(S)-ps+Q ()XK T +T()XKQ y-0 

= P)yš + QK ()~K (~) 
1 ( a . a { [ ( k k ) ] . ax K } . kl av, ) + T - 8t (JyPE) - ()XK pé v - vVi Jy ()yk + )yt 8xk > O. 

Density of dissipation energy is defined by IT == TE(S): 

O < IT == TE(S) == 

. . K a (1) a(. ) 
TpJyS + TQ ()XK T - 8t JyPE 

8 { [ ( k k ) ] . 8X K } . kl OVL 
- ()X K pé V - VVi )y ()yk + )yt ()xk . 
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Fic. 3.2.3. Do1n in not tiou 

3.2 General model of material system 

20 

o 

Now we can formulate equations describing th solid d form tion nd th „ 
fluid motion. The idea of Fluid Structur Int raction in thi mod l i v ry 

_ clear. The deformation of solid material will be de crib d by th L gr ng 
method and the motion generated by deformation will b 'th rbitrary' 
motion of control volume in the ALE coordinat s used for flui<l motion 
description. 

Remark 3.1. Conceming notation Now we are going to desctibe the motion 
and dej ormation in the solid and fluid parts oj OUí body. Let n be the body 
- you can imagine a vessel filled with blood (see 3.2.3). For brevity we use 
the upper index 8 behind a letter to describe the solú l part and f for the .f l 11 ul 

part and we use lower index t behind a letter to desribe actual configuration. 
We cannot forget to notate the boundary : rfs is the boundary connecting 
the fluid and solid parts, r 1 means input, r o output and the remaining part 
Will be noted as f E. 

3.2.1 Motion and deformation 

This will be the basis of our model. The deformation of the solid part will 
be described by the mapping r" 

f'; : ns X [O, T] ~ n:. 
We calculate the displacement vector as, which will be unknown in our 
model, from the relation 

The velocity vector :gs is the time change of the position vector 

The main unknown in the fluid part will be the velocity field 1-tf defined in 
O/ 

,:I ( x, t) : o/ x [o, T] ~ JR 3 . 

For the description of change of domain nf W€ introduce the mapping y 

y: o/ x [o, T] ~ n{, 

which will be useful for defining the displacement vector llf in n/ 
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".r ( - t) = Y( - t) - - . ( 3. 2 .11) 

The first paragraph in Chapt r 3.2 r v l th m i1 id of our mod I. A 
part of this paragraph can be preci ly forn1ul t by pr ribing prop rti 
for the virtual mapping y 

g(X, t) == x(X t) V( - t) E rJs X (O T]. (3.2. l ) 

The second consequence of that paragraph conc rn th v locity. Our 
model aims to describe the viscou flow inter cting with th olid mat ri 1. 
Remember what does the viscous assumption m an for th v locity boun­
dary condition. Sometimes it is called no slip", it pre cribe z ro v locity 
on solid boundary. Next, imagine t hat we are moving th olid bound ry 
with displacement ·1/·„ and with velocity ,„„ . It is clear, that we hav to copy" 
this motion in fluid, which directly leads to t he interacting v rsion of th 
non-slip boundary condition 

r fs on t . 

When we denote Sl == ns u fJ/ we can <lefine new fi lds 

i1 : Sl X [o , T] ~ IR 3 
' 

v : Sl X [o ' T] ~ IR 3 
' 

by the following prescription 

V= { 
·t:·" in ns 
i' f in fl l 

U= { 
I(..-; in ns 
, , I in nf. 

The consequence of the relations 3.2.17 and 3.2.18 is the continuity across 
the boundary r{s. 

But the unification in not over yet. We can continue by introducing only 
one deformation gradient F and its determinant j 

F ==I+ Vu, 
j == det F. 

(3.2.19) 

(3.2.20) 

Now we can start formulating the equations describing the behavior of 
unknown functions. Unknowns in this model are (besides il,v): density p\r/ , 
temperature rs' Tf ' dissipative energy Ir-; ' rr.r ' interna! energy E

8 and EI . 
Equations describing the solid part will be in Lagrange form, so the 

balance law can be simplified as previously shown on the example with 
mass balance 
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d 
Ji (11· .i ) - O. 

The linear momentum balance follow 

Balance of interna! energy 

,..,. ( u2 p -
2 ) () ,. ,. 

E8 
- . ( T \I ' - ( ) \ ) ') \ r /\ ( / ť 

( _. 

nr '' ' -- - O. i)_\ ,, 

(fl'.i fť ' f' , ()) - O. 

And the remaining balance is the dissipativ en rgy balan 

()(' r" , , . ,,. o. 
() .\ ,, --

22 

(3.2.21) 

(3.2.22) 

(3 .2.23) 

(3.2.24) 

The equation describing grid deformation is also v ry important. In th 
solid part it is a natural definition of velocity 

i..hti 
- =- r' . 
(}/ 

(3.2.25) 

A more complicated situation arises in the fluid part. We have already 
said that we use the ALE coordinates here. Now we must state what will be 
"the arbitrary" position vector exactly. We know, that it must correspond 
to the deformation of the solid part, therefore we use time derivative of 
displacement u. Into the balance law we will put a substitution using 3.2.25. 
This mapping transforms the equations into referential configurat ion, which 
is the only one in which it is possible to write computable formulas. 

In this way the balance of mass can be expressed as 

() ( f ') 
é)t {J' ./ (3.2.26) 

The balance of linear momentum will be 

;.. ) ') { l ( ') k ) ] ' ) \ r /\' } u ·. č · · J. čil A . C .J· · 
- (1>.f n') + . />.! .,,' /1 . - - - t ., 1· . - 1·1>.1 ,., =- O. at D ~x- 1' u1 · cJ.rA· · · 

(3.2.27) 
The balance of interna! energy is formally more complicated 

D . ·p'"' . . . ----. ( ( ' ) )) 0= Dt .Ú!.1 2 E.1 - .J (o' I'; - q) 

u 'i 7 • A ( i/, A . 
; ) { [ ( 2 ) ( ') ~) + f) X/\' r/ 2 + [ ./ 'l' . - Uf - f I /I; 

k] . ().J~ ,\. } 
fJ .) -(-).1-· J.-· • 

The most complicated formula in the whole work is the dissipative energy 
in fluid, if you don't believe it, continue reading 
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O < T .r c'u)· t (j / / .~.J) , T i) { ( ,I ...... r ( , . k - iJ u~ ) I U.\ ' } 
') \ . }\ '- ')t . ') .).. ( ~ ť ( .I 

~ (~t (.i {Jf ~f) i).~,, { {JJ - I CA ~~~') .I ; : ~.:: } 

Tf ( ) 1,· () . (!_) 11., ~ 
' iJ ~Y " T .J i J.rk . 

The remaining equation is the grid deformation. H r w c n pr crib 
any equation, which can be easily solved, becau th r i no phy ic l prin­
ciple behind this. We choose the Laplace equation 

()1/ ()'21/ 

nt crY.1;rY·1 · 
(3.2.28) 

As you can easily calculate we have 12 unknown functions and only 10 
equations. It still remains to prescribe the terms t and P. Thi i all don 
by closing equations and constitutive relations. We deal with it in th n xt 
chapter. 

