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Abstrakt: V této práci se zabýváme Aronszajnovými a specialńımi Aronszajnovými

stromy, jejich existenćı a neexistenćı. Zavád́ıme dnes nejběžněji už́ıvanou definici

speciálńıho Aronszajnova stromu a několik zobecněńı této definice a zkoumáme vz-

tahy mezi nimi. Dále se věnujeme stromové a slabé stromové vlastnosti, což je

tvrzeńı, že na daném regulárńım kardinálu κ neexistuje žadný Aronszajn̊uv strom,

respektive žadný speciálńı Aronszajn̊uv strom. Definujeme a srovnáváme dva forc-

ingy, Mitchell̊uv a Gregorieff̊uv, a následně je použiváme k źıskáńı modelu, ve kterém

máme (slabou) stromovou vlastnost na daném kardinálu. Nakonec ukážeme jak

použ́ıt Mitchell̊uv forcing ke konstrukci modelu, ve kterém máme (slabou) stro-

movou vlastnost na v́ıce kardinálech.

Kĺıčová slova: stromová vlastnost, slabá stromová vlastnost, Máhl̊uv kardinál, slabě

kompaktńı kardinál, měřitelný kardinál, Aronszajn̊uv strom, specialńı Aronszajn̊uv

strom,

Abstract: In this thesis we study the Aronszajn and special Aronszajn trees, their

existence and nonexistence. We introduce the most common definition of special

Aronszajn tree and some of its generalizations and we examine the relations between

them. Next we study the notions of the tree property and the weak tree property

at a given regular cardinal κ. The tree property means that there are no Aronszajn

trees at κ and the weak tree property means that there are no special Aronszajn trees

at κ. We define and compare two forcings, the Mitchell forcing and the Grigorieff

forcing, and we use them to obtain a model in which the (weak) tree property holds

at a given cardinal. At the end, we show how to use the Mitchell forcing to construct

a model in which the (weak) tree property holds at more than one cardinal.

Keywords: the tree property, the weak tree property, Mahlo cardinal, weakly com-

pact cardinal, measurable cardinal, Aronszajn tree, special Aronszajn tree
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1 Introduction

We say that a regular cardinal κ has the (weak) tree property if there are no (special)

Aronszajn trees at κ.1 In 1930’s, Nachman Aronszajn proved in ZFC that there is a

special Aronszajn tree at ω1. Therefore ω1 does not have the (weak) tree property.

In 1949, Ernst Specker [Spe49] generalized Aronszajn’s original result under an

additional cardinality assumption. He proved that if κ<κ = κ then there exists a

special Aronszajn tree at κ+. Hence if we want the (weak) tree property to hold at

successor cardinal we need to violate GCH. On the other hand, if κ is strong limit

and regular then κ has the tree property if and only if κ is weakly compact.

In any case, the tree property is connected with the existence of a weakly compact

cardinal. In 1972, William Mitchell and Jack Silver [Mit72] proved that the tree

property at ω2 is consistent under the assumption that a weakly compact cardinal

exists and the weak tree property at ω2 is consistent under the assumption that a

Mahlo cardinal exists. In the same paper they also proved that these large cardinals

assumptions are necessary. In fact they proved it for an arbitrary cardinal κ++,

where κ is regular. In 1979, James Baumgartner and Richard Laver [BL79] showed

that the tree property at ω2 can be achieved by iterating the Sacks forcing for ω up

to a weakly compact cardinal and in 1980, Akihiro Kanamori [Kan80] generalized

this result to arbitrary κ++, where κ is a regular cardinal. The method of Mitchell

and Silver uses the fact that the Mitchell forcing is a projection of the product of

a κ+-Knaster forcing and a κ+-closed forcing. On the other hand the method of

Baumgartner and Laver uses the fact that the Sacks forcing has the fusion property.

Actually only this property is crucial for the proof. Other forcings with the fusion

property can be used the same way. In Chapter 4 we present both methods, the

second modified for the Grigorieff forcing.

The Mitchell forcing can be used to get the tree property at two non-successive

cardinals under the assumption of two weakly compact cardinals and to get the

weak tree property at two successive cardinals under the assumption of two Mahlo

cardinals. This can be generalized to obtain the tree property at every ω2n, 0 <

n < ω, under the assumption of ω-many weakly compact cardinals and the weak

tree property at every ωn+1, 0 < n < ω, under the assumption of ω-many Mahlo

cardinals. We present this result in Chapter 5. However, Menachem Magidor showed

that to get the tree property at two successive cardinals, at least a measurable

cardinal is required, see [Abr83]. In 1983, Uri Abraham [Abr83] showed that this

situation is consistent under the assumption of a supercompact cardinal and a weakly

1Note that the definition of the weak tree property make sense only for successor cardinals, see

Definition 3.21.
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compact cardinal above it. In 1998, James Cummings and Matthew Foreman [CF98]

generalized Abraham’s result and showed that if we assume ω-many supercompact

cardinals then the tree property at every cardinal ωn, 1 < n < ω, is consistent.

The situation is much more complicated if we consider successor or even double

successor of a singular strong limit cardinal κ. In 1996, Menachem Magidor and

Saharon Shelah [MS96] proved under large cardinal assumptions that it is consistent

that the tree property holds at κ+. In 1998, James Cummings and Matthew Foreman

[CF98] showed that the tree property can hold at κ++. Recently Itay Neeman [Nee]

showed, again under large cardinal assumption, that it is consistent to have the tree

property at every ωn, 1 < n < ω plus at ℵω+1. The question whether one can have

the tree property at κ+ and κ++ at the same time is still open.
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2 Preliminaries

In this thesis we assume a general knowledge of the set theory, especially of forcing,

large cardinals, elementary embeddings and trees.

Our notation is more or less standard. However, we use some concepts for which

the notation has not been settled yet. Therefore we present our notation here and

we give reference to the definitions where we first introduce these concepts.

• Rκ Definition 2.16
• M-special ω1-Aronszajn tree Definition 3.7
• S-special ω1-Aronszajn tree Definition 3.11
• Non-Suslin ω1-Aronszajn tree Definition 3.15
• The weak tree property Definition 3.22
• M-special κ+-Aronszajn tree Definition 3.26
• S-special κ+-Aronszajn tree Definition 3.31
• Non-Suslin κ+-Aronszajn tree Definition 3.34

The notation of S-special ω1-Aronszajn tree is motivated by the notation in

[She98] and the notation of Non-Suslin ω1-Aronszajn tree is taken from [Han81].

The following lemmas are used very often throughout the entire thesis.

Lemma 2.1 (Easton’s Lemma). Assume P, Q ∈ V are forcing notions, P is κ-cc

and Q is κ-closed. Then the following holds:

(i) 1Q 
 P̌ is κ̌-cc,

(ii) 1P 
 Q̌ is κ̌-distributive.

Lemma 2.2. Suppose P and Q are forcing notions, G ⊆ P and H ⊆ Q. Then the

following are equivalent:

1. G×H is P×Q-generic over V ,

2. G is P-generic over V and H is Q-generic over V [G],

3. H is Q-generic over V and G is P-generic over V [H].

Furthermore, if these conditions hold, then V [G×H] = V [G][H] = V [H][G].

Lemma 2.3 (Silver’s lifting lemma). Let j : M → N be an elementary embed-

ding between transitive models of ZFC. Let P ∈ M be a notion of forcing and G

a P-generic filter over M . Let H be j(P)-generic over N . Then the following are

equivalent:
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(i) ∀p ∈ G j(p) ∈ H.

(ii) There exists an elementary embedding j∗ : M [G]→ N [H], such that j∗ �M =

j and j∗(G) = H.

2.1 Trees

As we are interested in the weak tree property and the tree property we present

here some common definitions and basic lemmas about trees. These definitions and

lemmas can be found in [Jec03].

Definition 2.4. We say that (T,<) is a tree if (T,<) is a partial order such that

for each t ∈ T , the set {s ∈ T |s < t} is wellordered by <.

Definition 2.5. We say that S ⊆ T is a subtree of (T,<) in the induced ordering <

if ∀s ∈ S ∀t ∈ T (t < s→ t ∈ S).

Definition 2.6. Let T be a tree

(i) If t ∈ T , then ht(t, T ) = ot({s ∈ T |s < t}) is height of t in T ;

(ii) For each ordinal α, we define the α-th level of T as Tα = {t ∈ T |ht(t) = α};

(iii) The height of T , ht(T ), is the least α such that Tα = ∅;

(iv) T � α =
⋃
β<α Tβ is a subtree of T of height α.

Definition 2.7. For a regular κ ≥ ω, T is called a κ-tree if T has height κ, and

|Tα| < κ for each α < κ.

Very often, κ-tree is isomorphic to a subtree of the full tree (<κκ,⊂). More

precisely, this is the case whenever the κ-tree is normal. See the definition below.

Definition 2.8. A normal κ-tree is a tree T such that:

(i) ht(T ) = κ;

(ii) |Tα| < κ, for every α < κ;

(iii) |T0| = 1;

(iv) If ht(s, T ) = ht(t, T ) is a limit ordinal, then s = t if and only if {r ∈ T |r < s} =

{r ∈ T |r < t}.

Note that the conditions (i) and (ii) ensure that a normal κ-tree is a κ-tree.
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Lemma 2.9. Let κ be a regular cardinal. Then every normal κ-tree is isomorphic

to a subtree T ′ of the full tree (<κκ,⊂).

Proof. We define by induction on α < κ isomorphisms iα : T � α → T ′ � α where

T ′ � α is a subtree of <κκ � α. Since |Tα| < κ for each α < κ by (ii) of Definition

2.8, there is a 1-1 function gα : Tα → κ.

Set T ′0 = {∅}, by (iii) of Definition 2.8, i1(r) = ∅ is an isomorphism between T0

and T ′0, where r is the unique root of T .

Suppose iβ : T � β → T ′ � β is constructed for each β < α. First, if α is limit,

set iα =
⋃
β<α iβ and T ′ � α =

⋃
β<α T

′ � β.

If α = γ + 1 and γ is a successor, then we define iα by extending iγ setting for

each s ∈ Tγ:
iα(s) = iγ(t) ∪ {〈γ, gγ(s)〉} , (2.1)

where the node t is the immediate predecessor of s. Let T ′ � α = T ′ � γ ∪ T ′γ, where

T ′γ = {iα(s)|s ∈ Tγ}.
If α = γ + 1 and γ is limit, then we define iα by extending iγ setting for each

s ∈ Tγ:
iα(s) =

⋃
{iγ(t)|t < s} . (2.2)

By (iv) of Definition 2.8, iα is 1-1 and clearly it is also an isomorphism. Let T ′ �

α = T ′ � γ ∪ T ′γ, where T ′γ = {iα(s)|s ∈ Tγ}.
At the end, set T ′ =

⋃
α<κ T

′ � α and i =
⋃
α<κ iα.

Note that if we consider a successor cardinal κ+ in the previous lemma, then the

levels of the κ+-tree have size ≤κ. Hence we can strengthen the formulation of the

previous lemma for successor cardinals in the following way.

Corollary 2.10. Let κ be a cardinal. Every normal κ+-tree is isomorphic to a

subtree T ′ of the full tree (<κ
+
κ,⊂).

Proof. The proof is the same as before, the only difference is at successor ordinals.

Since each |Tα| < κ+, so |Tα| ≤ κ and we can take gα to be a function from Tα to κ

instead of to κ+.

Definition 2.11. Let T be a tree. We say that B is a branch if it is a maximal

chain in T .

Definition 2.12. Let κ be a regular cardinal. We say that a κ-tree T is a κ-

Aronszajn tree if it has no branch of size κ. We denote the class of all Aronszajn

trees at κ as A(κ).
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By König’s Lemma, no ω-Aronszajn trees exist. On the other hand, by result of

Aronszajn, there exists an ω1-Aronszajn tree. Moreover, if we assume GCH, then

there exists a κ+-Aronszajn tree for each regular cardinal κ, by result of Specker

[Spe49]. Therefore it is natural to ask, whether there can be a regular cardinal λ

such that there are no λ-Aronszajn trees.

Definition 2.13. We say that a regular cardinal κ has the tree property, if there

are no κ-Aronszajn trees.

The following lemma tells us that if we want to get the tree property at κ, it is

enough to kill all normal κ-trees. The proof of the lemma is taken from [Jec03].

Lemma 2.14. Let κ be a regular cardinal. If there exists a κ-Aronszajn tree, then

there exists a normal κ-Aronszajn tree.

Proof. Let T be a κ-Aronszajn tree. T has height κ and each level of T has size

less than κ. We first choose one root t ∈ T0 such that | {s ∈ T |s > t} | = κ. Let

T ′ = {s ∈ T |s ≥ t}, then T ′ satisfies condition (iii) from Definition 2.8.

Now we guarantee the condition (iv). Let α < κ be a limit ordinal and t be some

node in T ′α. For every chain C = {s ∈ T ′|s < t} we add one extra node tC such that

s < tC for all s ∈ C and tC < r for each r such that r > s for all s ∈ C. Since for

every chain we add one extra node to limit level, this new tree satisfies (iv).

There are two common strengthening of the notion of an Aronszajn tree. The

first leads to a notion of a special Aronszajn tree, to which we dedicate an entire

chapter later. The second leads to a notion of a Suslin tree.

Definition 2.15. Let κ be a regular cardinal. We say that κ-Aronszajn tree is

Suslin, if it has no antichain of size κ. We denote the class of all Suslin trees at κ

as S(κ).

The notion of an ω1-Suslin tree first appeared in connection with the Suslin

problem of the characterization of the real line. Actually, in [Kur35] Kurepa showed

that the original Suslin hypothesis (SH) can be formulated as the claim that there

are no Suslin trees. For more details about Suslin hypothesis see [Jec03]. However,

we consider Suslin trees because they are the opposite of special Aronszajn trees in

the sense that no Aronszajn tree can be special and Suslin at the same time.

2.2 Dense Linear Order Without End Points

The structure of rational numbers Q is countable dense linear order without end

points. In this section we consider some common generalizations of Q at higher
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cardinals. The following definitions of Qκ and Q∗κ are taken from [Tod84]. In

addition, we introduce our definition of a generalization of the real line for higher

cardinals, because we want to generalize the concept of an R-embeddable tree (see

Definition 3.2) to higher cardinals.

Definition 2.16. Let κ be a regular cardinal. Then

Q∗κ =({f ∈ ωκ| {n < ω|f(n) 6= 0} is finite} \
{

0
}
, <lex); (2.3)

Qκ =({f ∈ κ2| | {α < κ|f(α) 6= 0} | < κ} \
{

0
}
, <lex); (2.4)

Rκ =({f ∈ κ2| {α < κ|f(α) = 0} is cofinal in κ} \
{

0
}
, <lex); (2.5)

where 0 denote the sequence from κ to 2 such that 0(α) = 0 for each α < κ

and <lex is the lexicographical ordering. We sometimes write <Qκ , <Q∗κ , <Rκ for the

corresponding structure instead of <lex or just < if it is not confusing.

Remark 2.17. Note that Qω
∼= Q ∼= Q∗ω. On the other hand, for κ > ω, Qκ 6∼= Q∗κ,

even if |Qκ| = κ. This holds, because Q∗κ does not contain any decreasing sequence

of uncountable length. However, in Qκ there are decreasing sequences of length κ.

In this thesis we work mainly with Qκ because we managed to prove that it has

some nice properties: we managed to generalize Kurepa’s Theorem for Qκ and prove

Lemma 2.19, which is very useful and plays the key role in proving Lemma 3.25.

On the other hand, the main advantage of Q∗κ is that it always has size κ. When we

work with Qκ we need to assume that κ<κ = κ for this.

The following lemma tells us that Qκ has the properties which we want from a

generalization of Q, with the exception that it does not have to have size κ.

Lemma 2.18. The ordering Qκ is linear, dense, without endpoints and |Qκ| = κ<κ.

Proof. The ordering Qκ is clearly linear, without endpoints and also |Qκ| = κ<κ.

We verify just density.

Let f < g in Qκ be given. Let α be the least ordinal such that 0 = f(α) < g(α) =

1. Since | {γ < κ|f(γ) 6= 0} | < κ, there is the least β > α such that f(β) = 0. Let

h = f � β ∪ {〈β, 1〉} ∪ f � (κ \ (β + 1)). Obviously, h satisfies f < h < g.

Lemma 2.19. (i) Let A = 〈fα|α < λ〉 be a decreasing sequence in Qκ, where λ

is a limit ordinal such that ω ≤ λ < κ. Then A does not have the infimum in

Qκ.

(ii) Let B = 〈gα|α < λ〉 be an increasing sequence in Qκ where λ is a limit ordinal

such that ω ≤ λ < κ. Then B has the supremum in Qκ.
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Proof. Ad (i). Let A = 〈fα|α < λ〉 be given. Assume for contradiction that there

is the infimum f ∈ Qκ of A. Since f ∈ Qκ, there is β0 < κ such that for each

β ≥ β0 f(β) = 0. Since λ < κ and κ is regular, there is γ0 < κ such that for

each γ ≥ γ0 and for each α < λ fα(γ) = 0. Let δ = max {β0, γ0}. We define

f ∗ = f � δ ∪ {〈δ, 1〉} ∪ {〈β, 0〉 |β > δ}. Clearly, f ∗ > f . Since f < fα for every

α < λ and since δ = max {β0, γ0}, f ∗ < fα for every α < λ. This is a contradiction

because we assume that f is the infimum of A.

Ad (ii). Let B = 〈gα|α < λ〉 be given. We define supremum g by induction on

β < κ.

For β = 0. Set

g(0) =

1 if ∃α < λ(gα(0) = 1);

0 otherwise.

Assume that g � β is defined, then we define g(β) as follows:

g(β) =

1 if ∃α < λ such that gα(β) = 1 and gα � β + 1 > g � β ∪ 〈β, 0〉 ;

0 otherwise.

First note that g is in Qκ since κ is regular and λ < κ.

Now, we show that g is the supremum of B. It is obvious that gα < g for every

α < λ. Hence it is enough to show that g is the least upper bound of B. Let h < g

be given. Then there is β0 < κ such that h � β0 = g � β0 and 0 = h(β0) < g(β0) = 1.

By definition of g there is α such that gα � β0+1 > g � β0∪〈β0, 0〉. As h � β0 = g � β0
and h(β0) = 0, g � β0∪〈β0, 0〉 = h � β0 +1 and so gα � β0 +1 > h � β0 +1. Therefore

gα > h.

Now, we present out generalization of Kurepa’s Theorem for Qκ, but let us first

recall the formulation of the original Kurepa’s Theorem for ω and Q.

Theorem 2.20. (Kurepa’s Theorem) Let (E,<) be a partially ordered set. Then

the following are equivalent:

(i) E is embeddable in Q;

(ii) E is the union of at most ω-many antichains.

Lemma 2.21. (Generalized Kurepa’s Theorem) Assume κ<κ = κ. Let (E,<)

be a partially ordered set. Then the following are equivalent:

(i) E is embeddable in Qκ;
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(ii) E is the union of at most κ-many antichains.

Proof. (i)⇒ (ii) Let f be the embedding. Let {qα|α < κ} be an enumeration of Qκ.

We define Aα = f−1(qα) for each qα ∈ Rng(f). Obviously, each Aα is an antichain

since f is the embedding.

(ii) ⇐ (i) We assume that
⋃
α<κAα = E, where each Aα is an antichain. Let

f : E → κ be a function such that Aα = f−1(α). For x ∈ E define g(x) so that

g(x)(α) = 1 if and only if α ≤ f(x) and {y ∈ E|y ≤ x} ∩ Aα 6= ∅.
Notice that Rng(g) is a subset of Qκ because g(x)(α) = 1 implies that α ≤ f(x),

where f(x) ∈ κ.

Now, we check that g is an embedding. Assume that x < y are in E and x ∈ Aα,

y ∈ Aβ for some β 6= α. We distinguish two cases.

First suppose that α < β. Then g(x)(α) = 1 and also g(y)(α) = 1 since x < y

and x ∈ Aα. And for all γ < α if g(x)(γ) = 1 then g(y)(γ) = 1 and so g(x) �

α ≤lex g(y) � α. If g(x) � α <lex g(y) � α, then g(x) < g(y) and we are finished.

If g(x) � α = g(y) � α, then we can continue as follows: for all γ > α it holds

that g(x)(γ) = 0 since γ > f(x). Hence g(x)(β) = 0 and g(y)(β) = 1; therefore

g(x) < g(y).

Next suppose that β < α. Again for all γ < β, if g(x)(γ) = 1 then g(y)(γ) = 1

and so g(x) � β ≤lex g(y) � β. Now, we show that g(x)(β) = 0 and g(y)(β) = 1.

Assume for contradiction that g(x)(β) = 1. Then by definition of the function g, we

know there exists z ∈ Aβ and z ≤ x. Hence z < y and this is a contradiction since

there are two comparable elements in Aβ. By the definition of g, g(y)(β) = 1 and

so g(x) < g(y).

Remark 2.22. Note that the assumption κ<κ = κ is necessary just in the proof

of (i) ⇒ (ii). Note also that the proof for the case κ = ω is the proof of Kurepa’s

Theorem.

Partials orders from Lemma 2.21 have another useful characterization.

Lemma 2.23. Let κ be regular and let (E,<) be a partially ordered set. Then the

following are equivalent:

(i) E is the union of at most κ-many antichains;

(ii) there is f : E → κ such that if s, t are comparable in E, then f(s) 6= f(t).

Proof. (i) ⇒ (ii) Since E is the union of at most κ-many antichains, E =
⋃
α<κAα,

where Aα is an antichain for each Aα. We define f : E → κ as follows: f(s) = α if

and only if s ∈ Aα. Clearly, if s < t then s and t are in different antichains, hence

f(s) 6= (t).
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(ii) ⇒ (i) Let f be the function from the definition. Then Aα = f−1(α) is

antichain for each α < κ.

Now, we focus on the partial order Rκ. We show that it has similar properties

as R.

Lemma 2.24. The partial order Rκ is

(i) linear, without endpoints;

(ii) Qκ is dense in Rκ;

(iii) Dedekind complete.

Proof. It is easy to verify that Rκ satisfies (i).

Ad (ii). Let f <Rκ g in Rκ be given. Let α be the least ordinal such that

0 = f(α) < g(α) = 1. Since {α < κ|f(α) = 0} is cofinal in κ, there is the least

β > α such that f(β) = 0. Let h = f � β ∪ {〈β, 1〉} ∪ {〈γ, 0〉 |γ > β}. Since

h(α) = f(α) < g(α), h <Rκ g and since f(β) < h(β), f <Rκ h.

Ad (iii). It is enough to show that each increasing sequence with upper bound

has the supremum. First note that each increasing sequence in Rκ has cardinality

at most κ<κ since Qκ is dense in Rκ as we proved in the previous paragraph. Let

A = 〈fα ∈ Rκ|α < λ〉 for some ordinal λ ≤ κ<κ be given and let f ∈ Rκ be the

upper bound of A. Let FC be a choice function from P(Qκ) to Qκ. We define the

sequence AQκ in Qκ as follows:

AQκ = 〈gα ∈ Qκ|gα = FC({q ∈ Qκ|fα < q < fα+1}) and α < λ〉 . (2.6)

We show that AQκ has the supremum g in Rκ and that g is also the supremum of A

in Rκ. We define a function g∗ : κ→ 2 by induction on β < κ.

For β = 0. Set

g∗(0) =

1 if ∃α < λ(gα(0) = 1);

0 otherwise.

Let g∗ � β be defined, then we define g∗(β) as follows:

g∗(β) =

1 if ∃α < λ such that gα(β) = 1 and gα � β + 1 > g∗ � β ∪ 〈β, 0〉 ;

0 otherwise.

Note that g∗ may not be in Rκ, but it holds that g∗ 6= {〈α, 1〉 |α < κ} since the

sequence has an upper bound in Rκ.
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Now, we need to show that g∗ is the supremum of AQκ in (2κ, <lex). However, the

proof of this is the same as the proof of Lemma 2.19 (ii). Note that in the Lemma

2.19 (ii) we used the assumption that the sequence has length less than κ just for

showing that the supremum is in Qκ.

As we mentioned earlier, g∗ may not be in Rκ, but note that g∗ 6= {〈α, 1〉 |α < κ}.
If g∗ is not in Rκ, there is β0 < κ such that g∗(β0) = 0 and g∗(β) = 1 for every

β > β0. Let g = g∗ � β0 ∪ {〈β0, 1〉} ∪ {〈β, 0〉 |β > β0}. Clearly g ∈ Rκ and there is

no function between g∗ and g in 2κ. Now we define g ∈ Rκ by

g =

g∗ if g∗ ∈ Rκ;

g otherwise.

It is obvious that g ∈ Rκ and since g∗ is the supremum of AQκ in 2κ, g is the

supremum of AQκ in Rκ.

To finish the proof of the theorem, it suffices to show that g is also the supremum

of A. The function g is clearly the upper bound of A. Now, we show that g is the

least upper bound. Let h < g. Since g is the supremum of AQκ , there is q ∈ AQκ ,

such that h < q. But q < r for some r ∈ A by the definition of AQκ . Hence

h < r.

2.3 Projection and Complete Embedding

In this section we define the concepts of projection and complete embedding, which

are very useful for comparing forcing notions. We also present several definitions

and facts concerning these concepts, which we will need in Chapter 4. For more

details about projection see [Abr10] and about complete embedding see [Kun80].

Definition 2.25. Let P = (P,≤P ) and Q = (Q,≤Q) be two partial orders. We say

that a function π : P→ Q is a projection if

(i) ∀p, p′ ∈ P (p ≤P p′ → π(p) ≤Q π(p′));

(ii) ∀p ∈ P∀q ∈ Q(q ≤Q π(p)→ ∃p′ ∈ P (p′ ≤P p and π(p′) ≤ q));

(iii) π′′P is dense in Q.

Fact 2.26. Let P = (P,≤P ) and Q = (Q,≤Q) be two partial orders. If there is a

projection π : P→ Q and D ⊆ Q is dense, then π−1′′D is dense in P. Hence if G is

a P-generic over V , then 〈π′′G〉 = {q ∈ Q|(∃p ∈ G)(π(p) ≤ q)} is a Q-generic filter

over V.
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Definition 2.27. Let P = (P,≤P ) and Q = (Q,≤Q) be two partial orders and the

map π : P→ Q be a projection. If H is a Q-generic filter over V , then we define in

V [H] the following partially ordered set

P/Q = {p ∈ P |π(p) ∈ G} (2.7)

with the induced ordering.

Fact 2.28. Let P = (P,≤P ) and Q = (Q,≤Q) be two partial orders, the filter G be

a P-generic over V , the filter H be a Q-generic over V and the map π : P → Q be

a projection. Then filter G is also P/Q-generic over V [H]. The other direction is

also true, if G0 ⊆ P/Q is P/Q-generic over V [H], then G0 is P-generic over V .

Fact 2.29. Let P = (P,≤P ) and Q = (Q,≤Q) be two partial orders and the map

π : P → Q be a projection. Then P is forcing equivalent to the two-step iteration

Q ∗ P/Q.

Definition 2.30. Let P = (P,≤P ) and Q = (Q,≤Q) be two partial orders. We say

that a function i : P→ Q is a complete embedding if

(i) ∀p, p′ ∈ P (p ≤P p′ → π(p) ≤Q π(p′));

(ii) ∀p, p′ ∈ P (p ⊥ p′ ↔ π(p) ⊥ π(p′));

(iii) ∀q ∈ Q ∃p ∈ P ∀p′ ≤ p (i(p′) ‖ q).

Fact 2.31. Let P = (P,≤P ) and Q = (Q,≤Q) be two partial orders, the filter H be

a Q-generic over V and the map π : P → Q be a complete embedding. Then i−1′′H

is P-generic over V and V [i−1′′H] ⊆ V [H].
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3 Special Aronszajn Trees

Aronszajn tree was first constructed by Nachman Aronszajn and the construction

can be found in [Kur35]. The constructed tree was actually a special Aronszajn

tree. In this chapter we examine the definition of a special Aronszajn tree and its

generalizations since in the following chapter we destroy all special Aronszajn trees

at a given cardinal. Hence it is interesting to find out which other kinds of Aronszajn

tree will be destroyed as well.

3.1 Special Aronszajn Trees of Height ω1

Special Aronszajn trees of height ω1 has more equivalent ways how to define them.

Some of them can be naturally generalized. In this section we investigate these

generalizations. In this section, when we talk about Aronszajn trees, we mean ω1-

Aronszajn trees.

Definition 3.1. We say that an ω1-Aronszajn tree T is special if T is a union of

countable many antichains. We denote the class of all special Aronszajn trees at ω1

as Asp(ω1).

Definition 3.2. Let κ be a regular cardinal, T be a κ-Aronszajn tree and P =

〈P,<P〉 be a partially ordered set. We say that T is P-embeddable if there is a

function f : T → P such that s <T t → f(s) <P f(t). We denote the class of all

P-embeddable trees at κ as T(P)(κ).

Lemma 3.3. The following are equivalent for an ω1-Aronszajn tree T :

(i) T is special;

(ii) There is f : T → ω such that if s, t are comparable in T , then f(s) 6= f(t);

(iii) T is Q-embeddable.

Proof. (iii)⇒ (ii). Let f be the embedding and let i is any bijection between Q and

ω. Then g = f ◦ i is the desired function.

(ii) ⇒ (i). Let f be the function from the definition. Then An = f−1(n) is an

antichain for each n < ω.

(i) ⇒ (iii). This follows from Kurepa’s Theorem.

When we work with Q-embeddable Aronszajn trees it is natural to consider also

R-embeddable Aronszajn trees and ask what is the connection between them. The

following lemma tells us how to characterize R-embeddable Aronszajn trees using Q-

embeddable Aronszajn trees. It was first proved in [Bau70], but the proof presented

here is taken from [She98].
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Lemma 3.4. Let T be an ω1-tree. T is R-embeddable if and only if T ∗ =
⋃
α<ω1

Tα+1

is Q-embeddable.

Proof. (⇒) Let T be R-embeddable and T ∗ =
⋃
α<ω1

Tα+1. Let f be the embedding,

t ∈ T ∗ and let s ∈ T be the immediate predecessor of t. We define f ′ : T ∗ → Q as

follows: f ′(t) = q where q ∈ Q such that f(s) < q < f(t).

(⇐) Let T ∗ =
⋃
α<ω1

Tα+1 be Q-embeddable and let f be the embedding. We

define function g : Q→ Q×Q by induction on ω such that for each q < q′ it holds

that g(q) and g(q′) are disjoint open intervals. Moreover, for every p ∈ g(q) it holds

that p < p′ for all p′ ∈ g(q′). Let Q = {qn|n < ω}. We construct by induction

embeddings gn : {qm|m ≤ n} → Q×Q and g =
⋃
n<ω gn.

We set g0 = {〈q0, 〈q10, q20〉〉} where q10 and q20 are arbitrary elements of Q such

that q10 < q20. Suppose we have constructed gm and let n = m+ 1. If qn > qk for all

k < n, then we set gn = gm ∪ {〈qn, 〈q1n, q2n〉〉} where q1n, q
2
n > q2m for all m < n and

q1n < q2n. If qn < qm for all m < n, the construction is analogous.

If there are k, l < n such that qn is between qk and ql, then we use the density of

Q. Since q2k < q1l , there is some r0 such that q2k < r0 < q1l . Again by density, there

is some r1 between r0 and q1l . We set gn = gm ∪ {〈qn, 〈r0, r1〉〉}. Let g =
⋃
n<ω gn.

Now, we define a function i : Q → Q by i(q) = r where r is some element of

g(q). We define an embedding f ′ : T → R as follows:

f ′(t) =

i(f(t)) if t ∈ Tα+1 for α < ω1;

sup {i(f(s))|s < t and s ∈ Tβ+1 and β < α} otherwise.

Now we need to check that the function f ′ is the embedding of T to R. If s < t

and s, t ∈ T ∗, then it is easy to see that f ′(s) < f ′(t) because i is order-preserving.

If t ∈ Tα for α limit, then f ′(s) < f ′(t) since f ′(t) is the supremum. The only

interesting case is s ∈ Tα for α limit and t ∈ Tα+1. Then we need to show

f ′(t) = i(f(t)) > sup {i(f(r))|r < s and r ∈ Tβ+1 and β < α} = f ′(s) (3.1)

This follows from the construction of g. For every r < s it holds that i(f(r)) < q <

i(f(t)) where q is left boundary of g(f(t)). Hence

f ′(s) = sup {i(f(r))|r < s and r ∈ Tβ+1 and β < α} ≤ q < i(f(t)) = f ′(t). (3.2)

As we showed in Lemma 2.14, if there exists an Aronszajn tree, then there exists

a normal Aronszajn tree. The same holds for R-embeddable Aronszajn trees.
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Lemma 3.5. If there exists an R-embeddable ω1-Aronszajn tree, then there exists a

normal R-embeddable ω1-Aronszajn tree.

Proof. Let T be an R-embeddable ω1-Aronszajn tree. Since T is a ω1-Aronszajn

tree, T has height ω1 and each level of T has size less than ω1. First, we choose one

root t ∈ T0 such that | {s ∈ T |s > t} | = ω1. Let T ′ = {s ∈ T |s ≥ t}. Since T ′ is a

subtree of T , T ′ is R-embeddable.

Now we guarantee the condition (iv) of Definition 2.8. Let S be equal to

{α < ω1|α is an limit ordinal}. We define a relation of equivalence on T ′ by s ∼ t if

and only if {u ∈ T ′|u <T ′ s} = {v ∈ T ′|v <T ′ t} and ht(s, T ) ∈ S. Let T ′′ = T ′/ ∼.

The order in T ′′ is:[s] <T ′′ [t] if ∃s′ ∈ [s] such that s′ < t.

It is immediate to verify that T ′′ is a normal Aronszajn tree. We show that T ′′

is R-embeddable. Since T ′ is R-embeddable, there is an embedding f : T ′ → R. We

define g : T ′′ → R by

g([t]) =

f(t) if ht(t, T ′) /∈ S

sup {f(s)|s < t} otherwise.

It is easy to verify that g is an embedding.

Remark 3.6. Compare the previous proof with the proof of Lemma 2.14. Note that

the construction from Lemma 2.14 does not have to preserve R-embeddability since

we add new nodes to the tree and it can happen that it is impossible to extend the

original embedding to these new nodes. For instance: Let T be an R-emebeddable

ω1-tree and f be the witnessing embedding. It can happen that there is a node

t such that sup({f(s)|s < t}) = f(t), hence if we add the new node t∗ between

{s ∈ T |s < t} and t as in the proof of Lemma 2.14, then we can not extend the

original embedding to t∗.

Now, we introduce the concept of an M-special Aronszajn tree. Even if it not

clear at first glance, this concept is related to the concept of R-embeddable Aron-

szajn trees. As we showed in Corollary 2.10, each normal ω1-Aronszajn tree can be

represented as a subtree of (ω<ω1 ,⊂). Hence it is quite natural to ask what trees

can be represented as a subtree of ({f ∈ ω<ω1|f is 1-1} ,⊂).

Definition 3.7. We say that an ω1-Aronszajn tree T is M-special if T is isomorphic

to the subtree of {s ∈ <ω1ω|s is 1-1}. We denote the class of all M-special ω1-

Aronszajn trees as AM-sp(ω1).

Remark 3.8. We use the notation M-special to distinguish special Aronszajn trees

defined by Mitchell in [Mit72] from now more established Definition 3.1. Note that
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Mitchell’s definition includes just normal trees in contrast to Definition 3.1. In this

sense the notion of a special tree is more general than M-special. However, if we

consider just normal trees then each special tree can be represented by an M-special

tree.

The next lemma appears to be a part of the set-theoretic folklore.

Lemma 3.9. If T is a normal special ω1-Aronszajn tree then T is M-special.

Proof. If T is special then T =
⋃
n<ω An where An is an antichain for each n < ω.

Since |Tα| ≤ ω for each α < ω1, there is a 1-1 function gα : Tα → ω.

We define by induction on α < ω1 isomorphisms iα : T � α→ T ′ � α where T ′ is

a subtree of {s ∈ <ω1(ω × ω)|s is 1-1}.
Set T ′0 = {∅} and i1(r) = ∅, where r is the root of T . As we assume that T is

normal, i1 is an isomorphism between T � 1 and T ′ � 1.

Suppose that we have constructed iβ : T � β → T ′ � β for each β < α. First, if

α is limit, set iα =
⋃
β<α iβ and T ′ � α =

⋃
β<α T

′ � β.

If α = γ + 1 and γ is a successor, then we define iα by extending iγ setting for

each s ∈ Tγ:
iα(s) = iγ(t) ∪ {〈γ, 〈gγ(s), n〉〉} , (3.3)

where the node t is the immediate predecessor of s and s ∈ An. Let T ′ � α =

T ′ � γ ∪ T ′γ, where T ′γ = {iα(s)|s ∈ Tγ}. It is clear that each function in T ′γ is 1-1

since each two comparable nodes must be in different antichains.

If α = γ + 1 and γ is limit, then we define iα by extending iγ setting for each

s ∈ Tγ:
iα(s) =

⋃
{iγ(t)|t < s} . (3.4)

By (iv) of Definition 2.8, iα is 1-1 and clearly it is also an isomorphism. Let T ′ �

α = T ′ � γ ∪ T ′γ, where T ′γ = {iα(s)|s ∈ Tγ}. Again it is obvious that each function

in T ′γ is 1-1 since it is a union of 1-1 functions with gradually increasing domains.

At the end, set T ′ =
⋃
α<ω1

T ′ � α and i =
⋃
α<ω1

iα. It is easy to see that the

tree T ′ is isomorphic to a subtree of {s ∈ <ω1ω|s is 1-1} by any bijection between

ω × ω and ω. Hence T is M-special.

Note that at limit step we use just the assumption that the tree is normal. Hence

we can generalize this lemma to R-embeddable trees. The proof of the implication

from left to right can be found in [Dev72].

Lemma 3.10. Let T be an ω1-Aronszajn tree. T is normal R-embeddable if and

only if T is M-special.
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Proof. (⇒) Let T be a normal R-embeddable. Then T ∗ =
⋃
α<ω1

Tα+1 is Q-

embeddable and so T ∗ =
⋃
n<ω An where An is an antichain for each n. The rest of

the proof is the same as the proof of Lemma 3.9 since we used the antichains only

in the successor step.

(⇐) Let T be M-special. We define f : T → R by setting f(t) =
∑∞

i=0

XRng(t)(i)

10i
,

where XX is the characteristic function of set X. Since every node of T is a 1-1

function from some ordinal α < ω1 to ω, if s < t then Rng(s) ⊂ Rng(t) and so there

is n < ω such that 0 = XRng(s)(n) < XRng(t)(n) = 1 and XRng(s) � n = XRng(t) � n.

Hence f(s) < f(t).

By Lemma 3.4, if the tree T is R-embeddable then T � S for S = {α + 1|α < ω1}
is Q-embeddable. So it is natural to introduce the concept of S-special for arbitrary

unbounded subset of S ⊆ ω1. The following definition is from [She98].

Definition 3.11. Let S be an unbounded subset of ω1. We say that an ω1-tree T

is S-special if T � S is Q-embeddable, where T � S = {t ∈ T |ht(t, T ) ∈ S} with the

induced ordering. We say that an ω1-tree T is S-special if there is S, an unbounded

subset of ω1, such that T is S-special. We denote the class of all S-special ω1-

Aronszajn trees as AS-sp(ω1).

The following lemma from [DJ74] tells us that if we would consider S-special

trees only for S closed unbounded subset of ω1, we would not get anything new.

Lemma 3.12. Let C be a closed unbounded subset of ω1. If T is a C-special ω1-

Aronszajn tree, then T is special.

Proof. Let T be a C-special ω1-Aronszajn tree. Then T � C =
⋃
n<ω An, where each

An is an antichain. Let {anα|α < ω1} be an enumeration of An for each n < ω. Let

{cα|α < ω1} be the monotone enumeration of C. For α < ω1 and for x ∈ Tcα , we

define Sx = {y ∈ T � cα+1|x <T y}. Since each Sx is countable, let {sm(x)|m < ω}
be an enumeration of Sx. Set

An,m = {sm(anα)|α < ω1} . (3.5)

Clearly, An,m is an antichain of T for each n,m < ω. Since C is closed unbounded,

T =
⋃
n<ω An ∪

⋃
n,m<ω An,m. Hence T is special.

The following result, which can be found in [She98], tells us that if we have a

model where all Aronszajn trees are S-special for some given unbounded subset of

ω1, then in such model all Aronszajn trees are already special. As an easy corollary,

we have that there is no model where all Aronszajn trees are R-embeddable and

there is a tree which is not special.
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Lemma 3.13. Let S be an unbounded subset of ω1. If every ω1-Aronszajn tree is

S-special then every ω1-Aronszajn tree is special.

Proof. Let S = {αµ|µ < ω1} be an unbounded subset of ω1 and T be a S-special ω1

Aronszajn tree. We define a new tree

T ′ =
{
〈t, β〉 |t ∈ T and β < αht(t,T ) and ∀s < t(αht(s,T ) < β)

}
. (3.6)

The tree T ′ is ordered by <T ′ as follows: 〈t, β〉 <T ′ 〈s, γ〉 if and only if t < s or

(t = s and β < γ). It is obvious that T satisfies our definition of Aronszajn tree.

Hence T ′ is S-special, i.e. T ′ � S is special. Since T is isomorphic to T ′ � S ={〈
t, αht(t,T )

〉
|t ∈ T

}
, T is special.

Corollary 3.14. If each ω1-Aronszajn tree is R-embeddable, then each ω1-Aronszajn

tree is Q-embeddable.

Proof. Follows from previous lemma and Lemma 3.4.

Note that S-special Aronszajn trees, including special, R-embeddable and M-

special Aronszajn trees, are not Suslin in a strong sense. This means that every

uncountable subset of such tree contains an uncountable antichain. See the following

definition and lemma.

Definition 3.15. We say that an ω1-tree T is non-Suslin if every uncountable subset

U of T contains an uncountable antichain. We denote the class of all non-Suslin

Aronszajn trees at ω1 as ANS(ω1).

The name of non-Suslin trees is inspired by the fact that every non-Suslin tree

is not Suslin. On the other hand, every tree that is not non-Suslin has a Suslin

subtree, as follows from the next lemma that can be found in [Han81].

Lemma 3.16. Let T be an ω1-Aronszajn tree. If T is not non-Suslin, then T has a

subtree which is Suslin.

Proof. Let T be an ω1-Aronszajn tree, which is not non-Suslin. Then there is a

subset X of T such that |X| = ω1 and X does not contain antichain of size ω1. Let

T ′ = {s ∈ T |(∃t ∈ X)(s < t)}.
Now, we show that T ′ is Suslin. Assume for contradiction that A ⊆ T ′ is

an uncountable antichain. Then for any choice function f : P(X) → X, the set

{f({s ∈ X|a ≤ s})|a ∈ A} has size ω1 and it is an antichain in X.

Lemma 3.17. Let T be an ω1-Aronszajn tree. If T is S-special, then T is non-

Suslin.
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Proof. Assume for contradiction that T is an S-special ω1-Aronszajn tree which is

not non-Suslin. By the previous lemma T has subtree T ′ which is Suslin. Since

T is S-special, T ′ is S-special, too. Hence there is an unbounded subset S of ω1

such that T ′ � S =
⋃
n<ω An, where An is an antichain for each n. By pigeon-hole

principle, for some n < ω the size of An must be greater than ω. This contradicts

the fact that T ′ is Suslin.

Now, we know that

Asp(ω1) ⊆ T(R)(ω1) ⊆ AS-sp(ω1) ⊆ ANS(ω1). (3.7)

In the next section, we examine if these inclusions can be consistently proper.

3.1.1 The Existence of Special Aronszajn Trees of Height ω1

The existence of special Aronszajn tree at ω1 can be proved in ZFC and by Baum-

gartner’s theorem published in [BMR70] it is consistent with ZFC that every Aron-

szajn tree at ω1 is special, so Asp(ω1) = T(R)(ω1) = AS-sp(ω1) = ANS(ω1) is consis-

tent with ZFC. On the other hand, consistently, each inclusion can be proper.

The following theorem was first published in [Bau70] but the proof, which we

present here, is based on [Dev72]. This theorem tells us that it is consistent that

there is an Aronszajn tree which is M-special but not special. As a corollary we

obtain that the first inclusion in (3.7) can be consistently proper.

Theorem 3.18. Assume ♦. Then there is a non-special Aronszajn tree which is a

subtree of {s ∈ <ω1ω|s is 1-1}.

Proof. By ♦ there is a sequence 〈fα|α < ω1〉 such that fα : α → α for each α and

for any function f : ω1 → ω1 the set {α < ω1|fα = f � α} is stationary in ω1. We

fix this sequence for the rest of the proof.

We construct the tree T and the function π : T → ω1, which will code the tree

in ω1, by induction on α < ω1. For each α we require the following conditions:

(T1) If s ∈ T � α then |ω \ Rng(s)| = ℵ0.

(T2) If s ∈ T � α and x ∈ [ω \ Rng(s)]<ω then there is s′ ⊇ s on each higher level

of T � α such that Rng(s′) ∩ x = ∅.

(π0) πα is a 1-1 map from T � α to ω1 such that s ⊂ t→ πα(s) < πα(t).

Let T0 = {∅}. It is clear that T0 satisfies both conditions.

Let α = β + 1. Suppose T � β + 1 and πβ+1 are defined and they satisfy the

conditions mentioned above. We want to construct level Tα. For each s ∈ Tβ we add
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all one-point extensions s∪ 〈α, n〉 of s such that n ∈ ω \Rng(s). This is possible by

(T1), which guarantees the existence of ℵ0 such extensions. Since we add all such

extensions of s, for each x ∈ [ω \ Rng(s)]<ω we can always find t ∈ Tα such that

s ⊆ t and x ∩Rng(s) = ∅ so T � α+ 1 satisfies (T2). Since T � β + 1 satisfies (T1),

T � α + 1 satisfies (T1), too. To obtain πα+1, we extend πβ+1 arbitrarily such that

it satisfies the condition (π0).

Let α be limit. For each β < α, suppose T � β and πβ are defined and they

satisfy the conditions mentioned above. Let T ′α =
⋃
β<α Tβ and π′α =

⋃
β<α πβ. We

must decide which α-branches of T ′α we put into Tα. We have to distinguish two

cases. First, if fα embeds π′α
′′T ′α to Q, and Dom(fα) = π′α

′′T ′α, then set

Xα = {(s, x)|s ∈ T ′α & x ∈ [ω]<ω & Rng(s) ∩ x = ∅} . (3.8)

For (s, x), (t, y) in Xα, we define (s, x) ≤α (t, y) if and only if s ⊆ t and x ⊆ y.

This is a partial order on Xα. For each q ∈ Q, set

∆α
q = {(s, x) ∈ Xα|fα(π′α(s)) ≥Q q or

(∀(t, y) ∈ Xα)((t, y) ≥α (s, x)→ fα(π′α(t)) <Q q)} . (3.9)

It is easy to see that each ∆α
q is cofinal in Xα. Let (s, x) ∈ Xα be given. If

fα(π′α(s)) ≥Q q then (s, x) is in ∆α
q . If fα(π′α(s)) <Q q and ∀(t, y) ≥α (s, x)(fα(π′α(t))

<Q q then (s, x) is in ∆α
q , too. The last option is that fα(π′α(s)) <Q q and there is

(t, y) ≥α (s, x) such that fα(π′α(t)) ≥Q q. Then by the definition of ∆α
q , (t, y) is in

∆α
q .