Remark 3.2 (About pressure). You might have noticed there is no pres­
sure in the list oj unknowns. But this quantity is the only one which is im­
portant for technicians or doctors. Pressure p8 and pf comes into the model 
through constitutive relations ( e. g. Cauchy stress tensor t == t(p, . . . ) ) . For 
more detailed description, refer to Chapter3.3. 

3. 2. 2 Closing equations 

For our purposes, there should be two types of closing equations. The first 
one is not closing but simplification and will be stated by the assumption 
that the interna! energy is constant. The second one is a group of closing 
relations called the state equations. 

3.2.2.1 State equations This kind of equations is used for the description 
of fiuids or solids where they change their phase. The formulas are deri­
ved from statistical physics and they are based on detailed study of the 
microscopical structure of material. We will not talk about derivation, in­
stead we recommend to the reader to read (Maršík, 1999). For completeness 
we introduce 

p(T,p) = -3Ka (T-To) +K (:a -1) (3.2.29) 

A 

( 
p )2 pRT 

p(T,p) = - M a+ M [l - ťib] (3.2.30) 

A 

pRT 
p (T, p) = M = pRT. (3.2.31) 

These equations describe three phases : 3.2.29 solid materials (like steel), 
3.2.30 is van der Waals equation, which can be used for the description of 
fluids even in phase changes and 3.2.31 gases with temperatures high above 
the condensing temperature. 
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3.2.2.2 Internal energy The r maining clo ing qu tiou 
terna! energy. This simply means the u1 ptio1 : tl 
pends only on temperature T, 

---·~ - <. cr ·~ - 1~>) 

: r _ (·-(. (Tr __ /~>) . _ f 

where Cv = ( g;;,) e is specific heat. 

3.3 Constitutive relations 

3.3.l Fluid Constitutive Relations 

ill n r 111-

1 rgy 

(3.2.32) 

(3.2.33) 

In our work the constitutive relations mean the sp ifi · tion of t i. Thi 
formula will characterize the interna! properties of fluid - dep nd ne on 
pressure, velocity, etc. For testing purposes there is a very w 11 known mod 1 
of fluid - the Newtonian one 

(3.3.34) 

which assumes linear dependence, as we have discussed ln the pr vious 
chapter. 

3.3.2 Constitutive Relations for Elastic Material 

The characteristics of solid material is described by the First Piola-Kirchhoff 
pseudo-stress tensor P, as we have already mentioned. In this general part 
we only list some kinds of formulas, which are commonly used, but later 
in paragraph 3.5 we will introduce full derivation under some additional 
assumptions. 

The prescription of ps is 

P 'i ' ') F T . s ()\]! 
. =-= - .J/J' r- Jo -. ~ rJF' (3.3.35) 

where \JI is the Helmholtz potential. It can be shown, that \JI depends only 
on the Left Cauchy-Green stress tensor C ( == FT F) and with this tensor we 
can describe the real reaction of material. The dependence can be written 
as \Jí == q,(C). We list two commonly used materials (neo-Hookean 3.3.36 
and Mooney-Rivlin 3.3.37) 

A C1 ( 2(3 ) IJ! = f3 r - 1 + C1 (Je - 3) , 

q, == C1 ( Ic - 3) + C2 (I I c - 3) - d ln j + c (j - 1) 2 
, 

(3.3.36) 

(3.3.37) 

where Ic and I Ic are the first and second invariants of C and d, /3, c1, c2 
are parameters. For more information about this topíc see (Maršík, 1999) 
or (Humphrey, 2002). 
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3.4 Simple model 
It is obvious, that the general model i too co1 pli t for n r ti al 
use. Now we start with our sin1plification. h r t o n ptio 11 

biology, which are not far from reality: i ot nni ity in on1pr i bili ty. 

3.4.1 Consequences oj assumptions 

These assumptions simply mean e == con t. nd T = con t. Th ·i 1plifi­
cation will be reflected in the equation and al o in th con titutiv r l tion . 
Some of the equations can even be on1itted. 

3.4.2 Model formulation 

N ow we take the equations from the gen ral mod 1 one by on 
aur assumptions to thern. 

The balance of mass also known a.s the continuity equation i 

0==.J - 1, 

(} ( k (} ~ y ,\. ) 
O = iJ.Y '' jr Ur" · 

The balance of linear momentum reduces to 

dv i l nr"'' 
dt .Ú..( ()4\ ,\. ' 

iJ1'' (} { [ I k ; Jtt"" ;.,.,] ; J~Y ,\. } - == l' (1 1 
- -) - t . 

é)t iJ .. \ ,\. (}I i).r"° 

The grid def ormation equation follows 

()11 ' . 
(. - -=-- , , 

(}/ ' 
ihti ') 

()--11' 
--

Ut ()~\ .I() .1\r ./ • 

The unknowns v, u and p must fulfil the boundary conditions 
~ •. „ I u· == „. on rfs 

-u== o on r1 
-il== o on ro 
- on r~ t 8n8 == O 

t .'; '/} ."i == - tf ,-;.r on rfs 

- on r1 'u== O - on r0 v== o 
- - on r1 
V = VJ I 

OV= 0 on on rb. 

nd pply 

(3.4.38) 

(3.4.39) 

(3.4.40) 

(3.4.41) 

(3.4.42) 

(3.4.43) 

(3.4.44) 

(3.4.45) 

(3.4.46) 

(3.4.4 7) 

(3.4.48) 

(3.4.49) 

(3.4.50) 

(3.4.51) 

(3.4.52) 

We have prescribed velocity on the input and on the output. There is a 
free boundary condition. The various boundary conditions for velocity on 
input and output are discussed in the next chapter. 
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3.5 Fluid Constitutive Relations 

For the fluid part we only prescribe inco1npr ibl wt 111 n fl i 

tf == - pf I + µ (\!vf + \JT-f). ( .5.53) 

3.6 Constitutive Relations for Elastic Mat rial 

We promised the total derivation of P under the umptio1 of i t nni ity 
and incompressibility. The results follow. 

3.6.1 The First Piola-Kirchhoff pseudo-stress tensor 

3.6.1.1 Helmholtz potential A very co1nmon m thod of pr cribing on ti­
tutive relations lies in the specification of fr e energy or H ln1holtz pot nti 1 
\li. We ha ve to use some thermodynamic basics: 

Interna! energy can be expressed by using the therrnodyna1nic pot ntial 
a.s 

é == '11 + Ts, 

where s is entropy and T temperature. 
It is obvious, that any constitutive relation must correspond to the 1 st 

and 2nd Thermodynamic Laws, where the 2nd can be represented by 

Theorem 3.3 (Clausius-Duhem inequality). 

{J (QK) Q 
2:(S) =poš+ 8XK T - T >O (3.6.54) 

or equivalently 

(
d\I! dT) rdF 1 . -po - +s- + P - - -Q D1vT >O. 
dt dt dt T -

(3.6.55) 

For our purposes, the second formula will be very important. We exclude 
heat fluxes, due to the isotermicity assumption, 

d\J! rdF 
-po-+ P - > O. (3.6.56) 

dt dt -
The equipressential axiom ensures that P and w depend on all state quan­
tities. Using our assumption of isotermicity and disregarding heat ftuxes, 
both quantities depend on the components of F. 