Let s ∈ T ′α and x ∈ [ω \ Rng(s)]<ω. First, fix an increasing sequence 〈αn|n < ω〉
with limit α and with α0 = length(s). Let g : ω → Q be a bijection. Let s′0 = s

and x′0 = x. By definition of Xα, (s′0, x) is in Xα. As ∆α
g(0) is cofinal in Xα, we

can find (s0, x0) ≥α (s′0, x
′
0) in ∆α

g(0). By (T1) there is m0 ∈ ω \ (Rng(s) ∪ x0). Let

x′1 = x0 ∪ {m0}. By (T2) we can find s′1 ∈ T ′α such that s′1 ⊇ s0, length(s′1) ≥ α1

and Rng(s′1) ∩ x′1 = ∅. By definition of Xα, (s′1, x
′
1) is in Xα. As ∆α

g(1) is cofinal in

Xα, hence we can find (s1, x1) ≥α (s′1, x
′
1) in ∆α

g(1). Pick m1 ∈ ω \ (Rng(s)∪ x1), set

x2 = x1 ∪ {m1}, and proceed inductively.

In the other case, if fα does not embed π′α
′′T ′α to Q, then we continue similar

as before. Let s ∈ T ′α and x ∈ [ω \ Rng(s)]<ω. First, fix an increasing sequence

〈αn|n < ω〉 with limit α and with α0 = length(s). Let s0 = s and x0 = x. By (T1)

there is m0 ∈ ω\(Rng(s)∪x0). Let x1 = x0∪{m0}. By (T2) we can find s1 ∈ T ′α such

that s1 ⊇ s0, length(s1) ≥ α1 and Rng(s1) ∩ x1 = ∅. Pick m1 ∈ ω \ (Rng(s) ∪ x1),
set x2 = x1 ∪ {m1}, and proceed inductively.

Let sx =
⋃
n<ω sn. Then sx is an α sequence of natural numbers, which defines an

α branch of T ′α. Let Tα = {sx|s ∈ T ′α & x ∈ [ω \ Rng(s)]<ω} and T � α+1 = T ′α∪Tα.
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It holds that sx ⊇ s and Rng(sx) ∩ x = ∅. This guarantees that condition (T2) is

satisfied. Since {mn|n < ω} ∩ Rng(sx) = ∅, condition (T1) is satisfied. We can

extend π′α to πα+1 on T � α + 1 arbitrarily such that it satisfies the condition (π0).

Finally, set T =
⋃
α<ω1

Tα and π =
⋃
α<ω1

πα. Then π : T → ω1 is a 1-1 function

such that s ⊆ t→ π(s) <ω1 π(t).

For a contradiction, assume T is Q-embeddable. Then there is a function f

which embeds π′′T in Q. Let

C = {α < ω1|α is a limit ordinal and π′′Tα = π′α
′′T ′α and

f � α embeds π′α
′′T ′α in Q and

(∀s ∈ T ′α)(∀x ∈ [ω \ Rng(s)]<ω)(∀q >Q f(π(s)))

((∃t ∈ T )(t ⊇ s & Rng(t) ∩ x = ∅ & f(π(t)) ≥Q q)

→ (∃t′ ∈ T ′α)(t′ ⊇ s & Rng(t) ∩ x = ∅ & f(π(t)) ≥Q q)} . (3.10)

It is easy to verify that C is closed unbounded subset of ω1. By ♦, the set

{α ∈ ω1|f � α = fα} is stationary so there is α ∈ C such that f � α = fα. Let

t ∈ Tα. Let q = f(π(t)). By the construction of T , there is (s, x) ∈ ∆α
q such that

Rng(s)∩x = ∅ and s ⊂ t. Since f and π are order-preserving, f(π(s)) <Q f(π(t)) =

q.

Since f(π(s)) <Q q and f(π(t)) ≥Q q, by definition of C there exists t′ ∈ T ′α
such that t′ ⊇ s, Rng(t′) ∩ x = ∅ and f(π(t′)) ≥Q q. Note that (s, x) and (t′, x)

are in Xα and (s, x) ≤α (t′, x). Since (s, x) is in ∆α
q , by (3.9) it must hold that

fα(π(s)) ≥Q q. But fα = f � α and so f(π(s)) ≥Q q. This contradicts our earlier

inequality f(π(s)) <Q q.

Corollary 3.19. Assume ♦. Then there is an R-embeddable ω1-Aronszajn tree

which is not special.

Proof. By Lemma 3.10, every M-special ω1-Aronszajn tree is R-embeddable.

The following lemma is a consequence of Theorem 3.18 and it shows us that the

second inclusion in (3.7) can be consistently proper.

Lemma 3.20. Assume ♦. Then there is an ω1-Aronszajn tree, which is S-special

and it is not R-embeddable.

Proof. By Corollary 3.19 there is an ω1-Aronszajn tree which is R-embeddable, but

not Q-embeddable. Let α < ω1 be a limit ordinal and let t ∈ Tα. For chain

C = {s ∈ T |s < t} we add a new node tC such that tC < t and tC > s for all s ∈ C.

Consider the tree T ′ which is created by adding such node for each limit node.

Note that
⋃
α<ω1

T ′α+1 = T \ T0. Now, T ′ is not R-embeddable since
⋃
α<ω1

T ′α+1
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is not Q-embeddable. But T ′ is S-special for S = {α + 2|α < ω1} since T ′ � S =⋃
α<ω1

Tα+1 \ T1.

The claim that the last inclusion in (3.7) can be consistently proper is a conse-

quence of the theorem published in [Sch14], which says that if ZFC is consistent,

so is ZFC + SH + there is an Aronszajn tree T such that it is not S-special. If

SH holds, then by Lemma 3.16 each Aronszajn tree is non-Suslin. Therefore T is

non-Suslin and it witnesses that ZFC + AS-sp(ω1) 6= ANS(ω1) is consistent.

The following picture illustrates our situation.

ω1-Aronszajn Trees'

&

$

%
S(ω1)

'

&

$

%
Asp(ω1)

AM-sp(ω1)

'

&

$

%T(R)(ω1)

ANS(ω1)

AS−sp(ω1)

ANormal(ω1)

Notation Kind of ω1-Aron-

szajn trees

S(ω1) Suslin

ANormal(ω1) Normal

Asp(ω1) Special

AM-sp(ω1) M-special

T(R)(ω1) R-embeddable

AS-sp(ω1) S-special

ANS(ω1) Non-Suslin

Figure 1: Description of the relations between various kinds of ω1-Aronszajn trees.

3.2 Higher Special Aronszajn Trees

In the previous section we have built the foundations for the investigation of special

κ+-Aronszajn trees for any regular κ. We introduced the concept of special, R-

embeddable, M -special and S-special ω1-Aronszajn trees. Now, we generalize these

concepts to higher Aronszajn trees, which are in the center of our interest. When

we talk about an Aronszajn tree in this section, we mean a κ+-Aronszajn tree for

some regular cardinal κ > ω.

Definition 3.21. Let κ be a cardinal. We say that κ+-Aronszajn tree T is special

if T is a union of κ-many antichains. We denote the class of all special Aronszajn

trees at κ+ as Asp(κ+).

The notion of the weak tree property is connected to special Aronszajn trees in

the same way as the tree property is connected to Aronszajn trees.
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Definition 3.22. We say that a cardinal κ+ has the weak tree property, if there

are no special κ+-Aronszajn trees.

As in the previous section, the concept of a special Aronszajn tree has more

equivalent definitions. However, we need to be careful when we talk about Qκ-

embeddability, since this partial order does not have to have size κ.

Lemma 3.23. Let κ be regular. The following are equivalent for a κ+-Aronszajn

tree T :

(i) T is special;

(ii) There is f : T → κ such that if s, t are comparable in T , then f(s) 6= f(t).

Proof. The proof follows from Lemma 2.23.

Lemma 3.24. Assume κ<κ = κ. Then κ+-Aronszajn tree T is special if and only

if T is Qκ-embeddable.

Proof. It follows from Lemma 2.21.

Again as in the previous section, we can characterize Rκ-embeddable Aronszajn

trees using Qκ-embeddable Aronszajn trees. This is our generalization of Lemma

3.4.

Lemma 3.25. Let κ be a regular cardinal. Let T be an κ+-tree. T is Rκ-embeddable

if and only if T ∗ =
⋃
α<κ+ Tα+1 is Qκ-embeddable.

Proof. (⇒) Let T be Rκ-embeddable and T ∗ =
⋃
α<κ+ Tα+1. Let f be the embed-

ding, t ∈ T ∗ and let s ∈ T be the immediate predecessor of t. We define f ′ : T ∗ → Qκ

as follows: f ′(t) = q where q ∈ Qκ such that f(s) < q < f(t).

(⇐) Let T ∗ =
⋃
α<κ+

Tα+1 be Qκ-embeddable and let f be the embedding. We

define function g : Qκ → Qκ×Qκ by induction on κ such that for each q < q′ it holds

that g(q) and g(q′) are disjoint open intervals. Moreover, for every p ∈ g(q) it holds

that p < p′ for all p′ ∈ g(q′). We enumerate Qκ by {qβ|β < κ}. The construction

is quite similar to the construction from 3.4. We construct by induction on α < κ

embeddings gα : {qβ|β ≤ α} → Qκ ×Qκ and g =
⋃
α<κ gα.

Set g0 = {〈q0, 〈q10, q20〉〉}.
Let α = δ + 1. We show just the most difficult case when qα is between two se-

quences A = 〈fβ|β < λ〉 and B = 〈hγ|γ < ξ〉, where A is increasing, B is decreasing,

λ, ξ < κ and for each β < λ, γ < ξ we have fβ, hγ ∈ Dom(gδ). The proof for the

other cases is similar. Now, we need to find something between g′′δA = 〈gδ(fβ)|β < λ〉
and g′′δB = 〈gδ(hγ)|γ < ξ〉. Let

g′′δA
2 =

〈
gδ(fβ)2|∃a ∈ Qκ

〈
a, gδ(fβ)2

〉
= gδ(fβ) for β < λ

〉
. (3.11)
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g′′δB
1 =

〈
gδ(hγ)

1|∃b ∈ Qκ

〈
gδ(hγ)

1, b
〉

= gδ(hγ) for γ < ξ
〉
. (3.12)

Then g′′δA
2 is an increasing sequence of length λ < κ and g′′δB

1 is a decreasing

sequence of length ξ < κ. Hence by Lemma 2.19 the sequence g′′δB
1 does not have

the infimum and the sequence g′′δA
2 has the supremum f . Since g′′δB

1 does not have

the infimum, there is q2 > f such that q2 < gδ(hγ)
1 for each γ < ξ. By the density

of Qκ there is some q1 between f and q2. Set gα = gδ ∪ {〈qα, 〈q1, q2〉〉}.
Let α be a limit ordinal. Then the proof is similar to the proof for α successor,

but first we take g∗α =
⋃
δ<α gδ. Then we continue as in the successor step with g∗α

instead of gδ.

Let g =
⋃
α<κ gα.

Now, we define a function i : Qκ → Qκ by i(q) = r, where r is some element of

g(q). We define an embedding f ′ : T → Rκ as follows:

f ′(t) =

i(f(t)) if t ∈ Tα+1 for α < κ+;

sup {i(f(s))|s < t and s ∈ Tβ+1 and β < α} otherwise.

Now we need to check that the function f ′ is the embedding of T to Rκ. If s < t

and s, t ∈ T ∗, then it is easy to see that f ′(s) < f ′(t) because i is order-preserving.

If t ∈ Tα for α limit, then f ′(s) < f ′(t) since f ′(t) is the supremum. The only

interesting case is if s ∈ Tα for α limit and t ∈ Tα+1. Then we need to show

f ′(t) = i(f(t)) > sup {i(f(r))|r < s and r ∈ Tβ+1 and β < α} = f ′(s). (3.13)

This follows from the construction of g. For every r < s it holds that i(f(r)) < q <

i(f(t)) where q is the left boundary of g(f(t)). Hence

f ′(s) = sup {i(f(r))|r < s and r ∈ Tβ+1 and β < α} ≤ q < i(f(t)) = f ′(t). (3.14)

The generalization of the concept of an M-special Aronszajn tree at higher car-

dinals is of a particular interest to us since we use it in Chapter 4 for showing that

the weak tree property is consistent at double successor of a regular cardinal under

the assumption of Mahlo cardinal.

Definition 3.26. Let κ be a cardinal. We say that κ+-Aronszajn tree T is M-special

if T is isomorphic to a subtree of {s ∈ <κ+κ|s is 1-1}

The following lemma is a generalization of Lemma 3.9.

Lemma 3.27. Let κ be a regular cardinal. If T is a normal special κ+-Aronszajn

tree then T is M-special.
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Proof. If T is special then T =
⋃
ξ<κAξ where Aξ is an antichain for each ξ < κ.

Since |Tα| ≤ κ for each α < κ+, there is a 1-1 function gα : Tα → κ.

We define by induction on α < κ+ isomorphisms iα : T � α→ T ′ � α where T ′ is

a subtree of
{
s ∈ <κ+(κ× κ)|s is 1-1

}
.

Set T ′0 = {∅} and i1(r) = ∅, where r is the root of T . As we assume that T is

normal, i1 is an isomorphism between T � 1 and T ′ � 1.

Suppose that we have constructed iβ : T � β → T ′ � β for each β < α. First, if

α is limit, set iα =
⋃
β<α iβ and T ′ � α =

⋃
β<α T

′ � β.

If α = γ + 1 and γ is a successor, then we define iα by extending iγ, setting for

each s ∈ Tγ:
iα(s) = iγ(t) ∪ {〈γ, 〈gγ(s), ξ〉〉} , (3.15)

where the node t is the immediate predecessor of s and s ∈ Aξ. Let T ′ � α =

T ′ � γ ∪ T ′γ, where T ′γ = {iα(s)|s ∈ Tγ}. It is clear that each function in T ′γ is 1-1

since each two comparable nodes must be in different antichains.

If α = γ + 1 and γ is limit, then we define iα by extending iγ, setting for each

s ∈ Tγ:
iα(s) =

⋃
{iγ(t)|t < s} . (3.16)

By (iv) of Definition 2.8, iα is 1-1 and clearly it is also an isomorphism. Let T ′ �

α = T ′ � γ ∪ T ′γ, where T ′γ = {iα(s)|s ∈ Tγ}. Again it is obvious that each function

in T ′γ is 1-1 since it is a union of 1-1 functions with gradually increasing domains.

At the end, set T ′ =
⋃
α<κ+ T

′ � α and i =
⋃
α<κ+ iα. It is easy to see that the

tree T ′ is isomorphic to a subtree of
{
s ∈ <κ+κ|s is 1-1

}
by any bijection between

κ× κ and κ. Hence T is M-special.

As in the case for ω1, note that at the limit step we used just the assumption

that the tree is normal. Hence we can generalize this lemma to the following lemma.

Note that for this we do not need the assumption κ<κ = κ since we use that the

tree
⋃
α<κ+ Tα+1 is special instead of Qκ-embeddable. We explicitly state this lemma

here so it is clear that M-special trees are exactly those trees that are normal and

whose successor levels form a special tree, as was the case at ω1.

Lemma 3.28. Let κ be a regular cardinal. Let T be a κ+-Aronszajn tree. T is

normal such that T ∗ =
⋃
α<κ+ Tα+1 is special if and only if T is M-special.

Proof. (⇒) Let T ∗ =
⋃
α<κ+ Tα+1 is special. Then T ∗ =

⋃
ξ<κAξ where Aξ is

antichain for each ξ < κ. The rest of the proof is the same as the proof of Lemma

3.27 since we used the antichains only in the successor step.

(⇐) Let T be an M-special tree. Then T is isomorphic to a subtree T ′ of{
s ∈ <κ+κ|s is 1-1

}
via i. We define f : T ∗ → κ by setting f(t) = i(t)(α) for
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ht(t, T ) = α + 1. Let s < t ∈ T ∗. Then ht(s, T ) = β + 1 < α + 1 = ht(t, T ).

Since i(s) ⊂ i(t), i(s)(β) = i(t)(β). As i(t) is 1-1, i(t)(β) 6= i(t)(α). Therefore

f(s) 6= f(t).

On the other hand, generalization of Lemma 3.10 requires the additional as-

sumption that κ<κ = κ since we need to use Generalized Kurepa’s Theorem.

Lemma 3.29. Assume κ<κ = κ. Let T be a κ+-Aronszajn tree. T is a normal

Rκ-embeddable tree if and only if T is M-special.

Proof. It follows from Lemma 3.24 and Lemma 3.28.

Unlike in the previous section, here we are also interested in the question how

the existence of one kind of special Aronszajn trees influences the existence of other

kinds of special Aronszajn trees. The following lemma claims that if there are no

M-special Aronszajn trees then there are no special Aronszajn trees at all.

Lemma 3.30. Let κ be a regular cardinal. If there exists a special κ+-Aronszajn

tree, then there exists an M-special Aronszajn tree.

Proof. Let T be a special κ+-Aronszajn tree. We first add one root r such that r < t

for each t ∈ T0. Now we guarantee the condition (iv). Let α < κ+ be a limit ordinal

and t be some node in Tα. For every chain C = {s ∈ T |s < t} we add one extra

node tC such that s < tC for all s ∈ C and tC < r for each r such that r > s for

all s ∈ C. Since for every chain we add one extra node to the limit level, this new

tree satisfies (iv). Denote this tree T ′. This tree is normal and T =
⋃
α<κ+ T

′
α+1. By

Lemma 3.28 the tree T ′ is M-special.

As in previous section it does make sense to introduce concept of S-special

Aronszajn trees.

Definition 3.31. Let κ be a regular cardinal and S be an unbounded subset of

κ+. We say that the κ+-tree T is S-special if T � S is special, where T � S =

{t ∈ T |ht(t, T ) ∈ S} with the induced ordering. We say that a κ+-tree T is S-special

if there is S, an unbounded subset of κ+, such that T is S-special. We denote the

class of all S-special κ+-Aronszajn trees as AS-sp(κ+).

The following lemmas are obvious generalizations of Lemmas 3.12 and 3.13.

Lemma 3.32. Let C be a closed unbounded subset of κ+, where κ is a regular

cardinal. If T is a C-special κ+-Aronszajn tree, then T is special.

Proof. This is a simple generalization of Lemma 3.12.
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Lemma 3.33. Let κ be a regular cardinal and S be an unbounded subset of κ+. If

every κ+-Aronszajn tree is S-special then every κ+-Aronszajn tree is special.

Proof. Let S = {αµ|µ < κ+} be an unbounded subset of κ+ and T be a S-special

κ+-Aronszajn tree. We define a new tree

T ′ =
{
〈t, β〉 |t ∈ T and β < αht(t,T ) and ∀s < t(αht(s,T ) < β)

}
. (3.17)

The tree T ′ is ordered by <T ′ as follows: 〈t, β〉 < 〈s, γ〉 if and only if t < s or

(t = s and β < γ). It is obvious that T satisfies our definition of Aronszajn tree.

Hence T ′ is S-special, i.e. T ′ � S is special. Since T is isomorphic to T ′ � S ={〈
t, αht(t,T )

〉
|t ∈ T

}
, T is special.

Again, note that S-special κ+-Aronszajn trees are not Suslin in a strong sense.

This means that every subset of size κ+ of such tree contains an antichain of size

κ+. Hence we can generalize Definition 3.15 and Lemma 3.17.

Definition 3.34. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. We say

that T is non-Suslin if every subset U of T , which has size κ+, contains an antichain

of size κ+. We denote the class of all non-Suslin Aronszajn trees at κ+ as ANS(κ+).

The following lemmas are generalizations of Lemma 3.16 and Lemma 3.17.

Lemma 3.35. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. If T is

not non-Suslin, then T has a subtree which is Suslin.

Proof. Let T be a κ+-Aronszajn tree, which is not non-Suslin. Then there is a

subset X of T such that |X| = κ+ and X does not contain antichain of size κ+. Let

T ′ = {s ∈ T |∃t ∈ X(s < t)}.
Now, we show that T ′ is Suslin. Assume for contradiction that A ⊆ T ′ is

an antichain of size κ+. Then for any choice function f : P(X) → X, the set

{f({s ∈ X|a ≤ s} |a ∈ A} has size κ+ and it is an antichain in X.

Lemma 3.36. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. If T is

S-special, then T is non-Suslin.

Proof. Let T be a κ+-Aronszajn tree which is not non-Suslin. By the previous

lemma T has a subtree T ′ which is Suslin. Since T is S-special, T ′ is S-special, too.

Hence there is unbounded subset S of κ+ such that T ′ � S =
⋃
α<κAα, where Aα

is an antichain for each α. By pigeon-hole principle, for some α < κ the size of Aα

must be greater than κ. This contradicts the fact that T is Suslin.

Lemma 3.37. Let κ be a regular cardinal. If there is an S-special κ+-Aronszajn

tree then there is a special Aronszajn tree.
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Proof. Let T be an S-special κ+-Aronszajn tree for some unbounded subset S of

κ+. Then T � S is a special Aronszajn tree.

The following theorem is only the summarization of what we have showed about

the relative existence of different kinds of special Aronszajn trees. It tells us that

the weak tree property at κ+ is equivalent to the claim that there are no M-special

κ+-Aronszajn trees and also to the claim that there are no S-special κ+-Aronszajn

trees.

Theorem 3.38. Let κ be a regular. The following are equivalent

(i) Asp(κ+) = ∅;

(ii) AM(κ+) = ∅;

(iii) AS−sp(κ+) = ∅.

Proof. Ad (i) ⇔ (ii). The claim from left to right follows from Lemma 3.28 and the

converse follows from Lemma 3.30.

Ad (ii) ⇔ (iii). The claim from left to right follows from Lemma 3.37 and the

converse follows from the definition of S-special κ+-Aronszajn tree.

Now, we know that

Asp(κ+) ⊆ AS−sp(κ+) ⊆ ANS(κ+) and AM(κ+) ⊆ AS−sp(κ+). (3.18)

Now, we examine if these inclusions can be consistently proper.

3.2.1 The Existence of Higher Special Aronszajn Trees

We are interested in special Aronszajn trees at successors of regular cardinals. While

the existence of a special ω1-Aronszajn tree can be proved in ZFC, at higher cardinals

we need some additional assumption, for example κ<κ = κ or weak square principle.

The first one was used in construction by Specker in [Spe49] and the second one in

the construction by Jensen in [Jen72]. On the other hand, it is possible to find a

model with no special κ+-Aronszajn tree where κ > ω is regular, but this requires

much stronger assumption. Throughout this section we assume that κ is a regular

cardinal and κ > ω.

Definition 3.39. Eκ+

κ = {α < κ+|cf(α) = κ}

This theorem is our generalization of Theorem 3.18. As a corollary we obtain

that the first inclusion in (3.18) can be consistently proper.
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Theorem 3.40. Assume κ<κ = κ and ♦κ+(Eκ+

κ ). Then there is an M-special κ+-

Aronszajn tree, which is not special.

Proof. We follow the proof of Theorem 3.18. Again, we a fix diamond sequence〈
fα|α ∈ Eκ+

κ

〉
for the rest of the proof and we generalize the induction assumption

for κ+. For each α < κ+ we require the following conditions:

(T1) If s ∈ T � α then |κ \ Rng(s)| = κ.

(T2) If s ∈ T � α and x ∈ [κ \Rng(s)]<κ then there is s′ ⊇ s on each higher level of

T � α such that Rng(s′) ∩ x = ∅.

(π0) πα is a 1-1 map from T � α to κ+ such that s ⊆ t→ πα(s) < πα(t).

Let T0 = {∅}. If α = β + 1 then for each s ∈ Tβ we add all one-point extensions

of s by distinct γ < κ which are not in Rng(s) and we extend πβ+1 to πα+1 arbitrary

such that satisfies condition (π0).

Let α be limit. For each β < α, suppose T � β and πβ are defined and they

satisfy the conditions mentioned above. Let T ′α =
⋃
β<α Tβ. We need to distinguish

two cases. First, if α has cofinality less than κ then Tα = T ′α. We can add all possible

sequences since κ<κ = κ.

In the second case, if α has cofinality κ then we proceed as in Theorem 3.18.

Again, we need to distinguish two cases: First, if fα embeds π′(′′T ′α) to Qκ and

Dom(fα) = π′α
′′T ′α, then set

Xα = {(s, x)|s ∈ T ′α & x ∈ [κ]<κ & Rng(s) ∩ x = ∅} . (3.19)

For (s, x), (t, y) in Xα, we define (s, x) ≤α (t, y) if and only if s ⊆ t and x ⊆ y.