Now we assume only elastic deformation (there will be an equality in 3.3 
and in 3.6.56) and we use the dependence of Pon the components of F in 
the derivative 

d'I! aw dF 

dt 8F dt' 
which results in 

( -Po 8\I! + pT) dF =O VF. 
8F dt 

Because of the free choice of F, it is clear, that the term in brackets must 
be identically equal to zero. We expressed P with respect to \li 

aw 
P = Po 8Fr· 
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3.6.1.2 Stress Energy We have shown th t w = \I!(F) which 
for the description of the isothennal el tic d fonn tion of l 01 og n 
ous body. U sing the 1 st Thennodynamic L w w n ily h w th t for 
isothermal processes the stress energy W p r unit n1 is 

Qo\J!(F) = W(F). (3 .6.57) 

3.6.1.3 Properties oj W It is natural to omit th d p nd ne of 'li on 
motion. We can do this using the deco1nposition of th d fonu tion gr di nt 

F==RU 
' 

c == p r F = u 2 so w == w ( C), 

where R is pure rotation and U is displacement. It rern ins to d riv 

aw aw r aw r 
[)Fr = 2 OCF , hence P = 2 OC F 

The last assumption, which helps us to specify the final forrn of the 
constitutive relation, is incompressibility. Assume det F == 1 and therefore 
<let C == 1. We introduce p as the Lagrange multiplier. We get the following 
dependence 

\Íf == w(F) - p(detF - 1), 

and in 3.6.56 we get 

( 
GW . -T r) dF . ) dp 

-po OF + PoPJF + P dt +Po (J - 1 dt = O Y(F,p). 

Because F and p are chosen arbitrarily, we get 

3.6.1.4 Application to constitutive relations Now we have to take care 
of ~~, which is in the balance of linear momentum in the form of Div pT_ 
Using the facts in the last paragraph we can write 

T ([)'11 F r) . F-r . 0'11 . F-r 2 .FOW 
p = Po OF - P - = - JP + J P OF = - JP + J OC ' 

where Qo was absorbed into the pressure p. 
In the main constitutive relations it remains to specify W and compute 

~~. For example if we use the Mooney-Rivlin material, and we use simplified 
3.3.37, we obtain 

W == c1 (Ic - 3) + c2 (I I c - 3). 

For the computation of the derivative term ~~ we use the Caley-Hamilton 
theorem (tensor fulfils its own characteristic polynom) 
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-C3 + IcC2 
- 11 C + 11 lc I == O. (3 .6.5 ) 

If we multiply 3.6.58 by c -1 and apply th trace p r tor tr w g t 

tr(C2
)- Ictr(C) + II tr(I) == III t1(C- 1

). 

Therefore, ( using the definition of the second invari nt) it i· obviou th t 

_ 1 I I 
tr( C ) = II I c. 

If we now differentiate 3.6.58 with respect to C and us th 
tensor's invariants, we get the following fonnulas 

Olc = I 
ac 

OIIc =I I - C T ac c 

OIIIc = III c -T ac c 

fini ti n of 

(3.6.59) 

(3.6.60) 

(3 .6.61) 

We are interested in the ~~ term, but this is very simple now 
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MATHEMATICAL PROBLEM FO MULATIO 

Now we have to formulate our proble1n n1or pr i ly fr in th 11 th 
matical point of view. We wish to prepar it for num ri 1 1 put tion 
so we will start with the classical formulation. Th n w will pr p r th di­
mensionless version and at the end we will introdu th w k fonnul tion. 

We recall equations from la.st chapter, but for br vity w ch ng not tion 
from Cartesian components to vector. 
4.1 Classical formulation 

4.1.1 Model equations 

We take Newtonian fluid and elastic material and th n th m 11 probl m 
will be formulated as f ollows : 

Problem 4.1. Find u, iJ,p8 ,pf to satisfy 

ou { ,g in S1 8 

é)t == 6 17 in nf 

{ 
(~~ (1/ j ) 

O = ,</, (r/i) t Div (rili ( i1 - '//; )F ., ) in D/ 

u - ) /}~ ~v- { -.1 Div p sT F 
Ot - - (V' I' ) ( j1 - '/i: )F I j ~ Di \'u t I F „) 

with initial conditions 

u(O) ==O 
iJ(O) == vo 

in n, 
in n, 

and boundary conditions 

- - on r{, V== VJ - on f 1, fo, u== o 
- on r[, fb, v== o 

ov -
an = 0 on rb, 

- on fE, t 8 n == O 

with constitutive relations 

F 
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tf = -pf I +µ (\liJ + \;TiJ) 

psT __ . sp -T 2 ·p8W 
- JP + 1 ac · 
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Remark 4.2 (About fluid constitutiv rel tio ). tr ·s ten o t r 
which we prescribed, must be trans/ ormed in to r j r n confiy·uration and 
simplified using div v== O. We write 

Div(jtf p -T) == Div ( - jpl p -T + j Jl (V' - + V7 ~) p - 1 p - T) 

==Div (-jp1 p - T) + Div (jp,V'-p- 1 p - 1) 

+ Div (jµV7 rvp - 1 p - r), 

where the underlined term vanishes, because of 

éJ (OVj) _ 8 (d. _) - -- - - lV V. 
X . OX . ax . '"-v-" 

J i i o 

4.1.2 Dimensionless formulation 

For numeric computation it is suitable to reformulat our problem to 
dimensionaless formulation. You can easily imagine, that to compute i. e. 
sin(lO kg) is not possible. Therefore we introduce the charact ristic 1 ngth -L * and velocity V*. We mul tiply all quantities by their charact ristic versi-
ons. When we need to multiply by density, we chaose gf. We arrive to the 
following formulas 

iJ = iJ~ 
V* -

-1 u 
u== -

L* 
I 1 

P == PV*2 
1 tsl == ts (3 - ,, „ 

-1 - 1 X== X-
L* 

V* 
ť == t­

L* 

pfV*2 - -;;r 
I 1 w1 w 1 

J.L == JL pf V* L* == pfV*2. 

Now we must compute all quantities without primes and substitute them 
into Problem 4.1. It is practical to denote primed quantities as non primed. 

After that we have a new 

Problem 4.3. Find u, v,ps ,pf to satisfy the following: 

Equations relevant to ns : 
') -(u ~ 
- .- --== o 
()t 

() ==j - 1 

ih-: .1 J)' ( ._ s p - 7 ' 1 2 .FiJH-' ) r-- . --== - _ lV - Jp --1 .} c')C - J Dt : Jj · 

(4.1.1) 

(4.1.2) 

( 4.1.3) 
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Equations relevant to D/ : 

i) li 
- - 6u 
()/ 

O == Div (.i l'F 1
) 

()l' ( 
i)f =~ 'VI' (F I) I' 

1 ( -- -:- D i v - .i I "' I!' 
.J 

0_!_) 
{)/ 

with initial and boundary conditions from Problem 4 .1 

4.2 Weak formulation 

. 
F 

-
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( .1. ) 

( .1.5) 

( .1. ) 

We multiply equations in Problen1 4.3 by t t function 7,17,~, int gr t 
over the domain O and over the time int rval (O T]. W u th Gr n 
theorem on some terms. For the correctness of int gral form w will 
sume ~~ E L2 ([O, T] x O) and assume external forces f has to b from 

L2 (O, T; [w-1,2J3). 
For the formulation of the problem corresponding to Probl m 4.3 w need -to specify properties of test functions ( and ~ with respect to the boundary. - - -We prescribe (==O on r 1,r0 and ~==O on r 1 and r 0. We provide a more 

precise discussion later in Chapter 4.4. 
Now we integrate the equations of Problem 4.3 and we get 

__'!!_ · (dVdt == ,,. · ~ d\/dt - \711 · \7\ dVdt 1T 1 3- ;·7' 1· ;· !'i 
o n at . o . ! ! ·" ' () . ~ l 1 

(4.2.7) 

7· 1· 

o= r r u - 1). ·11dVdt + r r Div (.i1·F T). 11dVdt 
.fo .fu·" .fo ./n.1 

(4.2.8) 

/
„T · (J'(J' ;·T () t ,-

( j ;1-. ~ {) dt+ ( ~) . ~ dt. == 
. () i)t . () ( f 

(4.2.9) 

T 

= 11jpP-T·'V{dVdt 

i.r 1· iJlF 
- 2jF -, - · \7l d\/dt . 

. o . ~2 ·" člC 

IT 1· ()t/ -- j\711(F - 1)(i ~- )·(dVdt 
. o . ~ l.I ( )t 

IT 1· l T -- . )11,\7 oF - p - · \7~ dVdt 
. o . ~~.I 

.'/ ' ,7' 

- I (.J.if, [) dt - I (.J.r. t> dt . 
.fo .fo 



WHAT DOES T HE MODEL RE I D 

For the problem formulation w h v t 
spaces 

fin h f 11 ing f n 

u== {u E L 00 (J, [W 1
'
2 (D)] 3

) u== o 0 1 f 1 o} 
P = {p E L 2 (I , L 2 

( n))}, 

V== {v E L2 (I , (W1
'
2(f2 t)] 3

) n L (I (L2(ílr )) 3 ) - = O n 1 0} 

and ha ve to define the space for test functions 

T == C00 ((0 , TJ X n). 
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For the energy estimates, which ar requir d for th p c s fini t i u , 
please see (Hron, 2001). 

Now we have everything ready for variational probl m fonnul tion. 

Problem 4.4. Find (il,p,v - v1) E U x P x V, such that equation 4. 2. 7, 
4.2.8, 4.2.9 are satisfied fo r all ((t,TJ,Ů E [T ]3 x T x [T ]3 . 

4.3 What does the model remind you of? 

At first glance Problem 4.4 is too complicated. But after some sirnplificat ion 
we see, that it is nothing else than deformed Navier-Stokes. Now try to forg t 
the interaction terms. It means ,u== O and so F == I , j == 1. We omit 4.2 .7 
and see, what is left. 

The equation 4.2.8 will change into 

T 

O= / ;· Div (ť) · 11dVdt. . 
.fo . n.r 

The equation 4.2.9 will be 

i .7

1 

u- ;·'/' ;· ( 0~.~)dt = 11· V~dVdt. 
. o . () . ~lf 

T 

_ / ( (ť. \7)1>( dVdt . 
.fo .f u.1 

T - 1· ;· . 11\71> ·V( dVdt. . 
. o . n1 

( 4.3.10) 

(4.3.11) 

The system of equations 4.3.10 and 4.3.11 is the well-known Navier­
Stokes. We can use a lot of techniques for solving our problem with methods 
normally used for NS. 

4.4 Boundary Conditions 

We formulated our problem for one kind of input/output boundary condi­
tions. But there are more types, which we can prescribe. We omitted i1 now 
and we will talk only about velocity Tif and pressure pf. 

This chapter is about the possible BCs in fluid. For brevity we will talk 
about equations 4.3.10 and 4.3.11 instead of 4.2.8 and 4.2 .9. 
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4.4.l Velocity on the input 

The velocity on the input can be pr crib d u ing th Diri hl t b u d y 
condition. We used this technique in our forrnul tion. 1 pr rib 
values, but it is always required to relate to son1 physi l b 
have viscous flow, therefore on olid boun ry th v lo ity h 
Hence it is natural to copy this in the pre cription of v lo it n th 

A well known example is Poisson s How (s (Brdi k , 2000)). 
this for a numerical experiment, which can b found in h pt r 5. . r th 
flow in a tube the velocity vector fi ld h p rabolic pr fil . 

4.4.2 Velocity on the output 

The velocity on the output can be pr scribed in th am w y th iuput 
one. It means using the Dirichlet condition. The chang for our fonnul· tion 
will be as follows. 

In boundary conditions 

where i110 is defined as 

'u== i110 on r 1 

v== i110 on ro, 

{-- VJ 
VJQ == -

VQ 

on r1 
on fo. 

In the definition of function spaces 

V = {VE L2 (I, [W1•2(0t)]3) n U'°(I, [L2 (0t)]3), V= Ú on f 1 ,fo} . 

And in the variational formulation 
Find (u,p,iJ - iho) EU x P x V. 
In our formulation we used a different type of BC. It is called the free 

boundary prescription and it is represented by Neumann condition. It means 
the prescription of behavior of velocity derivative with respect to the outer 
normal. If we prescribe zero value, it ineans no change in the outer direction 

- free outflow. 
Now we take care about this condition in greater detail. If we change from 

classical formulation into variational, we need to use the Green formula it 

the f ollowing way 

1 (-µ6V+ Vp+ (V· V)V) · [ dv = 

== f (pn-/~) .[dr+ { VV·\7(-pdiv{+(V·V)V·{dv, 
Jr0 On Jn 

where the boundary condition is 
_ av 

0 pn - µ 8n == · (4.4.12) 
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4.4.3 Flow by pressure gradient 

But there is another way how to start tl rnotion in tub . ill not 
prescribe velocity on input nor output. Look ar fully on on iti n .. 12. 
If we imagine the term ~ = O, we can pr s rib pr s ur p 01 th o nd y. 
If we prescribe higher value of pr ur on ir put ·u1 lo r lu n ut ut 
the flow starts in the direction of the pr ssur gr di I t. 

Chang es in the f ormulation will be f ollow . 
In the boundary conditions 

817 
P'ŤÍ - /l -----:::. == O . 

éJn 

In function spaces defiuition 

And in variational formulation 
Find (il,p,v) E u x P x v. 
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NUMERICAL METHOD 

The main target of this work are numerical experiments based on Pro­
blem 4.4. For this we must discretize the problem. The discretization will 
be in time and in space. To obtain the solution we wrote a program, which 
is algorithmicaly equivalent to the numerical method described below. We 
also need space description - the meshes. At the end of the chapter we give 
simple a paragraph about getting meshes for fluid-structurc interaction pro­
blems. 
5.1 Problem Discretization 
We start with time discretization and then we formulate space discretization 
using the FEM method. 

5.1.1 Time discretization 

For the time discretization we use the implicit Euler method and semi im­
plicit Crank-Nicholson method. We use the Crank-Nicholson method for the 
main computations but it has a disadvantage: it is only conditionally stable. 

We have the time interval (O, T). We divide it into n subintervals In == 
[tn, tn+l] with constant time step kn == tn+l - tn. 

Remark 5.1 (About notation). With superscript n we denote the quan­
tity on time Zevel tn. 