For each q ∈ Qκ, set

∆α
q = {(s, x) ∈ Xα|fα(π′α(s)) ≥Qκ q or

(∀(t, y) ∈ Xα)((t, y) ≥α (s, x)→ fα(π′α(t)) <Qκ q)} . (3.20)

Let s ∈ T ′α, x ∈ [κ \ Rng(s)]<κ. Let 〈αγ|γ < κ〉 be cofinal in α with α0 =

length(s). Let g : κ → Qκ be a bijection. We define node sx ⊃ s by induction on

γ < κ. If γ < κ is a successor ordinal we can proceed as in the proof of Theorem

3.18. Let γ < κ be limit. Since the size γ is less than κ we can take s′γ =
⋃
β<γ sβ

and x′γ =
⋃
β<γ xβ. As κ is regular, |x′γ| < κ. Note that length(s′γ) ≥ αγ and

Rng(s′γ) ∩ x′γ = ∅. Since (s′γ, x
′
γ) is in Xα and ∆α

g(γ)is cofinal in Xα, we can find

(sγ, xγ) ≥ (s′γ, x
′
γ) in ∆α

g(γ).

In the other case, if fα does not embed π′(′′T ′α) to Qκ, then we proceed similar

as before. Let s ∈ T ′α, x ∈ [κ \ Rng(s)]<κ. Let 〈αγ|γ < κ〉 be cofinal in α with
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α0 = length(s). We define node sx ⊃ s induction on γ < κ. If γ < κ is a successor

ordinal we can proceed as in the proof of Theorem 3.18. Let γ < κ be limit. Since

the size γ is less than κ, we can take sγ =
⋃
β<γ sβ and xγ =

⋃
β<γ xβ. As κ is

regular, |xγ| < κ. Note that length(sγ) ≥ αγ and Rng(sγ) ∩ xγ = ∅.
Let sx =

⋃
γ<κ sγ. As in Theorem 3.18 we define the level Tα = {sx|s ∈ T ′α and

x ∈ [κ \ Rng(s)]<κ}. It is easy to verify that T � α + 1 = T ′α ∪ Tα satisfies the

condition (T1) and (T2). Again, can extend π′α to πα+1 on T � α + 1 arbitrarily

such that it satisfies the condition (π0).

Finally, set T =
⋃
α<κ+ Tα and π =

⋃
α<κ+ πα. Then π : T → κ is a function

such that s ⊆ t→ π(s) < π(t).

For a contradiction assume that T is special. As we assume κ<κ = κ, by Lemma

3.24 T is special if and only if T is Qκ-embeddable. Therefore there is a function f

which embeds π′′T in Qκ. Let

C =
{
α < κ+|α is a limit ordinal and π′′Tα = π′α

′′T ′α and

f � α embeds π′α
′′T ′α in Qκ and

(∀s ∈ T ′α)(∀x ∈ [κ \ Rng(s)]<κ)(∀q >Qκ f(π(s)))

((∃t ∈ T )(t ⊇ s & Rng(t) ∩ x = ∅ & f(π(t)) ≥Qκ q)

→ (∃t′ ∈ T ′α)(t′ ⊇ s & Rng(t) ∩ x = ∅ & f(π(t)) ≥Qκ q)} . (3.21)

It is easy to verify that C is a closed unbounded subset of κ+. As we assume

♦κ(Eκ+

κ ), the set
{
α ∈ Eκ+

κ |f � α = fα

}
is stationary, so there is α ∈ C such that

f � α = fα and α has cofinality κ. Let t ∈ Tα and let q = f(π(t)). By the

construction of T , there is (s, x) ∈ ∆α
q such that Rng(s) ∩ x = ∅ and s ⊂ t. Since f

and π are order-preserving, f(π(s)) <Qκ f(π(t)) = q.

Since f(π(s)) <Qκ q and f(π(t)) ≥Qκ q, by the definition of C there exists t′ ∈ T ′α
such that t′ ⊇ s, Rng(t′) ∩ x = ∅ and f(π(t′)) ≥Qκ q. Note that (s, x), (t′, x) are in

Xα and (s, x) ≤α (t′, x). Since (s, x) is in ∆α
q and f � α = fα, by (3.20) it must hold

that fα(π(s)) ≥Qκ q. But fα = f � α and so f(π(s)) ≥Qκ q. This contradicts our

earlier inequality f(π(s)) <Qκ q.

Corollary 3.41. Assume κ<κ = κ and ♦κ+(Eκ+

κ ). Then there is an Rκ-embeddable

κ+-Aronszajn tree, which is not special.

Proof. By Lemma 3.29, every M-special κ+-Aronszajn tree is Rκ-embeddable.

Corollary 3.42. Assume κ<κ = κ and ♦κ+(Eκ+

κ ). Then there is an S-special κ+-

Aronszajn tree, which is not special.

Proof. By Lemma 3.28, every M-special κ+-Aronszajn tree is S-special for S =

{α + 1|α < κ+}.
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The next lemma is a straightforward generalization of Lemma 3.20 and tells us

that the last inclusion in (3.18) can be consistently proper.

Lemma 3.43. Assume κ<κ = κ and ♦κ+(Eκ+

κ ). Then there is a κ+-Aronszajn tree,

which is S-special for some S unbounded subset of κ+ and it is not M-special and

by our assumption it is not Rκ-embeddable.

Proof. The proof is the same as in Lemma 3.20.

To show that the second inclusion in (3.18) can be consistently proper, i.e. that

AS-sp 6= ANS, we need to introduce the notion of an ω-ascent path, which is due to

Laver.

Definition 3.44. Let κ be a regular cardinal. We say that a κ+-Aronszajn tree T

has the property of the ω-ascent path if there is a sequence 〈xα|α < κ+〉 such that

(i) for each α < κ+, xα is a function from ω to Tα;

(ii) if α, β < κ with α < β then ∃n ∈ ω ∀m ≥ n xαm < xβm.

If the tree T has a cofinal branch, then this branch is a 1-ascent path and it is

obvious that T is not special. But Aronszajn trees do not have cofinal branches.

Thus an ω-ascent path is a pseudo-branch with width ω which prevents the tree

from being special.

The following theorem is due to Shelah ([SS88]), building on work of Laver and

Todorčević.

Theorem 3.45. Let κ > ω be a regular cardinal. Let T be a κ+-Aronszajn tree with

the property of an ω-ascent path. Then T is not special.

Proof. Assume for contradiction that there is a function f : T → κ such that f is

1-1 on chains. For α < κ+, t ∈ Tα and β < α, let prβ(t) be the predecessor of t on

Tβ.

Fix γ < κ. For each i < ω and δ ∈ Eκ+

κ there is αγ(δ, i) such that for every

α ≥ αγ(δ, i)

f(prα(xδi )) ≥ γ. (3.22)

This holds since the set
{
s ∈ T |s < xδi

}
is a chain with cofinality κ > ω and f

is 1-1 on this chain. Since γ < κ, the argument follows.

Let αγ(δ) = sup {αγ(δ, i) + 1|i < ω}. Since δ has cofinality κ, αγ(δ) < δ. Hence

αγ is a regressive function on the stationary set Eκ+

κ , by Fodor’s Lemma, there is

some Sγ ⊆ Eκ+

κ and βγ < κ+ such that αγ(δ) = βγ for δ ∈ Sγ.
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Now, we verify that for arbitrary γ < κ the following holds:

∀β ∈ [βγ, κ
+) ∃i < ω f(xβi ) ≥ γ (3.23)

Let β be given and fix δ > β such that δ ∈ Sγ. By the property of the ω-

ascent path there is some i < ω such that xβi <T x
δ
i . Since β ≥ βγ ≥ αγ(δ, i) and

xβi = prβ(xδi ), by (3.22) f(xβi ) ≥ γ.

Now we finish the proof. Let α∗ = sup {βγ|γ < κ}. It is obvious that α∗ < κ+.

Thus we can fix β such that α∗ ≤ β < κ+. Since (3.23) holds for each γ < κ, there

is for every γ some iγ < ω such that f(xβiγ ) ≥ γ. By the pigeon-hole principle, there

is some i∗ < ω such that for unboundedly many γ < κ it holds that f(xβi∗) ≥ γ.

This contradicts our assumption that f is a function from T to κ.

Remark 3.46. Note that no such argument can exist for ω1-trees since it is impor-

tant for the proof that there is a regular cardinal between ω and κ+. This is the

difference between the specialization forcing for ω1 and for higher cardinals. In the

case of higher cardinals, if T has an ω-ascent path, then any specialization forcing

must collapse cardinals. On the other hand, specialization forcing for ω1-trees is ccc.

Corollary 3.47. Let κ be a regular cardinal. Let T be a κ+-Aronszajn tree with the

property of an ω-ascent path. Then T is not S-special.

Proof. Let S ⊆ κ+ be an unbounded subset of κ+ and 〈xα|α < κ+〉 be an ω-ascent

path. Then 〈xα|α < κ+〉 � S is ω-ascent path for T � S and by the previous theorem

T � S is not special.

Fact 3.48. Let κ be a regular cardinal. Assume �κ. Then there is a non-Suslin

κ+-Aronszajn tree with ω-ascent path.

Proof. The construction of such tree can be found in [SS88].

Hence we can conclude that the second inclusion in (3.18) can be consistently

proper.

Corollary 3.49. Let κ be a regular cardinal. Assume �κ. Then there is a non-

Suslin κ+-Aronszajn T tree such that T is not S-special.

Proof. It follows from Corollary 3.47 and Fact 3.48.

Remark 3.50. Note that if we replace ω with an arbitrary regular cardinal λ < κ

in the definition of ω-ascent path, the proof of Theorem 3.45 does not change. Thus

if κ+-Aronszajn tree T has the λ-ascent path for some regular λ < κ, then T is not

S-special.
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The following picture illustrates our situation.

κ+-Aronszajn Trees

,

'

&

$

%
S(κ+)

'

&

$

%
Asp(κ+)

ANS(κ+)

AS−sp(κ+)

'

&

$

%
AM-sp(κ+)

ANormal(κ+)

Notation Kind of κ+-Aron-

szajn trees

S(κ+) Suslin

ANormal(κ+) Normal

Asp(κ+) Special

AM-sp(κ+) M-special

T(R)(κ+) R-embeddable

AS-sp(κ+) S-special

ANS(κ+) Non-Suslin

Figure 2: Description of the relations between various kinds of κ+-Aronszajn trees

for κ a regular cardinal.
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4 The Tree Property at One Cardinal

Recall the definitions of the tree property and of the weak tree property. Mitchell

and Silver ([Mit72]) were the first to prove, under large cardinal assumption, that

it is consistent for the double successor of a regular cardinal to have either of these

properties. Later, Baumgartner and Laver ([BL79]) showed that the Sacks forcing

can be used for the same result at ω2 and Kanamori generalized this for arbitrary

double successor of a regular cardinal in [Kan80]. In this section we present Mitchell

and Silver’s proof and the method of Baumgartner and Laver for the Grigorieff

forcing.

4.1 Preliminaries

Here we present several branching lemmas. They state that forcings with some

properties do not add new cofinal branches to some trees. This is useful when

dealing with Aronszajn trees and the tree property.

The following lemma first appeared in [KT79] for a Suslin tree of height ω1.

However, the generalization to a tree of height κ for κ > ω1 is obvious.

Lemma 4.1. Let κ be a regular cardinal and P be a κ-Knaster forcing notion. If T

is a tree of height κ, then forcing with P does not add any new cofinal branches to

T .

Actually, the assumption that the forcing P is κ-Knaster can be weaken to the

assumption that the forcing P× P is κ-cc.

Lemma 4.2. Let κ be a regular cardinal and P be a forcing notion such that P× P
is κ-cc. If T is a tree of height κ, then forcing with P does not add any new cofinal

branches to T .

The next lemma was proved by Baumgartner in [Bau83] using the argument of

Silver from [Sil71].

Lemma 4.3. If 2ℵ0 ≥ ℵ2, T is an ω2-Aronszajn tree and P is ω1-closed forcing,

then in V [P], T has no cofinal branches.

This lemma can be generalized to higher cardinals in the following way.

Lemma 4.4. Let λ be a regular cardinal and T be a λ-tree. Let P be κ+-closed

forcing, where 2κ ≥ λ, Then every cofinal branch through T in V [P] is already in V .

This can be further generalized to the lemma which first appeared in [Ung12].
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Lemma 4.5. Let κ, λ be regular cardinals. Assume 2κ ≥ λ. Let P be κ+-cc and Q
be κ+-closed. Then Q does not add cofinal branches to λ-trees in V [P].

In fact, a stronger version of Lemma 4.5 easily follows from its proof.

Lemma 4.6. Let κ, λ be regular cardinals. Assume 2κ ≥ λ. Let ξ be a regular

cardinal such that κ < ξ ≤ λ. Let P be ξ-cc and Q be ξ-closed. Then Q does not

add cofinal branches to λ-trees in V [P].

The following lemma is actually an easy observation and we use it in the proofs

of the consistency of the weak tree property at more cardinals.

Lemma 4.7. Let κ be a regular and T be an M-special κ+-Aronszajn tree. Let P be

a forcing notion. If P preserves cardinals, then P does not add cofinal branch to the

tree T .

Proof. Assume for contradiction that b is a cofinal branch in T in V [P]. Then b is a

1-1 function from κ+ to κ. Hence κ+ is collapsed to κ. But this is a contradiction

since we assumed that P preserves cardinals.

4.2 Mitchell Forcing

In this section we define the Mitchell forcing, study its properties and use it to

force the weak tree property and the tree property at double successor of a regular

cardinal. This is a result of Mitchell and Silver from [Mit72]. The main advantage

of the Mitchell forcing is that it is a projection of the product of two forcings, where

the first has a good chain condition and the second is sufficiently closed.

Throughout this section we assume that κ, λ are regular cardinals and κ < λ.

Definition 4.8. The Cohen forcing Add(κ, 1) is the collection of all functions p :

κ→ 2, where |Dom(p)| < κ. The ordering is by reverse inclusion.

Definition 4.9. The Cohen forcing Add(κ, λ) is the collection of all functions p :

λ→ 2, where |Dom(p)| < κ. The ordering is by reverse inclusion.

We do not use the original definition of the Mitchell forcing. Instead, we work

with more understandable and more common version from [Abr83].

Definition 4.10. The Mitchell forcing M(κ, λ) is defined as follows: for an ordinal α,

κ < α < λ, let Q(α) be an Add(κ, α)-name for the partially ordered set Add(κ+, 1).

The forcing M(κ, λ) is the collection of pairs (p, q) such that p ∈ Add(κ, λ) and

q is a function of cardinality less than κ+ such that if α ∈ Dom(q) then κ < α < λ

and ∅ 
Add(κ,α) q(α) ∈ Q(α).

M(κ, λ) is ordered by (p, q) ≤ (p′, q′) if and only if p ≤Add(κ,λ) p
′, Dom(q′) ⊆

Dom(q) and for all α ∈ Dom(q′) p � α 
 q′(α) ⊆ q(α).
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Now, we present the basic properties of the Mitchell forcing.

Lemma 4.11. M(κ, λ) is κ-closed.

Proof. Let ξ < κ and 〈(pi, qi)|i ∈ ξ〉 be a decreasing sequence in M(κ, λ). Set p =⋃
i<ξ pi. Since κ is regular, p is in Add(κ, λ). Now, we define q as follows: Dom(q) =⋃
i<ξ Dom(qi). If α is in Dom(q) and i0 is the first i such that α ∈ Dom(qi), then

p � α 
 “ 〈qi(α)|i0 ≤ i < ξ〉 is a decreasing sequence in Q(α)”. Let α ∈ Dom(q) be

given. We can define q(α) to be an Add(κ, α)-name such that ∅ 
Add(κ,α) q(α) ∈
Q(α) and p � α 
 q(α) =

⋃
i0≤i<ξ qi(α). It is easy to verify that the pair (p, q) is in

M(κ, λ) and that it is the lower bound of the given sequence.

Lemma 4.12. Let λ be an inaccessible cardinal. Then M(κ, λ) is λ-Knaster.

Proof. Let A ⊆ M(κ, λ) such that |A| = λ. Since Add(κ, λ) is λ-Knaster, there

is Y ⊆ A such that |Y | = λ and if (p, q), (p′, q′) ∈ Y , then p ‖ p′. Let B′ =

{q|(∃p ∈ Add(κ, λ))((p, q) ∈ Y )}.
If |B′| < λ, then we fix for each q ∈ B′ the set Aq = {(p, q′) ∈M(κ, λ)|(p, q′) ∈ Y

and q′ = q}. Then Y =
⋃
q∈B′ Aq and if q 6= q′, then Aq ∩ Aq′ = ∅. Since |B′| < λ,

there exists q ∈ B′ such that |Aq| = λ. It is easy to see that all elements of Aq are

pairwise compatible.

If |B′| = λ, then set B = {Dom(q)|q ∈ B′}. We show that the set B has size λ.

Let X ⊂ {α|κ < α < λ} such that |X| ≤ κ, we show that there are less than λ-many

different conditions q with domain X. Let α ∈ X be given. Then q(α) is Add(κ, α)-

name for a condition in Add(κ+, 1)V [Add(κ,α)]. Since Add(κ, α) has size α<κ = µ < λ,

there are at most θα = (µµ)κ
+

Add(κ, α)-nice names for conditions in Add(κ+, 1).

Hence the number of conditions with domain X is
∏

α∈X θα = (supα∈Xθα)κ which is

less than λ as λ is inaccessible. Therefore the set B has size λ.

By ∆-system lemma, there exist C ⊆ B with |C| = λ, and r ⊆ λ such that

|r| ≤ κ and Dom(p) ∩ Dom(q) = r for every pair Dom(p), Dom(q) from C. Let

A1 = {(p, q) ∈ B′|Dom(q) ∈ C}. As |C| = λ, it also holds that |A1| = λ. Notice

that if (p, q), (p′, q′) ∈ A1 such that q′ � r = q � r then (p, q) ‖ (p′, q′). Since p, p′

are compatible, there is p∗ such that p∗ ≤ p and p∗ ≤ p′. It is easy to verify that

(p∗, q ∪ q′) witnesses the compatibility of (p, q) and (p′, q′).

Now, we find A2 ⊆ A1 such that

∀(p, q), (p′, q′) ∈ A2(q � r = q′ � r) (4.1)

and the size of A2 is λ. This will be enough to conclude the proof. If r = ∅, then

A2 = A1 is as required. Assume that r 6= ∅. As we showed above, since |r| ≤ κ,

there can be only α-many function satisfying the definition of M(κ, λ) with domain
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r, for some α < λ. Let 〈fi|i < α〉 be their enumeration. For each such fi denote

Afi = {q|q � r = fi}. Then A1 =
⋃
i<αAfi where i 6= j implies Afi ∩ Afj = ∅. It

follows that A1 can be partitioned into α-many pieces. Hence there exists i < α

such that |Afi | = λ. Set A2 = Afi .

We show that there is a projection from the product of two forcings to the

Mitchell forcing M(κ, λ), where the first forcing is Add(κ, λ) and the second forcing

is κ+-closed. Now, we define this second forcing.

Definition 4.13. We define Q = (Q(κ, λ),≤Q) asQ(κ, λ) = {(∅, q)|(∅, q) ∈M(κ, λ)}
and the ordering ≤Q=≤M(κ,λ)� Q(κ, λ).

Lemma 4.14. Q is κ+-closed.

Proof. Let 〈(∅, qβ) ∈ Q(κ, λ)|β < κ〉 be a decreasing sequence in Q. We define a

lower bound (∅, q) of 〈(∅, qβ) ∈ Q(κ, λ)|β < κ〉 as follows: Dom(q) =
⋃
β<κ Dom(qβ).

If α is in Dom(q) and β0 is the first β such that α is in Dom(qβ), then ∅ 


“ 〈qβ(α)|β0 ≤ β < ξ〉 is a decreasing sequence in Q(α)”. Let α ∈ Dom(q) be given.

We can define q(α) to be an Add(κ, α)-name such that ∅ 
 q(α) =
⋃
β0≤β<ξ qβ(α).

It is easy to see that (∅, q) is in Q since Dom(q) ≤ κ and the forcing Add(κ+, 1) is

κ+-closed.

Lemma 4.15. Let a function π : Add(κ, λ) × Q → M(κ, λ) be defined such that

π((p, (∅, q))) = (p, q). Then π is a projection.

Proof. We need to verify the three conditions from the Definition 2.25.

Ad (i). Let (p′, (∅, q′)) ≤ (p, (∅, q)). We want to show that (p′, q′) ≤ (p, q), i.e.

p′ ≤ p, Dom(q) ⊆ Dom(q′) and ∀α ∈ Dom(q) p′ � α 
 q(α) ⊆ q′(α). By our

assumption, p′ ≤ p, Dom(q) ⊆ Dom(q′) and ∅ 
 q(α) ⊆ q′(α). Hence it is easy to

see that also p′ � α 
 q(α) ⊆ q′(α) for α ∈ Dom(q).

Ad (ii). Let (p′, q′) ≤ π((p, (∅, q))) = (p, q). We want to find a function q∗

such that (∅, q∗) ≤ (∅, q) and π((p′, (∅, q∗))) ≤ (p′, q′). We define q∗ as follows:

Dom(q∗) = Dom(q′) and for all α ∈ Dom(q′):

• If α /∈ Dom(q), let q∗(α) = q′(α).

• If α ∈ Dom(q), then we define q∗(α) ∈ V Add(κ,α) as

a) p′ � α 
 q∗(α) = q′(α);

b) if r ∈ Add(κ, α) is incompatible with p′ � α, then r 
 q∗(α) = q(α).
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Hence ∅ 
Add(κ,α) q(α) ⊆ q∗(α) for all α ∈ Dom(q). Since Dom(q) ⊆ Dom(q′) =

Dom(q∗), we have (p′, (∅, q∗)) ≤ (p, (∅, q)) in Add(κ, λ) × Q. Now, by definition

of projection π, π(p′, (0, q∗)) = (p′, q∗). Hence it is enough to show that (p′, q∗) ≤
(p′, q′). This is immediate since Dom(q∗) = Dom(q′) and by the definition of q∗, for

each α ∈ Dom(q∗), p′ � α 
 q∗(α) = q′(α).

Ad (iii). It is easy to see that π is onto. Let (p, q) ∈ M(κ, λ), then (p, (∅, q)) ∈
Add(κ, λ)×Q and by the definition of π, π((p, (∅, q))) = (p, q).

Lemma 4.16. There is a projection π : M(κ, λ)→ Add(κ, λ).

Proof. We define the projection π : M(κ, λ) → Add(κ, λ) as follows: For given

(p, q) ∈ M(κ, λ), π(p, q) = p. It is obvious that π satisfies the conditions from

Definition 2.25.

This means that the Cohen forcing is actually a subforcing of the Mitchell forcing.

Therefore the following lemma tells us that each sequence of ordinals of length less

than κ+ is already added by a smaller forcing.

Lemma 4.17. Assume κ<κ = κ. Then all sets of ordinals in V [M(κ, λ)] of cardi-

nality κ are in V [Add(κ, λ)].

Proof. By Lemma 4.15, there a is projection π : Add(κ, λ) × Q → M(κ, λ), hence

V [M(κ, λ)] ⊆ V [Add(κ, λ) × Q]. Therefore it is enough to show that all sets of

ordinals in V [Add(κ, λ) × Q] of cardinality κ are in V [Add(κ, λ)]. Since κ<κ = κ,

Add(κ, λ) is κ+-cc. By Lemma 4.14, Q is κ+-closed. Hence, by Easton’s lemma,

Q is κ+-distributive in V [Add(κ, λ)], i.e. Q does not add new sequences of ordinals

of length less than κ+. Hence any sequence of ordinals in V [Add(κ, λ) × Q] of

cardinality κ is already in V [Add(κ, λ)].

Corollary 4.18. Assume κ<κ = κ. Then κ+ remains a cardinal in V [M(κ, λ)].