We rewrite Problem 4.4 for the time interval [tn, tn+l] and we approxi­
mate the time derivation ?ft by centra! differences, 

BJ jn+l - Jn 
~----

Bt ~ kn 

or by higher order 

Oj 3jn+l - 4jn + 1n-l 
--- ~ ----------------------
8 t 2kn 

We approximate time integrals using the Newton-Cotes formulas, espe­
cially by the trapezoidal rule ( () == ! ) 

tn+l r f dt ~ (tn+l - tn) { {) f(tn+l) + (1- {)) f(tn)}. 
ltn 

Remark 5.2 (Notation). 

pn ==I+ \lun 
(a, b)r = .f~ir o, , bdV 

jn == detFn 

(o, b) ... == ./~ L a · h dV (a, b) == f na · b dV 
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5.1.1.1 Crank-Nicholson scheme To obtain the Crank- icol on scheme 
we will put () == 0.5 into the following scheme and Problem 4.4 will take 
following form. 

Grid deformation equation 4.2.7 

o == ( un+ 1 
, c;) - ( un, c;) (5.1.1) 

- () kn ( i ' 11 
· 

1 
, ~ ) .-; - ( 1 - ()) kn ( I ' 11 ~ ) ·" 

+ () kn Cv 11 n 
1 

• \" ) .r + ( 1 - ()) kn ( \ 11 " • \ ~ ) .r . 

We consider the continuity equation 4.2.8 implicitly to prevent numerical 
oscillations. This effect is known from the NS problem. 

We use the Piola identity in ~i .r to rewrite Div (jvF-T) == j\lv · p- 1
, 

O == (.J n · 1 (5.1.2) 

The linear momentum equation 4.2.9 

O (
.} ·n ' 1 -n ~ l c) ( j ·n-n ( ) == / ) .J 1 

'l ' ' , c.., - I ./ l } ~ c.., 
~ ~ 

(5.1.3) 

+ (/' + l /)11 +1' 0 - (.i/I iJll. {) ' 
.! .I 

- kn (.1" I p" : I ( F " I) - 7' 'vf) I - kn (I"+ 17,"+ l ( pn+I) T 'vt) ' 
-e (vli"1+ 1 (F 11

+
1r 1 (17" l - 17'

1
) .t) r - (1-B) (V'i'" (F "r 1 (17" I -- 11") .() f 

+ e kn ( 2j "~ 1 
F " '

1 ~~. w), + (1 - B)kn ( 2/' F " ~~ , w)" 
11 (r 1 v li"' 1 ( F" 1) 1 ( Fii 1) T • v l) 

1 
+ () kn ( ) + I'· .i „ v i/li ( F /Ir I ( F li ) T . v { r 

+ (1 - B)kn { (r l V'·i"ll l ( F" ' l) l n" I' ()I + (.i"V'Tí" (F T l 'ií'' ' ()I } 
- e kn (.r1 f 11 1

, {) 
1 

- (1 - B)kn (.i 11 f", (} 
1 

- e kn (1ij 11
+

1fn +1 
/ ) " - (1 - B)kn (. ij" Í" , ~1 . 

5.1.1.2 Implicit Euler scheme The Problem 4.4 will take following form 
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(5.1.6) 

5.1.2 Space discretization 

In the next step we will prepare the discretization in space using the Finite 
Element Method. We will approximate the domain O by the polyhedric 
domain Oh, which can be divided into tetrahedrons. By ~ we will denote 
the set of tetrahedrons covering nh. We will assume the regularity of ~' 
which means that every two elements are disjoint or have a common face, 
edge or point. By T we will denote the reference element (see Figure 5.1.1 
for details). 

The specificity of our approach is in computing the FS interaction simul­
taneously, in the sense of using one velocity and one displacement vector for 
the whole domain. Now there is the question of what kind of elements we will 
use for pressure, velocity and displacement. As we have written in Chapter 
4.3, our system has certain similarities with the Navier-Stokes system. The­
refore we will have to use a stable pair of pressure/velocity elements. The 
stability arguments are based on the solenoidal velocity spaces (spaces with 
zero divergence), which physically means incompressibility. But our solid 
material is incompressible too, so we can use the sarne kind of elernents for 
displacement as for velocity. 

One stable combination of elements on tetrahedrons is P2 , P1 . We will 
describe it more precisely. 

5.1.2.l P1 element This element means approximation by a continuous 
piecewise linear function. In the words of spaces it will be 

~ 

dim Ph == n , where n is the number of vertices. 
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(- 1, - 1,1] 

(1, - 1, - 1] 

" 
FIG. 5 .1.1. Referential element T 

If \Ve use p . as space base we can write pressure Ph as 
-i 

n 

Ph= Ldkpk. 
k==l 

We will use the affine equivalence for practical computation. The local 
basis on the reference element can be derived from barycentrical coordinates 
(in this case the base functions are barycentrical coordinates - we will denote 
them by Ai)· 

5.1.2.2 P2 element In this ca.se the approximation will by done by a se­
cond order polynom on each element. 
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\]h == {vi E [C1(f2h))3;vif KiE (P2(Ki)]3 VJ(i E Th} 
Wh== span{w1, ... Wn} wi(Qj) ==bij 

<lim Wh == n, where n is the number of vertices -
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vh ==span{(w1,0,0),(0 Wi,0),(0 O,w1), ... ,(0,0,wn),fun+l'''''vm} 
~~~ 

-<lim Vli == m 

vi ... correspond to vertices i < 3n 

vi ... correspond to mid-edges 3n < i < m 

The velocity iJh can be written in the basis vh as 

(5.1.7) 

and the displacement in a similar way 

m 

ah= Lbkuh. (5.1.8) 
k=l 

The local form of base functions can be derived from barycentrical coor­
dinates, too. 

f1(x) == A1(i)(2A1(x) - 1) 
f2(x) == A2(i)(2A2(x) - 1) 
f3(x) == A3(x)(2A3(x) - 1) 
f4(x) == A4(x)(2A4(x) - 1) 
f5(x) == 4;\1 (x);\2(x) 
f5(x) == 4;\2(i),\3(i) 
f1(i) == 4;\3(x),\1 (i) 
fs(i) == 4;\1(i);\4(i) 
fg(x) == 4;\2(x),\4(x) 

f 10(x) == 4;\3(x);\4(x) 

Look at Fig 5.1.2 for better space view. 
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FIG. 5 .1. 2. Degrees of freedorn for P1 ,P2 

5.1.2.3 Minielement Another stable pair of element spaces is sometimes 
called minielement. It is continuous P1 pressure and linear velocity with 
bubble function. The local basis follows 

After time discretization we have to solve the problem on each time level. 
We will approximate the spaces V,P,U on the time interval [tn, tn+I] in the 
case of the P1 ,P2 pair 

ifh == {vh E [C1(0h)] 3
: vhf KiE [P2(Ki)] 3 VKi E 7h,vh ==O on r1,ro} 

Ph== {p. E C0(flh) : p. f Ki E P1 (Ki) V Ki E 7h} 
-i -'l 

Uh== {uh E [C1(nh)]3 : uhfKiE [P2(Ki)]3 VKi E 7h,uh == 6 on r1,fo}. 

Let US denote by Ví: the approximation of v( tn)' similarly by Uh the 
approximation of u(tn) and finally by P'h the approximation of p(tn)· 
Remark 5.3 (Notation). 

We will insert the basis 'Vh,p, uh into 5.1.1,5.1.2,5.1.3 as test functions 
and obtain a nonlinear algebraic set of equations 
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(5 .1.9) 

(5.1.10) 

Q == ( 1 -J 1. n + l Ti" : 1 i! ) _ ( /Í 1. n ("('z 1-; ) 
I . · 11 · .!_/1 ,..,. . /1 -11 ,.., (5.1.11) 

( 
· 1 I ' 1 -r I 1 - ) ( · 11 -11 -1 ) + .J I l'h . .r_h .f - .J ,„,r_„ f 

-k (1·11 +11/' ' 1 (F„ I) T \;711) -k ( ··11rlj/' -: l (Fn : l) T V ) 
n . h ' - h n .J h · 

/ r_„ s 
.r 

- () ( \7 i!';; I ( F" I r I u1;; I - N;;) Ji,\ 
- ( 1 - e) ( n „ I ( F n ) - 1 ( -n -t l - -n ) -: ) v l h li h li h • .!_11 .r 

+ e { (21"" : I p ri.+ l u.·. i v. V ·F ) } + (1 - B)k { (2 ;'" F" Ull' \711 ) } . dC -h n · UC ' -h 
~ ~ 

/I. ( j" : 1 \7 ·/i;: : I ( F" I ) 1 ( F" I ) T ' \7 /h ) f 

+e 
+ '' (rv11;; WT1 (F") T. Vl',,).1 

+ (1 - ())kn { (.i" hV i!;: i ( F" i) i /';; ',i.!.;,) I + (/' \7 0: ( F") i i•-;:, .!.'.1i) I} 
- e k ( ·n+1:fn+1, ·ft) - (1 - B)k (1·11:fn, i!) n .J _;, n . -11 

J .r 

- e k ( 1-i'i"·-+- 1 :fn+i ~ ·11 ) - (1 - B)k (a;··11 f 11
• TJ ) n . .J -h n . -11 ' 

~ ~ 

where vh,uh and Ph will be substituted by iJh == Eaivt, ilh == Elíu{ and 
Ph == EK-kpz. 

Problem 5.4. In each time step we will have to find X == ( ~+1 , ~+ 1 , p~+l) E - -Uh X vh X Ph satisfying system 5.1. 9, 5.1.1 o and 5.1.11 - shortly 

ii(X) ==o. (5.1.12) 

5.2 Nonlinear solver 

We will use a method from numerical optimalisation for the solution of our 
nonlinear Problem 5.4. The basic task for these methods is the problem of 
finding a minimum of the function F : JRN ~ JR , but after a very simple 
correction can be used for the solution of nonlinear equations. 

These methods can be characterized by the following algorithm: 

1. Find the direction of sk ( direction of decline) 
-# 

2. Find ak (the step length) so that Xk + aksk is better in some sense 
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- -3. Xk+1 == Xk + o:ksk. 

Iterate these steps until you find ;ť· such that F(X*) < F(X) vX. 
In the next part we will use the following notation: F is the minimalised 

function, § == \! F, G == \/2 F. 
The first step of our algorithm can be performed in various ways. For 

our problem we will use the Newton rnethod, which is defined by 

For details about other methods see (Lukšan, 2004). 
Generally, the second step cannot be arbitrary. If it satisfics some condi­

tions, at least local convergence can be proved. 

Theorem 5.5. The step length ni, i E N, satisfies the Wolfe condition, if 
there exist numbers O < c1 < 1/2 and é 1 < é 2 < 1 such that 

Fi + 1 - ~· < é10t·tFg-· i - i i i (5.2.13) 

and 

(5.2 .14) 

The algorithm which can find the appropriate step length can be descri­
bed by the following scheme ( this method is called Line search): 

1. chaose n > O, a == O 
2. n ==a; n ==a. If 5.2.13 and 5.2.14 are satisfied, then finish with ai ==a. 

If not 5.2.13 go to step number 4. 
3. take o: using extrapolation such that 1 1a < a < 120: and go to step 2. 
4. chaose a using interpolation such that /31 (a - a) < (a - a) < f32 (a - o:). 

5. If 5.2.13 and 5.2.14 are satisfied, then finish with o:i ==o:. If not 5.2.13, 
set o: == o: and go to step number 4, else set o: == o: and go to step 4. 

For interpolation in step 4 we can use the interpolation of quadratic or -cubic functions. For brevity we introduce the notation </J(o:) == F(X + o:š} 
and </Jt(o:) == šf1 g(X + o:š} and 

and 

A = c/>(Ci) - cf>(g_) 
(o: - a)</>t(o:) 

C == (B - 1) - 2(A - 1) 

B = cf>t(Ci) 
cpi( Q) 

D == (B - 1) - 3(A - 1). 

Then quadratic interpolation means (using two values) 

a- o: 
a - a = 2(1 - A)' 

( using two derivatives) 
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cubic interpolation 
Q'-Q 

Q-Q== - . 
- D + /D2 - 3C 

Now we turn from the problem of finding the minimu~ of F to solvin_p our 
nonlinear set of equations. Simply substitute F == ~ llRll, then § == R and 

G = [ vRJ -
1

. We can formulate th solution algorithm for our nonlinear 
problem: - -1. chaose initial X == X0 

2. sk = [vR(Xk)r
1 

R ( Xk) 
3. find the step length a using quadratic/cubic line search - -4. xk+1 == xk + aksk - -5. go to step 2 until llR(Xk+1)ll < E. - -The second step actually means: solve linear problem GX == nn, where 

G is Jacobian matrix ~l In general, there are two different ways of con­
structing the matrix G. Analytically derive Problem 5.4 with respect to all 
unknowns, or use finite differences to approximate the matrix G. We will 
use the second possibility. 

The approximation of matrix G can be done column by column using 
the formula 

or 

where 6 == FAf,ei are unit basis vectors in ~N, EM is machine precision. 
We will solve the linear problem by the GMRES method with ILU pre­

conditioning. All algorithms described in this section are taken from PETSc 
library (Satish Balay et al., 2001). 

5.3 Mesh generation 

The main aim of this chapter is to give a practical guide to the creation of 
the right mesh for our solver. We will need a very special one. Remember 
our approach: compute simultaneously fluid and structure. We will create a 
mesh, which must include two domains and a denoted internal boundary. 

We have tried some mesh generators and we state only a few can do this. 
Finally we used the program Netgen (Joachim Schober! et al., 2003). This 
program expects CSC geometry format and has many export types. \l'./e've 
chosen neutral f ormat. 

Let us look on Geometry 5.6. 
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Geometry 5.6. 
# 

## normalized common carotid 
# 

algebraic3d 

# cut cylinder by planes: 

solid 
and 
and 

s o lid 
and 
and 

s o lid 

fincyl = cylinder ( O, O, 15; 
plane (O, O, O; O, O, -1) 
plane (O, O, 12; O, O, 1); 
fluid = cylinder ( O, O, 15; 

plane (O.O, O, O; O, O, -1) 
plane (O, O, 12; O, O, 1); 
solid = fincyl and not fluid; 

tlo fluid; 
tlo solid; 

O, O, -1; 1.168 ) 

o, o, -1; 1.0) 

4 