Proof. Assume for contradiction that κ+ is not a cardinal in V [M(κ, λ)]. Then

there is a function f from ξ onto κ+, for some ξ < κ+. By the previous lemma, f is

already in V [Add(κ, λ)] and so κ+ is not a cardinal in V [Add(κ, λ)]. Since Add(κ, λ)

is κ+-Knaster, κ+ remains a cardinal in V [Add(κ, λ)] and this is a contradiction.

Now, we know that all cardinals ≤κ and cardinals ≥λ are preserved by M(κ, λ).

Moreover, κ+ is preserved. Now, we focus on other properties of the final extension.

We show that 2κ = λ and that λ becomes the double successor of κ.

Lemma 4.19. Let λ be an inaccessible cardinal. Then in V [M(κ, λ)], 2κ = λ.
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Proof. 2κ ≥ λ follows from Lemma 4.16. Now, we show that 2κ ≤ λ. Since the

forcing M(κ, λ) is λ-cc of size λ, which is inaccessible in V , 2κ ≤ λ easily follows by

a common nice names argument.

Lemma 4.20. Let ξ be an ordinal such that κ < ξ < λ. Then there is a projection

π : M(κ, λ)→M(κ, ξ).

Proof. We define the projection π : M(κ, λ) → M(κ, ξ) in the following way: for

given (p, q) ∈M(κ, λ), π(p, q) = (p � ξ, q � ξ). It is easy to verify that π satisfies the

conditions from Definition 2.25.

Lemma 4.21. Assume κ<κ = κ. Let λ be an inaccessible cardinal. Then λ = κ++

in V [M(κ, λ)].

Proof. By Lemma 4.12 all cardinals µ ≥ λ are preserved by the Mitchell forcing and

by Corollary 4.18 κ+ is also preserved.

Now, we show that each cardinal ξ, κ+ < ξ < λ, is collapsed to κ+. It is enough

to show it for ξ regular. Let ξ be given. Then by Lemma 4.20 there is a projection

π′ : M(κ, λ)→M(κ, ξ+ 1), so it suffices to show that the size of ξ in V [M(κ, ξ+ 1)]

is κ+.

Now, we show that there is a projection π : M(κ, ξ+1)→ Add(κ, ξ)∗Add(κ+, 1).

We define π as follows: for (p, q) ∈M(κ, ξ + 1) let

π((p, q)) =

(p � ξ, q(ξ)) if ξ ∈ Dom(q);

(p � ξ, ∅̌) otherwise.

It is easy to verify that π preserves ordering and it is onto. We check only

property (ii) of Definition 2.25. Assume that q′ is defined on ξ and let (p, ṙ) ≤
π((p′, q′)) = (p′ � ξ, q′(ξ)). We want to find q∗ such that (p∗, q∗) ≤ (p′, q′) and

π((p∗, q∗)) ≤ (p, ṙ), where p∗ = p ∪ {〈ξ, p′(ξ)〉}. The condition q∗ is defined as

follows: Dom(q∗) = Dom(q′). Let α ∈ Dom(q∗). If α < ξ, set q∗(α) = q′(α). If

α = ξ, set q∗(α) = ṙ.

Now we verify that q∗ is the desired function. First, we show that (p∗, q∗) ≤
(p′, q′). Since p ≤ p′ � ξ in Add(κ, ξ), p∗ ≤ p′ in Add(κ, ξ + 1). If β < ξ and

β ∈ Dom(q∗), then p � β 
 q′(β) = q∗(β) because q∗(β) = q′(β). If β = ξ,

then p∗ � ξ = p 
 q∗(β) ≤ q′(β) since q∗(β) = ṙ and p 
 ṙ ≤ q′(ξ). Therefore

(p∗, q∗) ≤ (p′, q′).

Next we show that π((p∗, q∗)) ≤ (p, ṙ). By the definition of π, π((p∗, q∗)) =

(p, q∗(ξ)) and so it is easy to see that (p, q∗(ξ)) ≤ (p, ṙ) since q∗(ξ) = ṙ.

If q′ is not defined on ξ, then the proof is similar to the prof before, except we

have to take Dom(q∗) = Dom(q′) ∪ {ξ} and instead of q(ξ) we consider ∅̌.
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In V [Add(κ, ξ)] |= 2κ ≥ ξ and in V [Add(κ, ξ) ∗Add(κ+, 1)] |= 2κ = κ+, hence in

V [Add(κ, ξ) ∗ Add(κ+, 1)] |= |ξ| = κ+. Since there is a projection from M(κ, ξ + 1)

to Add(κ, ξ) ∗ Add(κ+, 1), V [M(κ, ξ + 1)] |= |ξ| = κ+.

Corollary 4.22. Assume κ<κ = κ. The forcing Q collapses cardinals between κ+

and λ to κ+.

Proof. Let ξ, κ+ < ξ < λ, be given. In the proof of the previous lemma, we

showed that each cardinal between κ+ and λ is collapsed to κ+ by M(κ, λ). Since

there is a projection from Add(κ, λ)×Q to M(κ, λ) by Lemma 4.15, V [M(κ, λ)] ⊆
V [Add(κ, λ)×Q] and so |ξ| = κ+ in V [Add(κ, λ)×Q]. As we assume κ<κ = κ, the

forcing Add(κ, λ) is κ+-cc over V . As Q is κ+-closed, Add(κ, λ) is κ+-cc over V [Q]

by Easton’s Lemma and so preserves cardinals above κ+. Therefore the collapsing

function had to be added by Q.

As we showed above, there is a projection from M(κ, λ) to M(κ, ξ), where

κ < ξ < λ. Therefore we can consider the Mitchell forcing as a two step itera-

tion M(κ, ξ) ∗M(κ, λ)/M(κ, ξ) (see Fact 2.29). Moreover, in V [M(κ, ξ)] the forcing

M(κ, λ)/M(κ, ξ) behaves as the Mitchell forcing. This means that it is also a pro-

jection of the product of two forcings, where the first has a good chain condition

and the second is sufficiently closed.

Lemma 4.23. Let ξ be an ordinal such that κ < ξ < λ. In V [M(κ, ξ)] there is a

κ-closed forcing Q∗ such that the partial order M(κ, λ)/M(κ, ξ) is a projection of

Add(κ, [ξ, λ))×Q∗.

Proof. Let G be M(κ, ξ)-generic over V and let us work in V [G]. Recall that

M(κ, λ)/M(κ, ξ) = {(p, q) ∈M(κ, λ)|(p � ξ, q � ξ) ∈ G}. We define the forcing Q∗ =

{(∅, q) ∈M(κ, λ)|(∅, q � ξ) ∈ G} with the induced ordering.

We show that the forcing Q∗ is κ+-closed. Let 〈(∅, qβ) ∈ Q∗|β < κ〉 be a de-

creasing sequence in Q∗. We define a lower bound (∅, q) of 〈(∅, qβ) ∈ Q∗|β < κ〉 as

follows: Dom(q) =
⋃
β<κ Dom(qβ). If α is in Dom(q) and β0 is the first β such that

α is in Dom(qβ), then ∅ 
 “ 〈qβ(α)|β0 ≤ β < ξ〉 is a decreasing sequence in Q(α)”.

Let α ∈ Dom(q) be given. We can define q(α) to be an Add(κ, α)-name such that

∅ 
 q(α) =
⋃
β0≤β<ξ qβ(α). Now, we verify that q is in Q∗. It is easy to see that

|Dom(q)| ≤ κ and that (∅, q) ∈ M(κ, λ). It remains to show that (∅, q � ξ) is in G,

but this follows from the assumption that, for each β < κ, (∅, qβ � ξ) ∈ G.

First we show that in V [G] the forcing Add(κ, [ξ, λ)) is forcing equivalent to

Add(κ, λ)/Add(κ, ξ). The forcing Add(κ, λ)/Add(κ, ξ) is already defined in V [π∗′′G],

where π∗ is a projection from M(κ, ξ) to Add(κ, ξ) such that for all (p, q) ∈M(κ, ξ),
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π∗((p, q)) = p. Hence π∗′′G = {p ∈ Add(κ, ξ)|(∃(p′, q′) ∈ G)(p′ = p)} is Add(κ, ξ)-

generic filter over V . Normally we would have to take an upward closure of π∗′′G

to obtain the generic filter, but in this case π∗′′G is already upward closed. Recall

that the forcing Add(κ, λ)/Add(κ, ξ) is defined as {p ∈ Add(κ, λ)|p � ξ ∈ π∗′′G}. By

the definition of π∗′′G, this is equal to {p ∈ Add(κ, λ)|(∃(p′, q′) ∈ G)(p′ = p � ξ)} in

V [G].

Now, in V [π∗′′G], the forcing Add(κ, [ξ, λ)) is forcing equivalent to the forcing

Add(κ, λ)/Add(κ, ξ). This holds because both forcings Add(κ, ξ) ∗ Add(κ, [ξ, λ))

and Add(κ, ξ) ∗ Add(κ, λ)/Add(κ, ξ) are forcing equivalent to Add(κ, λ) in V .

Note that Add(κ, [ξ, λ))V = Add(κ, [ξ, λ))V [G] = Add(κ, [ξ, λ))V [π∗′′G] since both

Add(κ, ξ) and M(κ, ξ) are κ-closed. In addition, Add(κ, λ)/Add(κ, ξ)V [G] is equal to

Add(κ, λ)/Add(κ, ξ)V [π∗′′G] since both are defined using only Add(κ, λ)V and π∗′′G.

Therefore Add(κ, [ξ, λ)) is forcing equivalent to Add(κ, λ)/Add(κ, ξ) in V [G].

As we showed above, Add(κ, [ξ, λ)) is forcing equivalent to Add(κ, λ)/Add(κ, ξ)

in V [G], hence it suffices to find a projection from Add(κ, λ)/Add(κ, ξ) × Q∗ to

M(κ, λ)/M(κ, ξ). We define the projection π as follows: π((p, (∅, q))) = (p, q).

The function π is well defined, i.e. it is a function from Add(κ, λ)/Add(κ, ξ)×Q∗ to

M(κ, λ)/M(κ, ξ): if (p, (∅, q)) ∈ Add(κ, λ)/Add(κ, ξ) × Q∗, then (∅, q � ξ) ∈ G and

there is q′ such that (p � ξ, q′ � ξ) ∈ G. It follows that (p � ξ, q � ξ) ∈ G.

Now, we need to check the conditions from Definition 2.25. It is easy to verify

that π is onto and that it preserves ordering. We verify the condition (ii). Let

(p′, q′) ≤ π((p, (∅, q))) = (p, q). We want to find a function q∗ such that (∅, q∗) ≤
(∅, q), π((p′, (∅, q∗))) ≤ (p′, q′), and (∅, q∗ � ξ) is in G. We define q∗ as follows:

Dom(q∗) = Dom(q′) and for all α ∈ Dom(q′):

• If α /∈ Dom(q), let q∗(α) = q′(α).

• If α ∈ Dom(q), then we define q∗(α) ∈ V Add(κ,α) as

(i) p′ � α 
 q∗(α) = q′(α);

(ii) if r ∈ Add(κ, α) is incompatible with p′ � α, then r 
 q∗(α) = q(α).

Hence ∅ 
Add(κ,α) q(α) ⊆ q∗(α) for all α ∈ Dom(q). Since Dom(q) ⊆ Dom(q′) =

Dom(q∗), we have (p′, (∅, q∗)) ≤ (p, (∅, q)). Now, by definition of projection π,

π(p′, (0, q∗)) = (p′, q∗). Hence it is enough to show that (p′, q∗) ≤ (p′, q′). This

is immediate since Dom(q∗) = Dom(q′) and by the definition of q∗, for each α ∈
Dom(q∗), p′ � α 
 q∗(α) = q′(α). To finish the proof, we need to verify that

(∅, q∗ � ξ) ∈ G. For α in Dom(q∗), p′ � α 
 q∗(α) = q′(α) by the definition of q∗.

It follows that (p′, q∗) ≥ (p′, q′), hence (p′ � ξ, q∗ � ξ) ∈ G. Since (∅, q∗) ≥ (p′, q∗),

(∅, q∗ � ξ) ∈ G.

45



Now, we show how to use the Mitchell forcing to obtain the weak tree property

or the tree property at the double successor of a given regular cardinal.

Theorem 4.24. Assume GCH. Let κ be a regular cardinal. If there exists a Mahlo

cardinal λ > κ, then in the generic extension by M(κ, λ) it holds that

(i) 2κ = λ = κ++;

(ii) κ++ has the weak tree property.

Proof. Ad (i). This follows from Lemma 4.19 and Lemma 4.21.

Ad (ii). Let G be an M(κ, λ)-generic over V . Suppose that T is an M-special

λ = κ++-Aronszajn tree in V [G]. Let (p, q) ∈ G be such that (p, q) 
“T is an

M-special κ++-Aronszajn tree”. Then for each α < λ, T � α has size at most

κ+. Hence we can consider T � α as a subset of κ+. As such, T � α has a nice

name πα =
⋃{{

β̌
}
× Aβ|β < κ+ and Aβ is an antichain of M(κ, λ)

}
and it holds

that β ∈ T � α↔ (∃a ∈ Aβ)(a ∈ G).

Now, we show that T � α is already in V [Gξ] for some ξ < λ, where Gξ =

{(p � ξ, q � ξ)|(p, q) ∈ G} is an M(κ, ξ)-generic filter because there is a projection

from M(κ, λ) to M(κ, ξ) by Lemma 4.20 and because Gξ is already upward closed.

Set

X =
⋃{

Dom(p′) ∪Dom(q′)|(∃β < κ+)((p′, q′) ∈ Aβ)
}
. (4.2)

The set X has size less than λ, since M(κ, λ) is λ-cc and the conditions of the Mitchell

forcing are bounded in λ at both coordinates. Take ξ = sup {β < λ|β ∈ X}. Then

T � α ∈ V [Gξ] since πα is also an M(κ, ξ)-nice name. Let Ṫα be an M(κ, λ)-name

for T � α. Then we set

σ′(α) = min
{
ξ < λ|(∀α′ < α)(∃πα′)(πα′ is an M(κ, ξ)-nice name and

(p, q) 
 Ṫα′ = πα′)
}
. (4.3)

Then σ′ is defined in V and it is easy to see that it is a continuous nondecreasing

unbounded function from λ into λ. As we want to argue that σ′ has a fixed point,

we need σ′ to be increasing. Hence we define σ : λ → λ by induction on α < λ as

follows: if α = 0 then σ(α) = σ′(α). If α = β + 1 then set

σ(α) =

σ(β) + 1 if σ′(α) ≤ σ(β);

σ′(α) otherwise.

If α is limit then σ(α) = sup {σ(β)|β < α}.
The function σ is continuous and increasing, hence there is a closed unbounded

set of fixed points of σ. Moreover, σ still satisfies that T � α ∈ V [Gσ(α)] since
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σ′(α) ≤ σ(α) for each α < λ. As λ is Mahlo in V , there is a fixed point δ of σ

which is inaccessible in V . By Lemma 4.21, |δ| = κ+ in V [G] and since T is a

κ++-Aronszajn tree in V [G], there is a branch b of T of length δ in V [G].

Now, we show that b is already in V [Gδ]. Work in V [Gδ]. T � δ is an M-

special δ-Aronszajn tree. Moreover, δ = κ++ and 2κ ≥ δ. By Lemma 4.23, there is a

projection from Add(κ, [δ, λ))×Q∗ to M(κ, λ)/M(κ, δ), where Q∗ is κ+-closed. Since

b ∈ V [G], b ∈ V [Gδ][H1×H2], whereH1×H2 is Add(κ, [δ, λ))×Q∗-generic over V [Gδ].

Note that from the properties of product forcing, we have that V [Gδ][H1 × H2] =

V [Gδ][H2][H1]

In V [Gδ][H2], note that Add(κ, [δ, λ)) is κ+-Knaster since in V [Gδ][H2], κ
<κ = κ

and we can apply the ∆-system argument. As δ is collapsed to κ+ in V [Gδ][H2][H1]

and Add(κ, [δ, λ)) is κ+-Knaster in V [Gδ][H2], δ has to be collapsed already in

V [Gδ][H2]. Hence δ is an ordinal of cofinality κ+ in V [Gδ][H2]. Let T ′ = (T � δ) � A,

where A is a cofinal subset of δ of size κ+. Note that T ′ need not be a κ+-tree,

because T � δ is a κ++-tree in V [Gδ], hence it is possible that T ′ has a level of

size κ+. By Lemma 4.1, Add(κ, [δ, λ)) does not add cofinal branches to the tree T ′,

hence it does not add cofinal branches to the tree T � δ. Therefore b ∈ V [Gδ][H2].

In V [Gδ] , since 2κ ≥ δ = κ++ and Q∗ is κ+-closed, we know by Lemma 4.4 that

b could not be added by Q∗. Hence b is in V [Gδ].

Work in V [Gδ]. As T � δ is M-special, b is a 1-1 function from δ to κ+, so

M [Gδ] |= δ ≤ κ+. Since Gδ is M(κ, δ)-generic over M and δ is inaccessible in M ,

M [Gδ] |= δ = κ++ by Lemma 4.21. This is a contradiction.

Thus, we have proved that there are no M-special κ++-Aronszajn trees in V [G].

By Theorem 3.38, κ++ has the weak tree property.

Remark 4.25. Note that by Theorem 3.38, there are no S-special κ++-Aronszajn

trees in the extension in the previous theorem. On the other hand there could be

a κ++-Suslin tree. Assume that V = L and that a Mahlo cardinal exists. Let λ be

the least Mahlo cardinal. Then λ is not weakly compact and as we assume V = L,

there is a λ-Suslin tree. For more details about this see [Dev84]. As in the previous

theorem, we can force with M(ω, λ) to obtain a model where λ = ω2 and the weak

tree property holds at ω2. Since in the ground model there was a Suslin tree at λ

and M(ω, λ) is λ-Knaster, the λ-Suslin tree is preserved.

To keep things simple and clear we prove the next theorem under the assumption

of a measurable cardinal. This assumption can be weaken to an existence of a weakly

compact cardinal but the proof would be more technical and the technicalities could

obscure the main ideas of the proof.

47



Theorem 4.26. Assume GCH. Let κ be a regular cardinal. If there exists a mea-

surable cardinal λ > κ, then in the generic extension by M(κ, λ) it holds that

(i) 2κ = λ = κ++;

(ii) κ++ has the tree property.

Proof. Ad (i). This follows from Lemma 4.19 and Lemma 4.21.

Ad (ii). Let G be an M(κ, λ)-generic over V . Since λ is measurable in V , there

is an elementary embedding j : V → M with critical point λ and λM ⊆ M , where

M is a transitive model of ZFC.

In M , the forcing j(M(κ, λ)) is M(κ, j(λ))M by the elementarity of j. Since

Vλ = V M
λ and each condition in M(κ, λ) is bounded in Vλ, M(κ, j(λ))M � λ =

M(κ, λ)M = M(κ, λ)V . Hence G is also M(κ, λ)M -generic over M . By Lemma

4.20, there is a projection from M(κ, j(λ)) to M(κ, λ) and we can define in M [G]

the forcing M(κ, j(λ))/M(κ, λ). Since M(κ, j(λ))/M(κ, λ) is definable in M [G], it

is definable in V [G]. Let H be M(κ, j(λ))/M(κ, λ)-generic over V [G], then H is

M(κ, j(λ))/M(κ, λ)-generic over M [G] since M [G] ⊆ V [G].

Work in V [G][H]. By Lemma 2.3, we can lift j to j∗ : V [G]→M [G][H]. Assume

T is a λ-tree in V [G]. We show that T has a cofinal branch in V [G]. We can consider

T as a subset of λ, so T has a nice name Ṫ in V . Ṫ has size λ since M(κ, λ) is λ-cc. As
λM ⊆M , Ṫ is in M . Hence T ∈M [G]. By elementarity of j∗, j∗(T ) is a j∗(λ)-tree in

M [G][H] and since j∗ is the identity below λ, j∗(T ) � λ = T . As j∗(T ) is j∗(λ)-tree

in M [G][H], it has branch b of length λ in M [G][H]. By Lemma 4.23, in M [G] there

is projection from Add(κ, [λ, j∗(λ))) × Q∗ to M(κ, j∗(λ))/M(κ, λ), where Q∗ is κ+-

closed. Hence M [G][H] ⊆M [G][H1×H2], where H1×H2 is Add(κ, [λ, j∗(λ)))×Q∗-
generic over M [G]. Therefore b is in M [G][H2][H1].

In M [G][H2], note that Add(κ, [λ, j∗(λ))) is κ+-Knaster since κ<κ = κ. As λ is

collapsed to κ+ in M [G][H2][H1] and Add(κ, [λ, j∗(λ))) is κ+-Knaster in M [G][H2],

λ has to be collapsed to κ+ already in M [G][H2]. Hence λ is an ordinal of cofinality

κ+ in M [G][H2]. Let T ′ = T � A, where A is cofinal subset of λ of size κ+. Note

that T ′ need not be a κ+-tree, because T is κ++-tree in M [G], hence it is possible

that T ′ has a level of size κ+. By Lemma 4.1, Add(κ, [λ, j∗(λ))) does not add

cofinal branches to the tree T ′, hence it does not add cofinal branches to the tree T .

Therefore b ∈M [G][H2].

In V [G], since 2κ ≤ λ = κ++ and Q∗ is κ+-closed, we know by Lemma 4.4 that

b could not be added by Q∗. Therefore the branch b is already in M [G] and so in

V [G].
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4.3 Grigorieff forcing

In this section we show an alternative method to obtain the weak tree property and

the tree property at double successor of a regular cardinal κ. This method was first

used by Baumgartner and Laver in [BL79] for the case κ = ω. Kanamori generalized

this for arbitrary regular cardinal in [Kan80]. They used the Sacks forcing, taking

advantage of its fusion property. We use the Grigorieff forcing instead of the Sacks

forcing since it also has the fusion property and this property is crucial to the proofs

of Baumgartner and Laver. Therefore, the proofs based on the Grigorieff forcing are

pretty much the same as the proofs based on the Sacks forcing.

The Grigorieff forcing was first defined in [Gri71] by Grigorieff for κ = ω, but

the following definition is taken from [HV].

Definition 4.27. Let κ be a regular cardinal and let I be a normal ideal on κ

extending the nonstationary ideal on κ. We define κ-Grigorieff forcing GI(κ, 1) =

(GI(κ, 1),≤) as

GI(κ, 1) =

{
f

... κ→ 2 | Dom(f) ∈ I
}
, (4.4)

where f
... κ → 2 denote a partial function from κ to 2. Ordering is by reverse

inclusion, i.e. for p, q ∈ GI(κ, 1), p ≤ q if and only if q ⊆ p.

We show the chain condition and the closure of the Grigorieff forcing, we define

a fusion sequence and show that each fusion sequence has the lower bound. We use

these properties when dealing with the iteration of the Grigorieff forcing.

Lemma 4.28. Assume 2κ = κ+. Then the forcing GI(κ, 1) is κ++-cc.

Proof. If 2κ = κ+, then |GI(κ, 1)| = κ+. Hence GI(κ, 1) is κ++-cc.

Lemma 4.29. Let κ be a regular cardinal. If α < κ and 〈pβ|β < α〉 is a decreasing

sequence in GI(κ, 1), then p =
⋃
β<α pβ ∈ GI(κ, 1). Hence GI(κ, 1) is κ-closed.

Proof. The proof is a direct consequence of our assumption about I since every

normal ideal on κ extending the nonstationary ideal on κ is a κ-complete ideal.

Definition 4.30. Let κ be a regular cardinal. For α < κ and p, q ∈ GI(κ, 1) we

define

p ≤α q ⇔ p ≤ q and Dom(p) ∩ (α + 1) = Dom(q) ∩ (α + 1). (4.5)

We say that 〈pα|α < κ〉 is a fusion sequence if for every α, pα+1 ≤α pα and pβ =⋃
α<β pα for every limit β < κ.
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Lemma 4.31. Let κ be a regular cardinal. If 〈pα|α < κ〉 is a fusion sequence in

GI(κ, 1), then the union p =
⋃
α<κ pα is a condition in GI(κ, 1) and p ≤α pα for

each α < κ.

Proof. It is sufficient to show that
⋃
α<κ Dom(pα) is in I, or equivalently

⋂
α<κ(κ \

Dom(pα)) is in I∗, where I∗ is the dual filter of I. Since I∗ is a normal filter,

4α<κ(κ \ Dom(pα)) is in I∗ and also the set {β < κ|β is a limit ordinal} is in I∗

since I extend the nonstationary ideal on κ.

To finish the proof, it is enough to show that

{β < κ|β is a limit ordinal} ∩ 4α<κ(κ \Dom(pα)) ⊆
⋂
α<κ

(κ \Dom(pα)). (4.6)

Let β ∈ {δ < κ|δ is a limit ordinal} ∩ 4α<κ(κ \ Dom(pα)) be given. Then for

all γ < β, β /∈ Dom(pγ). By the limit step of the definition of fusion sequence,

β /∈ Dom(pβ). By (4.5), β is not in Dom(pα) for each α ≥ β. Hence β is in⋂
α<κ(κ \Dom(pα)).

We define an iteration of the Grigorieff forcing of length λ with κ support. The

definition of the iteration is standard. For more details see [Bau83].

Definition 4.32. Let κ be a regular cardinal and λ > 0 be an ordinal. Then we

define GI(κ, λ) by induction as follows:

(i) The forcing GI(κ, 1) is defined as in Definition 4.27.

(ii) GI(κ, ξ+ 1) = GI(κ, ξ) ∗ Q̇ξ, where Q̇ξ is a GI(κ, ξ)-name for the partial order

GI(κ, 1) as defined in the extension V [GI(κ, ξ)].

(iii) For limit ordinal ξ, GI(κ, ξ) is the inverse limit of 〈GI(κ, ζ)|ζ < ξ〉 if cf(ξ) ≤ κ

and the direct limit otherwise.

We consider GI(κ, λ) as the collection of functions p such that for every ξ < λ,

p � ξ 
ξ p(ξ) ∈ Q̇ξ and |supp(p)| ≤ κ. The ordering is defined as follows: for p, q in

GI(κ, λ), p ≤ q if and only if supp(p) ⊇ supp(q) and for every ξ ∈ supp(q), p � ξ 
ξ

p(ξ) ≤ q(ξ).

Lemma 4.33. Let κ be a regular cardinal and λ > κ be an inaccessible cardinal.

Then GI(κ, λ) has size λ and it is λ-Knaster.

Proof. This follows from Proposition 7.13 in [Cum10].

The following definitions, lemmas and theorem are motivated by paper [Kan80],

where the same was made for the Sacks forcing. We define the notion of meet and

use it to show that the iteration of the Grigorieff forcing is sufficiently closed and

has the fusion property.
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Definition 4.34. Let α be an ordinal. If {pβ|β < α} ⊆ GI(κ, λ), then the meet

p =
∧
β<α pβ is defined as follows:

supp(p) =
⋃
β<α

supp(pβ) and p � γ 
 p(γ) =
⋃
β<α

pβ(γ) for γ ∈ supp(p). (4.7)

If p � γ is not in GI(κ, γ) for γ ∈ supp(p) or |supp(p)| > κ, then
∧
β<α pβ is left

undefined.

Lemma 4.35. If α < κ and 〈pβ|β < α〉 is a decreasing sequence in GI(κ, λ), then

p =
∧
β<α pβ ∈ GI(κ, λ). Hence GI(κ, λ) is κ-closed.

Proof. The proof is the consequence of the Theorem 2.5 in [Bau83].

Definition 4.36. Let p, q ∈ GI(κ, λ), X ⊆ λ with |X| < κ and α < κ. Then we

define

p ≤X,α q ⇔ p ≤ q and p � ξ 
 p(ξ) ≤α q(ξ) for all ξ ∈ X. (4.8)

We say that a sequence (〈pξ|ξ < κ〉 , 〈Xξ|ξ < κ〉) is a fusion sequence if it satisfies

the following conditions:

(i) pξ+1 ≤Xξ,ξ pξ and pζ =
∧
ξ<ζ pξ for every limit ζ < κ;

(ii) |Xξ| < κ and Xξ ⊆ Xξ+1 for every ξ < κ;

(iii) Xζ =
⋃
ξ<ζ Xξ for every limit ζ < κ and

⋃
ξ<κXξ =

⋃
ξ<κ supp(pξ).

Lemma 4.37. Let κ be a regular cardinal and λ > 0 be an ordinal. If (〈pβ|β < κ〉,
〈Xβ|β < κ〉) is a fusion sequence, then p =

∧
β<κ pβ is in GI(κ, λ).

Proof. We prove the lemma by induction on ξ ≤ λ and we show that for each ξ ≤ λ,

p � ξ ∈ GI(κ, ξ).

If ξ = 0, then p(ξ) is in GI(κ, 1) by Lemma 4.31.

If ξ = ζ + 1, then we want to show that p � ζ 
ζ p(ζ) ∈ Q̇ζ . Since p � ζ ≤ pβ � ζ

for all β < κ, it is clear that p � ζ 
ζ “〈pζ(β)|β < κ〉 is a decreasing sequence in

Q̇ζ”. If ζ is not in supp(p), then we are done, since p � ζ 
ζ p(ζ) = 1̇ ∈ Q̇ζ . If

ζ ∈
⋃
ξ<κ supp(pξ), then by the definition of meet, we know that p � ζ 
 p(ζ) =⋃

β<κ pβ(ζ). Since
⋃
β<κXβ =

⋃
β<κ supp(pβ), there is α < κ and Xα such that

ζ ∈ Xα. As the sequence 〈Xβ|β < κ〉 is increasing and p � ζ ≤ pβ � ζ for all

β < κ, we have that p � ζ 
 pβ+1(ζ) ≤β pβ(ζ) for all α ≤ β ≤ κ. By Lemma 4.31,

p � ζ 

⋃
α<β<κ pβ(ζ) ∈ Q̇ζ . Since p � ζ 
ζ “〈pβ(ζ)|β < κ〉 is a decreasing sequence

in Q̇ζ”, p � ζ 

⋃
α<β<κ pβ(ζ) =

⋃
β<κ pβ(ζ) ∈ Q̇ζ .

If ξ is a limit ordinal, then p � ξ is completely determined by p � ζ, ζ < ξ. If

supp(p � ξ) is not cofinal in ξ, then p � ξ is in GI(κ, ξ) since we considered just
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inverse and direct limits. Suppose that supp(p � ξ) is cofinal in ξ. Since supp(p �

ξ) =
⋃
β<κ(supp(pβ � ξ)), it must hold either that sup(supp(pβ � ξ)) = ξ for some β

or that cf(ξ) ≤ κ. In both cases GI(κ, ξ) is the inverse limit of 〈GI(κ, ζ)|ζ < ξ〉 and

since p � ζ ∈ GI(κ, ζ) for all ζ < ξ, p � ξ is in GI(κ, ξ).

The fusion property is used to show that κ+ is preserved in the extension by

GI(κ, λ).

Fact 4.38. Let κ be a regular cardinal. Assume that either κ is inaccessible or that

♦κ holds. Then GI(κ, λ) preserves κ+.

Proof. For the proof see [Kan80], where it is done for the Sacks forcing. The key of

the proof is the fusion property, so it can be modified to the Grigorieff forcing.

We know that cardinals ≤κ are preserved since we showed that GI(κ, λ) is κ-

closed. In addition, if λ is inaccessible, all cardinals ≥λ are preserved as GI(κ, λ)

is λ-Knaster. Moreover, under additional assumptions κ+ is preserved due to the

fusion property. Now we show that the other cardinals are collapsed.

Lemma 4.39. Let κ be a regular cardinal. Assume that either κ is inaccessible or

that ♦κ holds. Let λ > κ be an inaccessible cardinal. Then V [GI(κ, λ)] |= λ = κ++.

Proof. By Lemma 4.33 all cardinals µ ≥ λ are preserved by the κ-support iteration

of the Grigorieff forcing and by Fact 4.38, κ+ is also preserved. Now, we show that

each cardinal ξ, κ+ < ξ < λ, is collapsed to κ+. It is enough to show this for ξ

regular. Let ξ be given. Since in each step of the iteration GI(κ, ξ) we add at least

one set to the cardinal κ, V [GI(κ, ξ)] |= 2κ ≥ |ξ|. We work in V [GI(κ, ξ)] and define

a complete embedding i from Add(κ+, 1) to GI(κ, [ξ, ξ + κ+)). This will mean that

|ξ|V [GI(κ,ξ+κ+)] = κ+.

We define i as follows: For p ∈ Add(κ+, 1), set i(p) = q where q is define by:

(i) For α = ξ, set

q(α) =


∅ if 0 /∈ Dom(p);

〈0, 0〉 if p(0) = 0;

〈0, 1〉 otherwise.

(ii) For α > ξ, set

q(α) =


∅̌ if α /∈ Dom(p);〈
0̌, 0̌
〉

if p(α) = 0;〈
0̌, 1̌
〉

otherwise,
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where ∅̌, 0̌ and 1̌ are canonical GI(κ, [ξ, α))-names for ∅, 0 and 1. Note that q is

a condition in GI(κ, [ξ, ξ + κ+)), since |Dom(p)| ≤ κ.

To finish the proof, we verify that i is the complete embedding, i.e. we verify the

conditions from Definition 2.30.

Ad (i). Let p ≤ p′ be conditions in Add(κ+, 1). Then Dom(p′) ⊆ Dom(p), hence

supp(i(p′)) ⊆ supp(i(p)). Let β be in supp(i(p′)). Since p ≤ p′, p(β) = p′(β).

Ad (ii). By the definition of i, i(p) � β 
 i(p)(β) =
〈
0̌, 0̌
〉

= i(p′)(β) if p(β) = 0

or i(p) � β 
 i(p)(ξ) =
〈
0̌, 1̌
〉

= i(p′)(ξ) if p(β) = 1. In either case i(p) � β 


i(p)(β) ≤ i(p′)(β).

Let p, p′ be conditions in Add(κ+, 1). We want to show that p ⊥ p′ ⇔ i(p) ⊥ i(p′).

(⇒) Let i(p) ‖ i(p′). We show that there is r ∈ Add(κ+, 1), r ≤ p and r ≤ p′.

If supp(i(p)) ∩ supp(i(p′)) = ∅, then we define r as follows: Dom(r) = supp(i(p)) ∪
supp(i(p′)) and for α ∈ Dom(r)

r(α) =

0 if i(s)(α) =
〈
0̌, 0̌
〉

;

1 otherwise.

where s is either p or p′ depending on whether α ∈ supp(i(p)) or α ∈ supp(i(p′)).

If supp(i(p)) ∩ supp(i(p′)) 6= ∅, then we can define r the same way. It follows

from the claim that if α is in supp(i(p)) ∩ supp(i(p′)), then i(p)(α) = i(p′)(α). If

not then i(p)(α) and i(p′)(α) are incompatible.

(⇐) Let p ‖ p′. Then it follows from (i) that i(p) ‖ i(p′).
Ad (iii). Let q ∈ GI(κ, [ξ, ξ + κ+)). We need to find p ∈ Add(κ+, 1) such that

(∀p′ ≤ p)(i(p′) ‖ q). We define p as follows: Dom(p) = supp(q) and for α ∈ Dom(p)

p(α) =

0 if q � α 

〈
0̌, 0̌
〉
∈ q(α);

1 if q � α 

〈
0̌, 1̌
〉
∈ q(α).

It is easy to verify that p satisfies the desired conditions.

We know that in V [GI(κ, ξ)] |= 2κ ≥ |ξ| and also that there is a complete

embedding from Add(κ+, 1) to GI(κ, [ξ, ξ+κ
+)). Since Add(κ+, 1) collapses 2κ to κ+,

in V [GI(κ, ξ)] also GI(κ, [ξ, ξ + κ+)) collapses 2κ to κ+. As a result, V [GI(κ, λ)] |=
|ξ| = κ+.

The following theorem tells us that the iteration of the Grigorieff forcing can be

split into the two parts such that in the extension after iterating with the first part,

the second part still has the nice properties of whole iteration.

Fact 4.40. Let κ be a regular cardinal and α, β > 0 be ordinals. Let ĠI(κ, β) be

the GI(κ, α)-name for GI(κ, β). Then 
α “GI(κ, [α, α+ β)) is forcing equivalent to

ĠI(κ, β)”.
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Proof. For the proof see [BL79], where this is done for the Sacks forcing.

Now we have almost everything we need to prove the main theorems of this

section, the last thing we need to know is that this forcing does not add cofinal

branches to the trees that are of our interest.

Fact 4.41. Assume κ is an inaccessible cardinal or κ = ω and let λ > 0 be an or-

dinal. Then GI(κ, λ) does not add cofinal branches to κ+-trees, and more generally,

if ρ ≥ κ is such that 2κ > ρ, then GI(κ, λ) does not add cofinal branches to the

ρ+-trees.

Proof. For the proof see [FH].

Fact 4.42. Assume ω1 < κ = ξ+, 2ξ = ξ+ and λ > 0 is an ordinal. Then GI(κ, λ)

does not add cofinal branches to κ+-trees, and more generally, if ρ ≥ κ is such that

2κ > ρ, then GI(κ, λ) does not add cofinal branches to the ρ+-trees.

Proof. For the proof see [FH].

Remark 4.43. The assumption of κ > ω1 in Fact 4.42 is not essential. For κ = ω1

we need an additional assumption ♦ω1 . We do not need this assumption for κ > ω1

since we assume that κ = ξ+ and 2ξ = ξ+, which ensures ♦κ.

Now, we are ready to prove the main theorems of this section.

Theorem 4.44. Assume GCH. Let κ be a regular cardinal. In the case of κ = ω1

assume in addition that ♦ω1 holds. If there exists a Mahlo cardinal λ > κ, then in

the generic extension by GI(κ, λ) it holds that

(i) 2κ = λ = κ++;

(ii) κ++ has the weak tree property.

Proof. Ad (i). It is easy to see that 2κ ≥ λ. Now, we show that 2κ ≤ λ. Since the

forcing GI(κ, λ) is λ-cc of size λ, which is inaccessible in V , 2κ ≤ λ easily follows by

a common nice names argument. The equation λ = κ++ follows from Lemma 4.39.

Ad (ii). Let G be a GI(κ, λ)-generic over V . Suppose that T is an M-special

λ = κ++-Aronszajn tree in V [G]. Let q ∈ G be such that q 
“T is an M-special

κ++-Aronszajn tree”. Then for each α < λ, |T � α| = κ+. Hence we can con-

sider T � α as a subset of κ+. As a subset of κ+, T � α has a nice name

πα =
⋃{{

β̌
}
× Aβ|β < κ+ and Aβ is an antichain of GI(κ, λ)

}
and it holds that

β ∈ T � α↔ (∃a ∈ Aβ)(a ∈ G).

Now we show that T � α is in V [Gξ] for some ξ < λ, where Gξ = {p � ξ|p ∈ G}.
Set X =

⋃
{supp(p)|(∃β < κ+)(p ∈ Aβ)}. The set X has size less than λ since
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GI(κ, λ) is λ-cc. Take ξ = sup {β < λ|β ∈ X}. Then T � α ∈ V [Gξ] since πα is also

a GI(κ, ξ)-nice name. Let Ṫα be a GI(κ, λ)-name for T � α. Set

σ′(α) = min {ξ < λ|(∀α′ < α)(∃πα′)(πα′ is GI(κ, ξ)-nice name and

q 
 Ṫα′ = πα′)
}
. (4.9)

Then σ′ is defined in V and it is easy to see that it is a continuous nondecreasing

unbounded function from λ into λ. As we want to argue that σ′ has a fixed point,

we need σ′ to be increasing. Hence we define σ : λ → λ by induction on α < λ as

follows:

If α = 0 then σ(α) = σ′(α). If α = β + 1 then set

σ(α) =

σ(β) + 1 if σ′(α) ≤ σ(β);

σ′(α) otherwise.

If α is limit then σ(α) = sup {σ(β)|β < α}.
The function σ is continuous and increasing, hence there is a closed unbounded

set of fixed points of σ. Moreover σ still satisfies that T � α ∈ V [Gσ(α)] since

σ′(α) ≤ σ(α) for each α < λ. As λ is Mahlo in V there is a fixed point δ of σ which

is inaccessible in V .

Since T is a λ-Aronszajn tree in V [G], there is branch b of T of length δ in V [G].

Now we show that b is already in V [Gδ]. By Fact 4.40, the forcing GI(κ, [δ, λ)) is

forcing equivalent to GI(κ, λ) as defined in V [Gδ]. The forcing GI(κ, λ) does not

add cofinal branches to δ-trees. This follows from Fact 4.42 in case κ is a successor

and from Fact 4.41 in case κ is inaccessible. Therefore b is in V [Gδ].

Since T is M-special, b is a 1-1 function from δ to κ+, so V [Gδ] |= δ ≤ κ+. As

Gδ is M(κ, δ)-generic over V and δ is inaccessible in V , V [Gδ] |= δ = κ++. This is

a contradiction.

The next theorem can be proved under the assumption of a weakly compact

cardinal but we use a measurable cardinal for the same reasons as in Theorem 4.26.

Theorem 4.45. Assume GCH. Let κ be a regular cardinal. If there exists a mea-

surable cardinal λ > κ, then in the generic extension by GI(κ, λ) it holds that

(i) 2κ = λ = κ++;

(ii) κ++ has the tree property.

Proof. Ad (i). It is easy to see that 2κ ≥ λ. Now, we show that 2κ ≤ λ. Since the

forcing GI(κ, λ) is λ-cc of size λ, which is inaccessible in V , 2κ ≤ λ easily follows by

a common nice names argument. The equation λ = κ++ follows from Lemma 4.39.
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Ad (ii). Let G be a GI(κ, λ)-generic over V . Since λ is measurable in V , there is

an elementary embedding j : V →M with critical point λ and λM ⊆M , where M

is a transitive model of ZFC.

In M , the forcing j(GI(κ, λ)) is the iteration of GI(κ, 1) of length j(λ) with

κ-support by the elementarity of j. The forcing GI(κ, j(λ))M is forcing equivalent

to GI(κ, λ)M ∗ ĠI(κ, [λ, j(λ))). As j is identity below λ, GI(κ, α)V = GI(κ, α)M , for

α < λ and since we take direct limit at λ, GI(κ, λ)V = GI(κ, λ)M . Hence G is also

GI(κ, λ)M -generic over M .

Since the partial order GI(κ, [λ, j(λ))) is definable in M [G], it is definable in

V [G]. Let H be GI(κ, [λ, j(λ)))-generic over V [G], then H is GI(κ, [λ, j(λ)))-generic

over M [G] since M [G] ⊆ V [G].

Work in V [G][H]. By Lemma 2.3, we can lift j to j∗ : V [G]→M [G][H]. Assume

T is a λ-tree in V [G]. We show that T has a cofinal branch in V [G]. We can consider

T as a subset of λ, so T has a nice name Ṫ in V. Since |Ṫ | ≤ λ and λM ⊆M , Ṫ is in

M . Hence T ∈ M [G]. By elementarity of j∗, j∗(T ) is a j∗(λ)-tree in M [G][H] and

since j∗ is the identity below λ, j∗(T ) � λ = T . As T is j∗(λ)-tree in M [G][H], it has

branch b of length λ in M [G][H]. By Fact 4.40, the forcing GI(κ, [λ, j(λ))) is forcing

equivalent to GI(κ, j(λ)) as defined in M [G]. The forcing GI(κ, j(λ)) does not add

cofinal branches to λ-trees. This follows from Fact 4.42 in case κ is a successor and

from Fact 4.41 in case κ is inaccesible. Therefore b is in M [G], hence in V [G].
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5 The Tree Property at More Cardinals

In the previous chapter we showed that the weak tree and the tree property can

hold at double successor of a regular cardinal. Therefore, it is quite natural to

ask whether the weak tree property or the tree property can hold at two or even

more cardinals at the same time. Assuming two weakly compact cardinals or two

Mahlo cardinals, it is not hard to generalize the methods of Section 4.2 to obtain

a model where for instance 2ω = 2ω1 = ω2 and 2ω2 = 2ω3 = ω4 and both cardinals

ω2 and ω4 has the tree property or the weak tree property, respectively. However

the naive approach fails if one assumes two weakly compact cardinals and tries to

force the tree property at two successive cardinals. Magidor showed that this is not

just a technical problem, he showed that the assumption of the tree property at two

successive cardinals implies that there exists a model with a measurable cardinal (see

[Abr83]). On the other hand, in the case of the weak tree property the assumption

of two Mahlo cardinals is sufficient.

The results presented in this chapter are implicit in [Mit72].

5.1 The Weak Tree Property

Here, we focus on the weak tree property. We show that the weak tree property

can hold at two successive cardinals under the assumption of two Mahlo cardinals.

Then we extend this result to ω-many successive cardinals under the assumption of

ω-many Mahlo cardinals. Before we get to the proofs, we show the generalization

of the Mitchell forcing.

Throughout this section we assume that κ, ξ, λ are regular cardinals and κ <

ξ < λ.

The following definition can be found in [Ung].

Definition 5.1. The forcing M(κ, ξ, λ) is defined as follows: for an ordinal α, ξ <

α < λ, let Q(α) be an Add(κ, α)-name for the partially ordered set Add(κ+, 1).

The forcing M(κ, ξ, λ) is the collection of pairs (p, q) such that p ∈ Add(κ, λ)

and q is a function of cardinality less than ξ such that if α ∈ Dom(q) then ξ < α < λ

and ∅ 
Add(κ,α) “q(α) ∈ Q(α)”.

The M(κ, ξ, λ) is ordered by (p, q) ≤ (p′, q′) if and only if p ≤Add(κ,λ) p
′, Dom(q′) ⊆

Dom(q) and for all α ∈ Dom(q′) p � α 
 q′(α) ⊆ q(α).

Remark 5.2. Note that the Mitchell forcing M(κ, λ) defined in Chapter 4 is equal

to M(κ, ξ, λ) for ξ = κ+.

The following lemmas, corollaries and definition are direct and obvious general-

izations of lemmas, corollaries and definition in Section 4.2. Therefore we skip the

proofs.
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Lemma 5.3. M(κ, ξ, λ) is κ-closed.

Lemma 5.4. Let λ be an inaccessible cardinal. Then M(κ, ξ, λ) is λ-Knaster.

Definition 5.5. We define Q = (Q(κ, ξ, λ),≤Q(κ,ξ,λ)), as follows: Q(κ, ξ, λ) =

{(∅, q)|(∅, q) ∈M(κ, ξ, λ)} and the ordering ≤Q=≤M(κ,ξ,λ)� Q(κ, ξ, λ).

Lemma 5.6. Q is ξ-closed.

Lemma 5.7. Let π : Add(κ, λ) × Q be a function such that π((p, (∅, q))) = (p, q).

Then π is a projection.

Lemma 5.8. There is projection π : M(κ, ξ, λ)→ Add(κ, λ).

Lemma 5.9. Assume κ<κ = κ. Then all set of ordinals in V [M(κ, ξ, λ)] of cardi-

nality less than ξ are in V [Add(κ, λ)].

Lemma 5.10. Assume κ<κ = κ. Then ξ remains a cardinal in M(κ, ξ, λ).

Lemma 5.11. Let λ be an inaccessible cardinal. Then in V [M(κ, ξ, λ)], 2κ = λ.

Lemma 5.12. Let µ be an ordinal, ξ < µ < λ. Then there is a projection π :

M(κ, ξ, λ)→M(κ, ξ, µ).

Lemma 5.13. Assume κ<κ = κ. Let λ be an inaccessible cardinal. Then λ = ξ+ in

V [M(κ, ξ, λ)].

Corollary 5.14. Assume κ<κ = κ. The forcing Q collapses cardinals between ξ and

λ to ξ.

Lemma 5.15. For all µ, ξ < µ < λ, in V [M(κ, ξ, µ)] the forcing M(κ, ξ, λ)/M(κ, ξ, µ)

is a projection of Add(κ, [µ, λ))×Q∗, where Q∗ is ξ-closed.