This geometry corresponds to the normalized left carotid. It consists of 
two domains : fluid and solid, where solid is cylinder with radius 1.168 
without fluid cylinder (radius 1.0). The very last two commands tlo make 
both domains included in the final rnesh. 

But there is a bad effect for the element pair P1,P2 , which we will discuss 
now. The stability arguments for this pair are based on Theorem 5.7. 

Theorem 5. 7 (Babuška-Brezzi Condition) 8 

3rn > O : 
. f (div v h' q h) in sup > rn 

QhEPh vhEVh llq1illL2 (0) llvhllh -

The corollary for the P1 ,P2 pair is : there cannot exists an element having 
all vertices on the boundary. 

The main problem with mesh generators is not in generating interna! 
boundary and two domains, but in respecting this condition. Netgen was 
not able to generate a mesh satisfying such a condition. This resulted in the 
necessity to write our own program which scans the mesh for these elements 
and removes them. This removing is based on a simple idea: if we put a new 
vertex into the barycenter of a tetrahedron we have 4 new tetrahedrons 
all of which satisfy the discussed condition. See Figure 5.3.3 for a simple 
example. 

From this point of view it is better to use minielement, which does not 
need this condition. 
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FIG. 5.3.3. Splitting tetrahedron 



46 

NUMERICAL RESULTS 

A few words about numerical results. The computation in 3 space di­
mensions is very time and computer RAM consurr1ing. Every result presen­
ted here was computed on computers PC with lGB RAM and processors 
Pentium IV 2.8 GHz or Pentium IV HT 2.6 GHz. Every computed problem 
was non-stationary, so the results are animations. We highly recommend to 
the reader to see them on the attached CD-ROM. Each problem has its own 
directory under the /problem directory. There are static pictures, animati­
ons and a few1 data files, which can be opened by the Mayavi program ( also 
on CD) or by the program Tecplot. The following pictures are only static 
frames and cannot substitute real animation. 
6.1 The Stokes problem 

The simplest flow model which can be computed by our program is the 
Stokes problem. We can derive it by neglecting the interaction terms ( i1 _ O) 
and the convective term in fluid (('u. \l)v O). The remaining linear system 
is very easy to solve. The results at pictures show the flow in the carotid. 
You can find animations of this process on the attached CD in the directory 
problem/stokes. Here we present two slides in two different times. The 
boundary conditions are chosen to simulate the real action which means 
the flow by pressure gradient. The applied pressure stroke is approximated 
by a sinusoida! pass of aortic pressure. 

1 We were not able to put there more data files, because the capacity of CD ROM is limited by 650 MB 
an we have more than 25 GB of computed data results 
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X 

b:_ 
y 

FIG. 6.1.1. · Stokes problem - Carotid 

Vertices 1 644 
Elements 23 232 
Equations 42 342 
Comp time 2 hours 
Time iters 98 

TABLE 6.1.1. 
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X 

FIG. 6.1.2. Stokes problem 

p 
10. 7587 
10.754$ 
10.7475 
1o.7405 
10.7335 
10. 7265 
10.7195 
10.7125 
10.7055 
10.6985 
10.6915 
10.6845 
10.G775 
10.6705 
10.6635 

Time=0.01s 
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)< 

FIG. 6.1.3. Stokes problem 

p 
15.9624 
15.9511 
15.&401 
15.1291 
14.7181 
14.3071 
13.8961 
13.4851 
13.0741 
12.6631 
12.2521 
11.84 11 
11.4301 
11.0191 
10.6081 

Time=0.50s 

9 
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6.2 The Navier-Stokes Problem 

The Stokes linear problem is a very b d approxin1 tion of th art ri 1 How. 
It is useful for the low Reynolds numb r but by n gl cting th conv ctive 
term the possibility to model real geo1n try i. . th flow p t olid profil 
is lost. 

The model which includes the convective tenn i know1 vi r-Stok . 
In our formulation it suffices to omit the deform tion (ii = O). The r ul­
ting nonlinear problem is very well solvable by the m thod which w hav 
described earlier, till Reynolds number 1600. For higher R we hould u e 
some type of stabilization, but for the arterial flow it is not neces ry. The 
stabilization provided by the combination P2/Pl is sufficicnt for thi pro­
blem. 

For the verification of our method we have chosen the problem of fiow 
past an isolated profile in free space (Fig. 6.2.4). The free space is simulat d 
by the following trick. We prescribe nonhomogenous Dirichlet conditions 
on the outer boundary of the cuboid, in which the bypassed cylinder is 
inserted. There is a no-slip condition on the cylinder. The test proceeds in 
the following manner: it increases the fluid velocity on the cylinder surfac 
up to the separation of a wake behind cylinder. 

You can see Von Karmans vortex line on the presented results: as an 
animation on the CD in /problem/ns2, or as a picture, presenting the 
velocity field and pressure in sectorial view. The fiow is constant with respect 
to the shift in the direction of the x axis. The result can be computed by 
the 2D computation as well. 

y 

x-Á-z 

FIG. 6.2.4. Navier Stokes - test I 

Vertices 7 517 
Elements 40 442 
Equations 177 272 
Comp time 13 days 
Time iters 458 

TABLE 6.2.2. 

An unstructured mesh is suitable for this problem. It allows a detailed 
description of the surface of the cylinder and its nearest environment. Simul-
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taneously, by decreasing the number of 1 n1 nt in th <lir tion toward 
the boundary, we were able to reduc th tot l numb r of l m nt . Th 
constructed mesh (on Fig. 6.2.5) h 40442 1 111 nt , which OIT pond to 
177272 equations. The computation took 13 d y . 

FIG. 6.2.5. Navier Stokes - test I - mesh 
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y 

z 

t=5.00s 

FIG. 6.2.6. Navier Stokes - test I 
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y 

z 

t=7.00s 

FIG. 6.2.7. Navier Stokes - test I 
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A more difficult problem for computation i th fi p t cylinder, 
which is closed into a tube ( Fig. 6.2. ). On th int rnal boundary of 
the tube there is the no-slip condition. Thi cr t an ff ct, which i not 
present in the previous case: the interaction b tw n th vort flow behind 
the cylinder and the fluid on the tube boundary. A t t, th bound ry 
conditions were chosen as follows: on the outlet th r i fr boundary o 
the input there is a parabolical profil incre ing with tim . You can e the 
entrance of the vortex. The results ar on the CD in /problem/nsmalek, 
but here we present only one frame with velocity fi ld in s ctorial vi w on 
the plane xz. This can be computed only by a real 3D computation. 

X 

b_z 
y 

FIG. 6.2.8. Navier Stokes - test II 

Vertices 4 107 
Elements 21 316 
Equations 95 044 
Comp time 10 days 
Time iters 422 

TABLE 6.2.3. 



z 

p 
100 

77.5 

55 

32.5 

10 

y 
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v v f r 
r 

' v r y ~ , 
v 

• Yh 

f li , v 

vf 

' v 

r 

t=7.00s 

FIG. 6.2.9. Navier Stokes - test II 
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Y bifurcation (see Fig. 6.2.10) i probl in, which i v ry clo to biology. 
It is the division of a vessel into two brar h s. Th boundary ondition 
corresponds to the flow driven by pre sure gradi nt. R ults c n be found 
on the CD in /problem/y3. Here we pr sent only on fra1ne aft r 0.5 of 
real time. At the picture there i the pr ssure and v locity field on th cut 