Remark 5.16. Recall we assume κ < ξ < λ are regular cardinals. If λ is a weakly

compact or Mahlo cardinal, then M(κ, ξ, λ) forces that 2κ = λ = ξ+ and that the

tree property or the weak tree property holds at λ. The first follows immediately

from the previous lemmas and the second from the fact that the proofs of Theorem

4.26 and Theorem 4.24 remain correct if we substitute κ+ by a regular cardinal ξ

between κ and λ as these are the only two properties of κ+ we used in the proofs.

As we showed above, M(κ, ξ, λ) has the nice property that each sequence of

ordinals of length less than ξ added by M(κ, ξ, λ) is already added by Add(κ, λ).

For the proof we used the chain condition of Add(κ, λ) in the ground model. As

we want to force the weak tree property at more cardinals, we need to consider the

product of Mitchell forcings. The following lemma tells us what we need to preserve

this property in products.
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Lemma 5.17. Assume κ<κ = κ. Let R be a forcing notion. If R is ξ-Knaster, all

sets of ordinals in V [R×M(κ, ξ, λ)] of cardinality less than ξ are in V [R×Add(κ, λ)].

Proof. By Lemma 5.7, there is a projection from Add(κ, λ)×Q to M(κ, ξ, λ), where

Q is ξ-closed. Hence V [R ×M(κ, ξ, λ)] ⊆ V [R × Add(κ, λ) × Q], so it suffices to

show that all sets of ordinals in V [R×Add(κ, λ)×Q] of cardinality less than ξ are

in V [R × Add(κ, λ)]. As we assume κ<κ = κ, the forcing Add(κ, λ) is κ+-Knaster

and as ξ ≥ κ+, it is ξ-cc. Since R is ξ-Knaster, R × Add(κ, λ) is ξ-cc. Hence, by

Easton’s Lemma, Q is ξ-distributive in V [R × Add(κ, λ)], i.e. Q does not add any

new sequences of ordinals of length less than ξ. Therefore each sequence of ordinals

in V [R× Add(κ, λ)×Q] of length less than ξ is already in V [R× Add(κ, λ)].

Before we present the main proofs, let us explain the motivation for using the

forcing M(κ, ξ, λ). The naive approach to obtain a model with the weak tree property

at two successive cardinals would be to use the forcing M(κ, λ0) × M(κ+, λ1) =

M(κ, κ+, λ0)×M(κ+, κ++, λ1), where λ0 and λ1 are Mahlo cardinals such that λ1 >

λ0 > κ. However, due to the reasons described below, this is not a good approach.

Therefore we use M(κ, κ+, λ0)×M(κ+, λ0, λ1). This forcing is more suitable to force

the weak tree property at κ++ and κ+++ at the same time since M(κ+, λ0, λ1) is

a projection of Add(κ+, λ1) × Q1, where Q1 is λ0-closed. This means that we can

work in V [Q1] since λ0 is still Mahlo here and M(κ, κ+, λ0)
V = M(κ, κ+, λ0)

V [Q1]. If

we try to force with the first forcing, the forcing M(κ+, κ++, λ1) is a projection of

Add(κ+, λ1)×Q′1, where Q′1 is just κ++-closed, so we do not know how to continue.

The situation where we use that Q1 is λ0-closed appears more than once in the proof.

In addition, note that in V [M(κ, κ+, λ0)], we need to collapse cardinals only above λ0

since all cardinals between κ+ and λ0 have already been collapsed by M(κ, κ+, λ0).

Lemma 5.18. Assume GCH. Let κ be a regular cardinal and let λ1 > λ0 > κ

be inaccessible cardinals. Then each cardinal ξ ≤ κ or ξ ≥ λ1 is preserved by

M(κ, κ+, λ0)×M(κ+, λ0, λ1). Moreover, κ+ and λ0 are preserved.

Proof. Let ξ ≤ κ. Then ξ is preserved since M(κ, κ+, λ0) × M(κ+, λ0, λ1) is κ-

closed. Let ξ ≥ λ1. Since M(κ+, λ0, λ1) is λ1-Knaster and M(κ, κ+, λ0) is λ0-Knaster,

M(κ, κ+, λ0)×M(κ+, λ0, λ1) is λ1-cc, so ξ is preserved.

Now, we show that κ+ is preserved by M(κ, κ+, λ0)×M(κ+, λ0, λ1). Since there is

a projection from M(κ, κ+, λ0) to Add(κ, λ0)×Q0, where Q0 is κ+-closed, it suffices

to show that κ+ is preserved by Add(κ, λ0)×Q0 ×M(κ+, λ0, λ1). As Add(κ, λ0) is

κ+-Knaster, κ+ is still a cardinal in V [Add(κ, λ0)] and by Easton’s Lemma Q0 ×
M(κ+, λ0, λ1) is κ+-distributive in V [Add(κ, λ0)]. Therefore κ+ remains a cardinal

in V [Add(κ, λ0)][Q0 ×M(κ+, λ0, λ1)].
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Now, we verify that λ0 is preserved by M(κ, κ+, λ0)×M(κ+, λ0, λ1). Since there

is a projection from M(κ+, λ0, λ1) to Add(κ+, λ1) × Q1, where Q1 is λ0-closed, it

is enough to show that λ0 is preserved by M(κ, κ+, λ0) × Add(κ+, λ1) × Q1. In

V [Q1], λ0 is a cardinal since Q1 is λ0-closed and by Easton’s Lemma, M(κ, κ+, λ0)×
Add(κ+, λ1) is λ0-cc. Therefore λ0 is a cardinal in V [Q1][M(κ, κ+, λ0)×Add(κ+, λ1)].

Now, we have proved everything we need to prove the main theorems of this

section. Both Theorems 5.19 and 5.22 are implicit in Mitchell’s paper [Mit72], but

we use a construction due to Unger from [Ung].

Theorem 5.19. Assume GCH. Let κ be a regular cardinal. If there exist Mahlo

cardinals λ1 > λ0 > κ, then in the generic extension by M(κ, κ+, λ0)×M(κ+, λ0, λ1)

it holds that

(i) 2κ = λ0 = κ++ and 2κ
+

= λ1 = κ+++;

(ii) κ++ and κ+++ have the weak tree property.

Proof. Ad (i). 2κ ≥ λ0 holds because there is a projection from M(κ, κ+, λ0) to

Add(κ, λ0). Now, we show that 2κ ≤ λ0. Since M(κ+, λ0, λ1) is κ+-closed, each

sequence of ordinals of length less than κ+ is in V [M(κ, κ+, λ0)] and by Lemma 5.9,

it is in V [Add(κ, λ0)]. Since this forcing is κ+-cc of size λ0, which is inaccessible in

V , 2κ ≤ λ0 easily follows by a common nice names argument.

The proof of 2κ
+

= λ1 is similar to the proof before. 2κ
+ ≥ λ1 follows from the

fact that there is a projection from M(κ+, λ0, λ1) to Add(κ+, λ1). Now, we show

that 2κ
+ ≤ λ1. Since M(κ, κ+, λ0) is λ0-Knaster, we can use Lemma 5.17 and since

κ+ < λ0, each sequence of length ≤ κ+ is in V [M(κ, κ+, λ0) × Add(κ+, λ1)]. As

M(κ, κ+, λ0) × Add(κ+, λ1) is λ0-cc and it has size λ1, which is inaccessible in V ,

2κ
+ ≤ λ1 easily follows by a common nice names argument.

The equalities κ++ = λ0 and κ+++ = λ1 follow from Lemma 5.13 and Lemma

5.18.

Ad (ii). We show that a) κ++ has the weak tree property and b) κ+++ has the

weak tree property.

Ad a) Assume for contradiction that M(κ, κ+, λ0) ×M(κ+, λ0, λ1) adds an M-

special κ++ = λ0-Aronszajn tree T . By Lemma 5.7, T is also added by M(κ, κ+, λ0)×
Add(κ+, λ1) × Q1, where Q1 is λ0-closed. Let G0 × H1 × H ′1 be M(κ, κ+, λ0) ×
Add(κ+, λ1)×Q1-generic over V .

Consider W = V [H ′1]. Since Q1 is λ0-closed in V and λ0 > κ++, Add(κ+, λ1) is

still κ++-Knaster and κ+-closed. In addition, Vλ0 = Wλ0 . As Vλ0 = Wλ0 and condi-

tions in M(κ, κ+, λ0) are bounded in Vλ0 , M(κ, κ+, λ0)
V = M(κ, κ+, λ0)

W . Moreover,

λ0 is Mahlo in W because λ0-closed forcings preserve stationary sets in λ0.
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As in Theorem 4.24, we can define in W a continuous increasing function σ

from λ0 into λ0 such that T � α ∈ W [G
σ(α)
0 ][H

σ(α)
1 ], where G

σ(α)
0 is equal to

{(p � σ(α), q � σ(α))|(p, q) ∈ G0} and H
σ(α)
1 is equal to {p � σ(α)|p ∈ H1}. As λ0

is Mahlo in W there is a fixed point δ of σ which is inaccessible in W .

In final extension W [G0 ×H1], δ is collapsed to κ+, so T � δ has a branch b of

length δ. Now, we show that b is in W [Gδ
0 ×Hδ

1 ]. We do this by showing that the

forcing with M(κ, κ+, λ0)/M(κ, κ+, δ)×Add(κ+, [δ, λ1)) over W [Gδ
0×Hδ

1 ] could not

add branch b. It is important to note that the forcing M(κ, κ+, λ0)/M(κ, κ+, δ) is

defined in W [Gδ
0] and the forcing Add(κ+, [δ, λ1)) is defined in W [Hδ

1 ].

In W [Gδ
0 × Hδ

1 ], δ = κ++ and 2κ ≥ δ since Gδ
0 is M(κ, κ+, δ)-generic over

W and M(κ, κ+, δ) × Add(κ+, δ) is δ-cc. As δ = κ++, T � δ is an M-special δ-

Aronszajn tree. By Lemma 4.23, there is a projection from Add(κ, [δ, λ0)) × Q∗0 to

M(κ, κ+, λ0)/M(κ, κ+, δ), where Q∗0 is κ+-closed. Since b ∈ W [G0][H1], b ∈ W [Gδ
0 ×

Hδ
1 ][H

[δ,λ1)
1 ×F1×F2], whereH

[δ,λ1)
1 ×F1×F2 is (Add(κ+, [δ, λ1))×Add(κ, [δ, λ0))×Q∗0)-

generic over W [Gδ
0×Hδ

1 ]. We reorganize the forcing as follows: W [Gδ
0×Hδ

1 ][H
[δ,λ1)
1 ×

F2 × F1].

First note that Add(κ+, [δ, λ1)) is κ+-distributive and δ-cc over W [Gδ
0][H

δ
1 ]. The

forcing Add(κ+, [δ, λ1)) is defined in W [Hδ
1 ]. Now in W [Hδ

1 ], Add(κ+, [δ, λ1)) is δ-

Knaster since α<κ
+
< δ for all α < δ, so we can use the ∆-system argument. Since

M(κ, κ+, δ) is δ-cc over W [Hδ
1 ], the forcing Add(κ+, [δ, λ1)) is δ-cc over W [Gδ

0 ×
Hδ

1 ]. Now, we focus on the distributivity. The forcing Add(κ+, [δ, λ1)) is κ+-closed

in W [Hδ
1 ]. Since there is a projection from Add(κ, δ) × Q0 to M(κ, κ+, δ), where

Q0 is κ+-closed, it is enough to show that Add(κ+, [δ, λ1)) is κ+-distributive over

W [Add(κ, δ)×Q0 ×Hδ
1 ]. Since the forcing Add(κ+, δ) is κ+-closed in W , Q0 is κ+-

closed in W [Hδ
1 ] and so Add(κ+, [δ, λ1)) is κ+-closed in W [Hδ

1 × Q0]. By Easton’s

Lemma, Add(κ, δ) is κ+-cc in W [Hδ
1 ×Q0] and therefore again by Easton’s Lemma

Add(κ+, [δ, λ1)) is κ+-distributive in W [Add(κ, δ)×Q0×Hδ
1 ] and so in W [Gδ

0×Hδ
1 ].

Since in W [Gδ
0 ×Hδ

1 ] δ = κ++, the forcing Add(κ+, [δ, λ1)) preserves cardinals over

W [Gδ
0 ×Hδ

1 ] and by Lemma 4.7 this means that it can not add a cofinal branch to

an M-special Aronszajn tree. Therefore it does not add the branch b to T � δ.

Now, we show that the forcing Q∗0 is κ+-closed in W [Gδ
0 × Hδ

1 ][H
[δ,λ1)
1 ]. The

forcing Q∗0 is defined in W [Gδ
0] and by Lemma 5.15 it is κ+-closed in W [Gδ

0].

First note that Add(κ+, δ) ∗ Add(κ+, [δ, λ1)) is forcing equivalent to Add(κ+, λ1).

Next we show it is κ+-distributive in W [Gδ
0]. Since there is a projection from

Add(κ, λ0)×Q0 to M(κ, κ+, δ), it suffices to show that Add(κ+, λ1) is κ+-distributive

in W [Add(κ, λ0)×Q0]. As Add(κ+, λ1) and Q0 are κ+-closed in W , Add(κ+, λ1) is

κ+-closed in W [Q0]. By Easton’s Lemma, Add(κ, λ0) is κ+-cc in W [Q0]. Again by

Easton’s Lemma, Add(κ+, λ1) is κ+-distributive in W [Add(κ, λ0) × Q0]. Now, we
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know that Add(κ+, λ1) is κ+-distributive and Q∗0 is κ+-closed in W [Gδ
0], hence Q∗0 is

κ+-closed in W [Gδ
0×Hδ

1 ][H
[δ,λ1)
1 ]. In W [Gδ

0×Hδ
1 ][H

[δ,λ1)
1 ], δ = κ++ and 2κ ≥ δ since

Add(κ+, [δ, λ1) preserves cardinals over W [Gδ
0 × Hδ

1 ]. Hence we can apply Lemma

4.4, so b can not be added by Q∗0.
In W [Gδ

0×Hδ
1 ][H

[δ,λ1)
1 ×F2], note that Add(κ, [δ, λ0)) is κ+-Knaster since κ<κ = κ.

In W [Gδ
0×Hδ

1 ][H
[δ,λ1)
1 ×F2][F1], δ is collapsed to κ+ and since Add(κ, [δ, λ0)) is κ+-

Knaster in W [Gδ
0][H

δ
1 ][H

[δ,λ1)
1 × F2], δ has to be collapsed already in the extension

W [Gδ
0][H

δ
1 ][H

[δ,λ1)
1 × F2]. Let T ′ = (T � δ) � A, where A is cofinal subset of δ of size

κ+. Then T ′ has height κ+ and by Lemma 4.1, Add(κ, [δ, λ0)) does not add cofinal

branches to the tree T ′, hence it does not add cofinal branches to the tree T � δ.

We showed that in W [G0 × H1] T � δ has a cofinal branch b and that the

intermediate forcings could not add this branch. That means that b is already in

W [Gδ
0×Hδ

1 ]. This is a contradiction since T � δ is an Aronszajn tree in W [Gδ
0×Hδ

1 ].

Ad b) Now we verify that κ+++ has the weak tree property. Assume for contra-

diction that M(κ, κ+, λ0)×M(κ+, λ0, λ1) adds an M-special κ+++ = λ1-tree T . Let

G0 ×G1 be M(κ, κ+, λ0)×M(κ+, λ0, λ1)-generic over V .

As in Theorem 4.24, we can define in V a continuous unbounded function σ

from λ1 into λ1 such that T � α ∈ W [G
σ(α)
0 ×Gσ(α)

1 ], where G
σ(α)
0 and G

σ(α)
1 are the

corresponding restrictions of the generic filters G0 and G1. Let δ be an inaccessible

fixed point of σ such that λ0 < δ < λ1 in V .

In V [G0 × G1], δ is collapsed to κ++ and so T � δ has a branch b of length δ.

Note that since δ > λ0, G
δ
0 = G0. Now, we show that b is in V [G0 × Gδ

1]. We do

this by showing that the forcing M(κ+, λ0, λ1)/M(κ+, λ0, δ) could not add branch b.

The forcing M(κ+, λ0, λ1)/M(κ+, λ0, δ) is defined in V [Gδ
1].

In V [G0 × Gδ
1], δ = κ+++ and 2κ

+ ≥ δ since Gδ
1 is M(κ+, λ0, δ)-generic over V

and M(κ, κ+, λ0) ×M(κ+, λ0, δ) is δ-cc in V . As δ = κ+++, T � δ is an M-special

δ-Aronszajn tree. By Lemma 4.23, there is a projection from Add(κ+, [δ, λ1))×Q∗1 to

M(κ+, λ0, λ1)/M(κ+, λ0, δ), where Q∗1 is λ0-closed. Since b ∈ V [G0×G1], b ∈ V [G0×
Gδ

1][F1×F2], where F1×F2 is Add(κ+, [δ, λ1))×Q∗1)-generic over V [G0×Gδ
1×Hδ

2 ].

We reorganize the forcing as follows: V [G0 ×Gδ
1][F2 × F1].

Now we show that the forcing Q∗1×Add(κ+, [δ, λ1)) can not add branch b to the

tree T � δ.

Work in V [Gδ
1]. Now, we show that the forcing M(κ, κ+, λ0) is λ0-cc in V [Gδ

1].

The forcing M(κ+, λ0, δ) is a projection of Add(κ+, δ)×Q1, where Q1 is λ0-closed.

Hence it is enough to show that M(κ, κ+, λ0) is λ0-cc in V [Q1 × Add(κ+, δ)]. The

forcing Q1 is λ0-closed, hence Vλ0 = V [Q1]λ0 . Since the conditions of M(κ, κ+, λ0)

are bounded in Vλ0 , M(κ, κ+, λ0)
V = M(κ, κ+, λ0)

V [Q1] and therefore it is λ0-Knaster

in V [Q1]. As κ+ < λ0, Add(κ+, δ) is still κ++-cc in V [Q1]. Hence Add(κ+, δ) ×
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M(κ, κ+, λ0) is λ0-cc in V [Q1] and so M(κ, κ+, λ0) is λ0-cc in V [Q1 × Add(κ+, δ)].

Hence it is λ0-cc in V [Gδ
1].

The forcing Q∗1 is defined V [Gδ
1] and it is λ0-closed in V [Gδ

1]. Since Gδ
1 is

M(κ+, λ0, δ)-generic, 2κ
+ ≥ δ and δ = λ+0 . Therefore we can apply Lemma 4.6

with V [Gδ
1] as the ground model. Hence Q∗1 can not add the branch b to T � δ over

V [Gδ
1][G0] = V [G0 ×Gδ

1].

Next we show that Add(κ+, [δ, λ1)) is λ0-cc in V [G0 × Gδ
1][F2]. The forcing

Add(κ+, [δ, λ1)) is defined in V [Gδ
1], where for each α < λ0, α

κ < λ0 and so by ∆-

system argument, the forcing Add(κ+, [δ, λ1)) is λ0-Knaster in V [Gδ
1]. In fact notice

that Q∗1 does not add any new sequences of ordinals of length less than λ0, so the

same ∆-system argument shows thatAdd(κ+, [δ, λ1)) is λ0-Knaster in V [Gδ
1][F2]. As

we showed above, M(κ, κ+, λ0) is λ0-cc in V [Gδ
1]. Therefore, by Easton’s Lemma, it

is λ0-cc in V [Gδ
1][F2]. Hence the forcing M(κ, κ+, λ0) × Add(κ+, [δ, λ1)) is λ0-cc in

V [Gδ
1][F2] and therefore Add(κ+, [δ, λ1)) is λ0-cc in V [Gδ

1][F2][G0] = V [G0×Gδ
1][F2].

Since Add(κ+, [δ, λ1)) × Add(κ+, [δ, λ1)) is forcing equivalent to Add(κ+, [δ, λ1)),

Add(κ+, [δ, λ1)) × Add(κ+, [δ, λ1)) is λ0-cc in V [G0 × Gδ
1][F2]. The cardinal δ is

collapsed to the λ0 in V [G0 × Gδ
1][F2]. Therefore δ is an ordinal of cofinality λ0 in

V [G0×Gδ
1][F2]. Let T ′ = (T � δ) � A, where A is a cofinal subset of δ of size λ0. By

Lemma 4.2, Add(κ+, [δ, λ1)) does not add cofinal branches to the tree T ′, hence it

could not add the branch b to the tree T � δ.

We showed that in V [G0×G1] T � δ has a cofinal branch b and that the interme-

diate forcings could not add this branch. That means that b is already in V [G0×Gδ
1].

This is a contradiction since T � δ is an Aronszajn tree in V [G0 ×Gδ
1].

Remark 5.20. Note that the same method can not be applied to obtain the tree

property at two successive cardinals. Here we made use of the fact that κ-closed

forcings do not destroy Mahlo cardinal κ. This does not hold for weakly compact

cardinal since even Add(κ, 1) may destroy the weak compactness of κ.

Note also that this construction can not be used for the Grigorieff forcing since it

uses specific properties of the generalized Mitchell forcing, especially the projection

to a product where one factor is highly closed.

Now, we extend the result of the previous theorem to ω-many successive cardi-

nals. We start our construction with ω and we show that the weak tree property can

hold at every ωn for n such that 1 < n < ω, under the assumption of ω-many Mahlo

cardinals. However, a straightforward modification of the construction allows us to

start at arbitrary regular κ instead of ω and force the weak tree property at every

κ+n, for n such that, 1 < n < ω, under the assumption of ω-many Mahlo cardinals

above κ.
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Lemma 5.21. Suppose that GCH holds. Denote λ0 = ω and λ1 = ω1. Assume

that there exists an increasing sequence of inaccessible cardinals 〈λn|1 < n < ω〉 with

the supremum λ. Let
∏

n<ωMn denote the full support product of forcings Mn =

M(λn, λn+1, λn+2) for n < ω. Then for each n it holds that λn is preserved by∏
n<ωMn. Moreover each cardinal ξ ≥ λ is preserved.

Proof. We do not need to show that λ0 is preserved since λ0 = ω. Let n < ω be given.

We show that λn+1 is preserved. Note that
∏

i<nMi is λn+1-cc in V and
∏

i>nMi is

λn+1-closed in V . By Lemma 5.15, there is a projection from Add(λn, λn+2) × Qn

to Mn. Hence it is enough to show that λn+1 is preserved by P1 × P2, where P1 =∏
i<nMi × Add(λn, λn+2) and P2 = Qn ×

∏
i>nMi. Since the forcing P1 is λn+1-cc,

λn+1 remains a cardinal in V [P1]. By Easton’s Lemma P2 is λn+1-distributive in

V [P1], so P1 × P2 preserves λn+1 as a cardinal.

The cardinal λ is preserved since it is the supremum of 〈λn|n < ω〉 and by the

previous paragraph, each λn is preserved.

The claim that each cardinal ξ > λ is preserved follows from the fact that∏
n<ωMn is λ+-cc since it has size λ.

Theorem 5.22. Suppose GCH holds. Denote λ0 = ω and λ1 = ω1. Assume

that there exists an increasing sequence of inaccessible cardinals 〈λn|1 < n < ω〉 with

the supremum λ. Let
∏

n<ωMn denote the full support product of forcings Mn =

M(λn, λn+1, λn+2) for n < ω. Then in the generic extension by
∏

n<ωMn for each

n < ω it holds that

(i) 2λn = λn+2 = λ+n+1 = ωn+2 and λ = ℵω;

(ii) λn+2 has the weak tree property.

Proof. Ad (i). Let n < ω be given. The inequality 2λn ≥ λn+2 follows from the fact

that there is projection from Mn to Add(λn, λn+2). Now, we show that 2λn ≤ λn+2.

Since
∏

i>nMi is λn+1 closed, each sequence of ordinals of length less than λn+1

is in
∏

i≤nMi. As Mn−1 is λn+1-Knaster and for each i < n − 1 the size of Mi

is less than λn+1,
∏

i<nMi is λn+1-Knaster and we can use Lemma 5.17 to obtain

that each sequence of length less than λn+1 is in V [
∏

i<nMi×Add(λn, λn+2)]. Since∏
i<nMi×Add(λn, λn+2) is λn+1-cc and it has size λn+2, which is inaccessible in V ,

2λn ≤ λn+2 easily follows by a common nice names argument.