plane zy. 

p--- y 
z 

FIG. 6.2.10. Y bifurcation 

Vertices 
Elements 
Equations 
Comp time 
Time iters 

4 122 
16 664 

166 878 
2 days 

19 

TABLE 6.2.4. 



z 
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p 
154.885 
154.876 
142.919 
130.962 
119.005 
107.048 
95.0905 
83.1335 
71.1765 
59.2195 
4 7.2625 
35.3055 
23.3485 
11.3915 

-0.565495 

Time=0.50s 

FIG. 6.2.11. Navier Stokes - test III 

57 
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6.3 Elastic deformation 

Our program can compute more than just flow. If w pr par n1 h which 
contains only solid elements, we can compute 1 tic deform tior . W c n 
see it on Fig 6.3.12. We stretch the bottom and th top of the obj ct, nd 
due to the incompressibility constrain we c n se the r duction of th object 
diameter. At the following pictures we can s the initial nd d formed tate. 

FIG. 6.3.12. Elastic deformation 

Vertices 465 
Elements 1 497 
Equations 12 237 
Comp time 12 hours 
Time iters 63 

TABLE 6.3.5. 
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z 

t=O.OOs 

FIG. 6.3.13. Elastic deformation - Initial state 
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z ... 

t=0.36s 

FIG. 6.3.14. Elastic deformation - Displacement in deformed state 
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z 

t=0.56s 

FIG. 6. 3 .15. Elastic deforrnation - Deforrned state 
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6.4 Fluid-Structure interaction 

The main aim of our approach i to con1put th Fluid- tru tur int r ction. 
We must declare that not all problen1 which w t· rt d to on1put w r 
successfully computed. There are practicaly 1 o an lytic 1 r ult nd our 
numerical simulations for low value of /3 result d in non-phy ic 1 b haviour. 

The first problem is deflating a breathalyz r. Th g ometry i at Fig. 
6.4.16. It represents a rubber breathalyzer fill d with flui . W pr rib 
the velocity fiowing out of the ball and after om tim w c n th 
volume of the breathalyzer decreasing. There is al o n nim tion on th 
CD in the directory /problem/breath. Here we pre ent only thre fr rr1 
( each picture is divided into solid (top) and fluid (bot tom) p rt). On th 
last frame 6.4.21 there is velocity field in the deformed state. It onfirm 
our target to compute the velocity and deformation fields tog th r. 

FIG. 6.4.16. Breath - Geometry 

Vertices 1 389 
Elements 6 508 
Equations 48 771 
Comp time 5 days 
Time iters 1154 

TABLE 6.4.6. 
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Time=O.OOs 

FIG. 6.4.17. Fluid-Structure interaction - Initial state 
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Time=5.00s 

FIG. 6.4.18. Fluid-Structure interaction - Breathalyzer 
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Time=B.OOs 

FIG. 6. 4 .19. Fluid-Structure interaction - Breathalyzer 
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Time= 11.00s 

FIG. 6.4.20. Fluid-Structure interaction - Breathalyzer 
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X 

z 

t= 11.00s 

FIG. 6.4.21. Fluid-Structure interaction - Velocity in deformed state 
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The second F /S interaction problem is th flow p t n el tic ob t cle 
in a solid tube. The geometry of the problem is at Fig. 6.4.22. The ob­
stacle is divided into two parts: non-elastic ( clos r to the boundary) and 
elastic. On the inlet we prescribe the velocity of flow into the tube and we 
can see the defiection of the elastic material in the direction of the velo­
ci ty field. The whole animation can be found on the CD in the directory 
/problem/obstf ix. 

)< 

~l 
'( 

FIG. 6.4.22. Elastic obstacle - Geometry 

Vertices 1 389 
Elements 6 508 
Equations 48 771 
Comp time 16 hours 
Time iters 37 

TABLE 6.4. 7. 
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X 

z 

Time=O.OOs 

Time=0.1 Os 

FIG. 6.4.23. Fluid-Structure interaction 
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X 

z 

Time=0.20s 

Time=0.30s 

FIG. 6.4.24. Fluid-Structure interaction - Deformed state 
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CONCL USIONS 

In this work we have shown one of the possibilities, how to model the 
problem of flowing fluid surrounded by elastic solid material. We have tried 
to show the approach and method of derivation in this very new branch. 

The main contribution of our work is our own program FSTRIN, which 
computes the solution of the time dependent problem in 3 space dimensions, 
using an unstructured 1nesh, which has the ability to describe even the most 
complicated geometries. The program is written in a general manner with 
the idea of extending it to more equations, which we hope to add into our 
model. 

The directions, which we will try to extend our model to, can be divided 
into three branches: 

1. Mechanical properties. The description of the artery wall was very 
simple. We would like to investigate the properties of more complicated solid 
materials. Also we will try to model the flow of blood in thinner arteries, 
which means using a different fluid model then the Newtonian one. 

2. Physical / Chemical properties. As we state in the Anatomy chapter, 
remodelation is a very important property of living tissue. This phenomena 
has not been sufficiently described yet and we hope that we will bring some 
new results into this problem. 

3. Mathematical properties. From the mathematical point of view we do 
not know anything about this model, even the question of the exstence ot 
the solution. This is big gap, which we hope to clear primarily. 



72 

BIBLIOGRAPHY 

Brdička, M. (2000). Mechanika kontinua. Acad ini . 

Hron, J. (2001). Fl'Uid structure interaction with application in biomecha­
nics. Ph. D. thesis, Charles U ni versi ty, Prague. 

Humphrey, Jay D. (2002). Cardiovascular Solid Mechanics. 

J. Valenta, B. Bo Šrámek, and František Klimeš (1995). Biomechanics oj 
the Caridovacular System. ČVUT. 

Joachim Schober!, Hannes Gerstmayr, and Robert Gaisbauer (2003). et­
gen - automatic mesh generator. http://www.hpfem.jku.at/netgen. 

Lukšan, L. (2004). Numerické optimalizační metody. 
http:/ /www.cs.cas.cz/ luksan/lekce4.ps. 

Maršík, F. (1999). Termodynamika kontinua. Academia. 

Satish Balay, Kris Buschelman, Wiliam D. Gropp, Dinesh Kaushik, Matt 
Kneplay, Lios Curfman Mclnnes, Barry F. Smith, and Hong Zhang (2001). 
Petsc home page. http://www.mcs.anl.gov/petsc. 

Štembera, V. (2003). The flow through visco-elastic tubes. Master's thesis, 
Charles University, Prague. 

-FYZ FAKULTY KN\HOVNA MAT. . , 
Matematické oddě\ent 

SokO\OV_!k~ ... ~3• 


	Image00001
	Image00002
	Image00003
	Image00004
	Image00005
	Image00006
	Image00007
	Image00008
	Image00009
	Image00010
	Image00011
	Image00012
	Image00013
	Image00014
	Image00015
	Image00016
	Image00017
	Image00018
	Image00019
	Image00020
	Image00021
	Image00022
	Image00023
	Image00024
	Image00025
	Image00026
	Image00027
	Image00028
	Image00029
	Image00030
	Image00031
	Image00032
	Image00033
	Image00034
	Image00035
	Image00036
	Image00037
	Image00038
	Image00039
	Image00040
	Image00041
	Image00042
	Image00043
	Image00044
	Image00045
	Image00046
	Image00047
	Image00048
	Image00049
	Image00050
	Image00051
	Image00052
	Image00053
	Image00054
	Image00055
	Image00056
	Image00057
	Image00058
	Image00059
	Image00060
	Image00061
	Image00062
	Image00063
	Image00064
	Image00065
	Image00066
	Image00067
	Image00068
	Image00069
	Image00070
	Image00071
	Image00072
	Image00073
	Image00074
	Image00075
	Image00076
	Image00077