The equalities λn+2 = λ+n+1 = ωn+2 and λ = ℵω follow from Lemma 5.21 and

Lemma 5.13.

Ad (ii). For contradiction assume that the forcing
∏

n<ωMn adds an M-special

λn+2-Aronszajn tree T . Then T is added by
∏

i≤n+2Mi since the forcing
∏

i>n+2Mi

is λn+3-closed. As T is λn+2-tree and
∏

i≤n+1 Mi is λn+3-Knaster, as we showed
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above, we can use Lemma 5.17 to obtain that T is already added by
∏

i≤n+1Mi ×
Add(λn+2, λn+4). By Lemma 5.7, there is a projection from Add(λn+1, λn+3) ×
Qn+1 to Mn+1, where Qn+1 is λn+2-closed. Hence T is also added by

∏
i≤nMi ×

Add(λn+1, λn+3)×Qn+1 ×Add(λn+2, λn+4). Let Gi<n ×Gn ×H1
n+1 ×H2

n+1 ×Hn+2

be a
∏

i≤nMi × Add(λn+1, λn+3)×Qn+1 × Add(λn+2, λn+4)-generic filter over V .

Consider W = V [H2
n+1 × Hn+2]. Since Qn+1 × Add(λn+2, λn+4) is λn+2-closed

in V and λn+2 > λn+1, Add(λn+1, λn+3) is still λ+n+1-Knaster and λn+1-closed in W .

In addition Vλn+2 = Wλn+2 . As Vλn+2 = Wλn+2 and λn+2 > λn+1, (
∏

i<nMi)
V =

(
∏

i<nMi)
W . As Vλn+2 = Wλn+2 and the conditions of Mn are bounded in Vλn+2 ,

MV
n = MW

n . Moreover, λn+2 is still Mahlo, because λn+2-closed forcings preserve

stationary sets in λn+2.

As in Theorem 4.24, we can define in W a continuous unbounded function σ

from λn+2 into λn+2 such that T � α ∈ W [G
σ(α)
i<n ×G

σ(α)
n × (H1

n+1)
σ(α)], where G

σ(α)
i<n ,

G
σ(α)
n and (H1

n+1)
σ(α) are the corresponding restrictions of the generic filters Gi<n,

Gn and H1
n+1. Let δ be an inaccessible fixed point of σ such that λn+1 < δ < λn+2

in W .

Work in W [Gi<n × Gn × H1
n+1]. The cardinal δ is collapsed to λn+1 and so

T � δ has a branch b of length δ. Note that since δ > λn+1, G
δ
i<n = Gi<n. Now,

we show that b is in W [Gi<n × Gδ
n × (H1

n+1)
δ]. We do this by showing that the

forcing Mn/M(λn, λn+1, δ) × Add(λn+1, [δ, λn+3)) could not add the branch b. It is

important to note that the forcing Mn/M(λn, λn+1, δ) is defined in W [Gδ
n] and the

forcing Add(λn+1, [δ, λn+3)) is defined in W [(H1
n+1)

δ].

In W [Gi<n × Gδ
n × (H1

n+1)
δ], δ = λ+n+1 and 2λn ≥ δ since Gδ

n is M(λn, λn+1, δ)-

generic filter and
∏

i<nMi×M(λn, λn+1, δ)×Add(λn+1, δ) is δ-cc in W . As δ = λ+n+1,

T � δ is M-special δ-Aronszajn tree.

By Lemma 4.23, there is a projection from the product Add(λn, [δ, λn+2))×Q∗n
to Mn/M(λn, λn+1, δ), where Q∗n is λn+1-closed. Since b ∈ W [Gi<n × Gn × H1

n+1],

b ∈ W [Gi<n×Gδ
n×(H1

n+1)
δ][(H1

n+1)
[δ,λn+3)×F 1

n×F 2
n ], where (H1

n+1)
[δ,λn+3)×F 1

n×F 2
n is

(Add(λn+1, [δ, λn+3))×Add(λn, [δ, λn+2))×Q∗n)-generic over W [Gi<n×Gδ
n×(H1

n+1)
δ].

We reorganize the forcing as follows: W [Gi<n×Gδ
n×(H1

n+1)
δ][(H1

n+1)
[δ,λn+3)×F 2

n×F 1
n ].

Now, we show that Add(λn+1, [δ, λn+3)) is λn+1-distributive and δ-cc in W [Gi<n×
Gδ
n × (H1

n+1)
δ]. First, we focus on the distributivity. The forcing

∏
i<nMi is λn+1-

cc and the forcing Add(λn+1, δ) is λn+1-closed in W . In addition, by Lemma 5.7,

there is a projection from Add(λn, δ) × Qn to M(λn, λn+1, δ), where Qn is λn+1-

closed. Hence it suffices to show that Add(λn+1, [δ, λn+3)) is λn+1-distributive in

W [Add(λn+1, δ)×Qn ×
∏

i<nMi × Add(λn, δ)].

Since Add(λn+1, δ) × Qn and Add(λn+1, [δ, λn+3)) are both λn+1-closed in W ,

Add(λn+1, [δ, λn+3)) is λn+1-closed in W [Add(λn+1, δ)×Qn]. As
∏

i<nMi is λn+1-cc
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and Add(λn, δ) is λn+1-Knaster in W ,
∏

i<nMi × Add(λn, δ) is λn+1-cc in W . By

Easton’s Lemma
∏

i<nMi×Add(λn, δ) is λn+1-cc inW [Add(λn+1, δ)×Qn]. Again, by

Easton’s Lemma, Add(λn+1, [δ, λn+3)) is λn+1-distributive in W [Add(λn+1, δ)×Qn×∏
i<nMi×Add(λn, δ)]. Therefore it is λn+1-distributive in W [Gi<n×Gδ

n× (H1
n+1)

δ].

Next we focus on the chain condition of the forcing Add(λn+1, [δ, λn+3)). The

forcing Add(λn+1, [δ, λn+3)) is defined in W [(H1
n+1)

δ] and by ∆-system argument

it is δ-Knaster in W [(H1
n+1)

δ]. The forcing
∏

i<nMi × M(λn, λn+1, δ) is δ-cc and

the forcing Add(λn+1, δ) is δ-Knaster in W , so
∏

i<nMi ×M(λn, λn+1, δ) is δ-cc in

W [(H1
n+1)

δ]. Therefore Add(λn+1, [δ, λn+3)) is δ-cc in W [Gi<n×Gδ
n×(H1

n+1)
δ]. Now,

we know that Add(λn+1, [δ, λn+3)) is λn+1-distributive and δ-cc in W [Gi<n × Gδ
n ×

(H1
n+1)

δ]. Since δ = λ+n+1 in W [Gi<n×Gδ
n×(H1

n+1)
δ], the forcing Add(λn+1, [δ, λn+3))

preserves cardinals over W [Gi<n×Gδ
n× (H1

n+1)
δ]. By Lemma 4.7 it can not add the

branch b to the M-special tree T � δ .

Now work in W [Gδ
n × (H1

n+1)
δ][(H1

n+1)
[δ,λn+3)] = W0. We show that

∏
i<nMi

is λn+1-cc in W0 and that the forcing Q∗n is λn+1-closed in W0. First note that

Add(λn+1, δ)∗Add(λn+1, [δ, λn+3)) is forcing equivalent to Add(λn+1, λn+3). We want

to show that the forcing Add(λn+1, λn+3) is λn+1-distributive in W [Gδ
n]. However,

this easily follows from the fact that it is λn+1-closed in W and from the fact that

M(λn, λn+1, δ) is a projection of a λn+1-closed and a λn+1-cc forcing.

Next we verify that Q∗n is λn+1-closed in W0. As Add(λn+1, λn+3) is λn+1-

distributive and Q∗n is λn+1-closed in W [Gδ
n], Q∗n is λn+1-closed in W0.

Now, we focus on the chain condition of
∏

i<nMi in W0. The forcing
∏

i<nMi is

λn+1-cc in W . Since there is a projection from Qn×Add(λn, λn+2) to M(λn, λn+1, δ),

it suffices to show that
∏

i<nMi is λn+1-cc in the extension W [Qn×Add(λn, λn+2)×
(H1

n+1)
δ][(H1

n+1)
[δ,λn+3)]. As the forcing Add(λn+1, λn+3)×Qn is λn+1-closed in W , by

Easton’s Lemma the forcing
∏

i<nMi is λn+1-cc in W [Add(λn+1, λn+3)×Qn]. Now

note that we can use ∆-system Lemma in W [Add(λn+1, λn+3)×Qn] and show that

Add(λn, λn+2) is λn+1-Knaster in W [Add(λn+1, λn+3) × Qn]. Therefore
∏

i<nMi is

λn+1-cc in W [Add(λn+1, λn+3)×Qn × Add(λn, λn+2)] and so in W0.

Now, we have almost everything to conclude that Q∗n does not add branch b

to T � δ over W0[G<n]. In W [Gδ
n × (H1

n+1)
δ], δ = λ+n+1 and 2λn ≥ δ since Gδ

n is

M(λn, λn+1, δ)-generic and the forcing M(λn, λn+1, δ) × Add(λn+1, δ) is δ-cc. Since

the forcing Add(λn+1, [δ, λn+3)) preserves cardinals over W [Gδ
n× (H1

n+1)
δ], δ = λ+n+1

and 2λn ≥ δ in W0. As
∏

i<nMi is λn+1-cc in W0 and the forcing Q∗n is λn+1-closed

in W0, the assumptions of Lemma 4.6 are satisfied and so Q∗n does not add branch

b to T � δ over W0[G<n] = W [Gδ
n × (H1

n+1)
δ][(H1

n+1)
[δ,λn+3)][G<n] = W [Gi<n ×Gδ

n ×
(H1

n+1)
δ][(H1

n+1)
[δ,λn+3)].

Let W1 = W [Gi<n ×Gδ
n × (H1

n+1)
δ][(H1

n+1)
[δ,λn+3) × F 2

n ]. Now, we show that the
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forcing Add(λn, [δ, λn+2)) is λn+1-cc in W1. Since in W0 it holds for each α < λn+1

that α<λn < λn+1, the forcing Add(λn, [δ, λn+2)) is λn+1-Knaster in W0. In fact

notice that Q∗n does not add any new sequences of ordinals of length less than λn+1,

so the same ∆-system argument shows that Add(λn, [δ, λn+2)) is λn+1-Knaster in

W0[Fn]. As we showed above, the forcing
∏

i<nMi is λn+1-cc in W0. By Easton’s

Lemma, it is λn+1-cc in W0[F
2
n ]. Hence the forcing Add(λn, [δ, λn+2)) is λn+1-cc in

W0[F
2
n ][Gi<n] = W [Gi<n ×Gδ

n × (H1
n+1)

δ][(H1
n+1)

[δ,λn+3) × F 2
n ].

Now, we show that Add(λn, [δ, λn+2)) could not add the branch b over W1. As

Add(λn, [δ, λn+2)) × Add(λn, [δ, λn+2)) is forcing equivalent to Add(λn, [δ, λn+2)), it

is also λn+1-cc in W1. In W1, note that the cardinal δ is collapsed to λn+1 since

it is collapsed in W1[F1], but Add(λn, [δ, λn+2)) is λn+1-cc over W1. Therefore δ

has to be collapsed in W1. Hence δ is an ordinal with a cofinal subset of size

λn+1. Let T ′ = (T � δ) � A, where A is a cofinal subset of δ of size λn+1. As

Add(λn, [δ, λn+2))× Add(λn, [δ, λn+2)) is λn+1-cc, by Lemma 4.2, Add(λn, [δ, λn+2))

does not add cofinal branches to the tree T ′, hence it could not add the branch b to

the tree T � δ.

We showed that in W [Gi<n ×Gn ×H1
n+1] T � δ has a cofinal branch b and that

the intermediate forcings could not add this branch. That means that b is already

in W [G<n ×Gδ
n × (H1

n+1)
δ]. This is a contradiction since T � δ is an Aronszajn tree

in W [G<n ×Gδ
n × (H1

n+1)
δ].

5.2 The Tree Property

While the consistency of the weak tree property at two successive cardinals is prov-

able from the assumption of two Mahlo cardinals, the consistency of the tree property

at two successive cardinals is not provable from two weakly compact cardinals by

the result of Magidor (see [Abr83]). However, this assumption is enough to show the

consistency of the tree property at two non-successive cardinals. Here, we present

the result that the tree property can hold at two non-successive cardinals and then

we generalize this for ω-many non-successive cardinals.

We use the assumption of measurable cardinals. This assumption can be weaken

to an existence of weakly compact cardinals but the proof would be more technical

and the technicalities could obscure the main ideas of the proofs.

Before we present the proof of the consistency of the tree property at two

non-successive cardinals, let us examine the naive attempt. Let λ1 > λ0 be two

weakly compact cardinals or in our case two measurable cardinals. Try to force

with M(ω, λ0) ×M(λ0, λ1). Then it is fairly easy to see that in the final extension

2ω = 2ω1 = ω2 and 2ω2 = 2ω3 = ω4 and that each ω2-tree is already added by

M(ω, λ0) × Add(λ0, 1). We already know that M(ω, λ0) forces the tree property at
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ω2. However, we do not know how Add(λ0, 1) affects M(ω, λ0). Therefore we need to

deal with the forcing Add(λ0, 1). This forcing is sufficiently closed, so M(ω, λ0)
V =

M(ω, λ0)
V [Add(λ0,1)]. The only difference is that we do not know whether λ0 is still

weakly compact or measurable in the generic extension by Add(λ0, 1). Therefore

we need to start more carefully. The problem can be fixed by using forcing which

ensures that the forcing Add(λ0, 1) preserves the compactness or in our case the

measurability. We call this forcing the preparation forcing. It does not matter if we

are dealing with weakly compact or measurable cardinal, the preparation forcing is

the same. Now, we define this forcing and examine its properties.

Definition 5.23. Let α ≥ 1 be an ordinal and Rα be an iteration of length α. We

say that Rα is an iteration with Easton support if the following holds: for every limit

ordinal β ≤ α, Rβ is a direct limit if β is regular and inverse limit otherwise.

Definition 5.24. Let α ≥ 1 be an ordinal. We define the forcing notion Pα to be

an iteration of length α with Easton support where we force with the Cohen forcing

Add(ξ, 1) at every inaccessible ξ < α and with the trivial forcing otherwise.

Note that for λ inaccessible the forcing Pλ+1 ∗ Add(λ, 1) is forcing equivalent to

Pλ+1 since Pλ+1 ∗Add(λ, 1) = Pλ ∗Add(λ, 1) ∗Add(λ, 1) and the two step iteration

of Cohen forcing Add(λ, 1)∗Add(λ, 1) is forcing equivalent to one Cohen Add(λ, 1).

Now we need to show that forcing Pλ+1 for λ measurable preserves the measurability

of λ.

Here, we mention a few lemmas without proofs. We use them later in the proof

of Theorem 5.32, which tells us that the forcing Pλ+1 for λ measurable preserves the

measurability of λ. The lemmas are taken from [Cum10].

Definition 5.25. Let j : M → N be an elementary embedding and let P ∈ M . A

master condition for j and P is a condition q in j(P) such that for every dense set

D ⊂ P with D ∈ M , there is condition p ∈ D such that q is compatible with j(p).

Moreover, if q ≤ j(p), we say that q is strong master condition for j and P.

Note that if q is a master condition for j and P, and H is a j(P)-generic over

N such that q ∈ H, then j−1′′H generates a P-generic filter G over M such that

j′′G ⊆ H. Hence we can use Lemma 2.3 and lift the elementary embedding j.

Moreover, if q is a strong master condition, then we can define G = {p ∈ P|q ≤ j(p)}.
The filter G is P-generic over M such that j−1′′H = G for each j(P)-generic filter

H over N , such that q ∈ H. Again, we can use Lemma 2.3 and lift the elementary

embedding j.

Lemma 5.26. Let M , N be inner models of ZFC such that M ⊆ N . Let N |= “κ

is a regular cardinal”. Then N |= <κM ⊆M if and only if N |= <κOn ⊆M .
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Lemma 5.27. Let M , N be inner models of ZFC such that M ⊆ N . Let N |= “κ

is a regular cardinal” and let N |= <κM ⊆M . Let P ∈M be a notion of forcing. If

M |= “P is κ-closed”, then N |= “P is κ-closed”.

Lemma 5.28. Let M , N be inner models of ZFC such that M ⊆ N and let P ∈M
be a notion of forcing. If N |= <κM ⊆M , N |= “P is κ-cc” and G is P-generic over

N , then N [G] |= <κM [G] ⊆M [G].

Lemma 5.29. Let M be an inner model and P is a forcing notion. If, in V , P is

κ-closed and has no more than κ many antichains in M , then there is G ∈ V , G is

P-generic over M . Moreover, if p ∈ P, then we can found G in V such that p ∈ G.

Lemma 5.30. Let δ be Mahlo. Then Pδ is δ-cc with size δ and Pδ+1 is δ+-cc with

size δ.

If Qα is an iteration of length α and β < α, then forcing Qα is forcing equivalent

to Qβ followed by (β-α)-iteration defined in V [Gβ]. We denote this forcing Qβ,α.

For the definition and more details about this, see Chapter 5 of [Bau83].

Lemma 5.31. Let κ be a regular cardinal and let δ < κ be Mahlo. If λ is the least

inaccessible greater than δ then in V [Pδ+1], Pδ+1,κ is λ-closed.

The proof of the following theorem is a simplified version of the proof for violating

GCH at a measurable cardinal from [Cum10]. The idea behind these proofs belongs

to Silver, who was the first to use the master condition to show than GCH can fail

at a measurable cardinal.

Theorem 5.32. Assume that GCH holds in V and κ is a measurable cardinal. Then

κ is measurable in V [Pκ+1].

Proof. Since κ is measurable in V , there is an elementary embedding j : V → M

with critical point κ and κM ⊆ M , where M is an inner model of ZFC. We denote

Gκ to be a Pκ-generic filter over V and gκ to be an Add(κ, 1)-generic filter over

V [Gκ].

Now we focus on Pκ. By elementarity of j, j(Pκ) is an iteration with Easton

support of length j(κ), which adds one subset to every inaccessible cardinal ξ < κ.

As κ is inaccessible in M , j(Pκ)κ is direct limit. Since V M
κ = Vκ and j(Pκ)κ is direct

limit, j(Pκ)κ = Pκ. By the definition of direct limit, for each p in Pκ there is α < κ

such that for all β if α < β < κ then p(β) = ∅. By elementarity of j, for each j(p)

in j(Pκ) there exists α < κ such that for all β if α < β < j(κ) then j(p)(β) = ∅.
Therefore j(p) � κ = p and j(p)(α) = ∅ for each α such that κ ≤ α < j(κ).

Now, we need to build Pκ,j(κ)-generic over M [Gκ] which is in V [Gκ ∗ gκ]. In

V [Gκ ∗ gκ], we already have a generic filter for the first stage of Pκ,j(κ). Hence we
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want to find Pκ+1,j(κ)-generic over M [Gκ ∗ gκ] which is in V [Gκ ∗ gκ]. As a fact we

use that V [Gκ ∗ gκ] |= “Pκ+1,j(κ) is κ+-closed” and V [Gκ ∗ gκ] |= “Pκ+1,j(κ) has at

most κ+ maximal antichains in M [Gκ ∗ gκ]”. Therefore by Lemma 5.29 there is

a filter H ∈ V [Gκ ∗ gκ] such that it is Pκ+1,j(κ)-generic over M [Gκ][gκ] which is in

V [Gκ][gκ]. So we can lift the elementary embedding to j : V [Gκ]→M [Gj(κ)], where

Gj(κ) = Gκ ∗ gκ ∗H.

We show that in V [Gκ∗gκ], κM [Gj(κ)] ⊆M [Gj(κ)]. By Lemma 5.30, Pκ+1 is κ-cc.

Hence, by Lemma 5.28, V [Gκ ∗ gκ] |= κM [Gκ ∗ gκ] ⊆ M [Gκ ∗ gκ]. By Lemma 5.26,

this is equivalent to V [Gκ ∗ gκ] |= κOn ⊆M [Gκ ∗ gκ]. Since M [Gκ ∗ gκ] ⊆M [Gj(κ)],

V [Gκ ∗ gκ] |= κOn ⊆M [Gj(κ)]. Again we use Lemma 5.26 and we have V [Gκ ∗ gκ] |=
κM [Gj(κ)] ⊆M [Gj(κ)].

Now we look at Add(κ, 1). For each p ∈ Add(κ, 1), j(p) = p since j � κ = id.

Let r =
⋃
gκ, then r is in M [Gj(κ)] because gκ is in M [Gj(κ)]. Since r is a function

from κ to 2, r ∈ j(Add(κ, 1)). Note that r is a strong master condition for j and

Add(κ, 1) since for each p ∈ gκ, r ≤ p = j(p).

Now, we claim that in V [Gκ ∗ gκ], j(Add(κ, 1)) is κ+-closed and has at most

κ+ maximal antichains in M [Gj(κ)]. In M [Gj(κ)], it holds that j(Add(κ, 1)) is j(κ)-

closed by elementarity. Since V |= |j(κ)| = κ+, then, by Lemma 5.27, j(Add(κ, 1))

is κ+-closed in V [Gκ ∗gκ]. Now, we show that j(Add(κ, 1)) has at most κ+ maximal

antichains. First note that V [Gκ] |= “Add(κ, 1) has at most κ+ maximal antichain”.

Since j(Add(κ, 1)) is κ+-cc in V [Gκ], we can consider each antichain as a subset of

κ. By Lemma 5.30, Pκ has size κ and it is κ-cc. Since we assume GCH, there are

only κκ = κ+-many nice names for subsets of κ in V . As in V [Gκ] it holds that

Add(κ, 1) has at most κ+ maximal antichains, by elementarity in M [Gj(κ)], it holds

that j(Add(κ, 1)) has at most j(κ+) maximal antichains. Since V |= |j(κ+)| = κ+,

V [Gκ ∗ gκ] |= “j(Add(κ, 1)) has κ+ maximal antichains in M [Gj(κ)].”

Therefore we can use Lemma 5.29 and find a generic filter h over M [Gj(κ)] such

that h ∈ V [Gκ ∗gκ] and r ∈ h. As r ∈ h, j′′gκ ⊆ h. Hence we can lift the elementary

embedding j : V [Gκ] → M [Gj(κ)] to j∗ : V [Gκ ∗ gκ] → M [Gj(κ) ∗ h]. Since we built

Gj(κ) ∗ h in V [Gκ ∗ gκ], κ is still measurable in V [Gκ ∗ gκ].

Again, as in the case of the weak tree property we need to generalize Lemma

4.15 for the product.

Lemma 5.33. Assume κ<κ = κ. Let R be a forcing notion. If R is κ+-cc, all sets

of ordinals in V [R×M(κ, λ)] of cardinality less than κ+ are in V [R× Add(κ, λ)].

Proof. By Lemma 4.15, there is a projection from Add(κ, λ)×Q to M(κ, λ), where

Q is κ+-closed. Hence V [R×M(κ, λ)] ⊆ V [R×Add(κ, λ)×Q] and so it suffices to

show that all set of ordinals in V [R×Add(κ, λ)×Q] of cardinality less than κ+ are
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in V [R × Add(κ, λ)]. As we assume κ<κ = κ, the forcing Add(κ, λ) is κ+-Knaster.

Since R is κ+-cc, R × Add(κ, λ) is κ+-cc. Hence, by Easton’s Lemma, Q is κ+-

distributive in V [R×Add(κ, λ)], i.e. Q does not add any new sequences of ordinals

of length less than κ+. Therefore each sequence of ordinals in V [R×Add(κ, λ)×Q]

of length less than κ+ is already in V [R× Add(κ, λ)].

Lemma 5.34. Assume GCH. Let κ be a regular cardinal and λ1 > λ0 > κ be

inaccessible cardinals. Then each cardinal ξ ≤ κ or ξ ≥ λ1 is preserved by Pλ1 ∗
(M(κ, λ0)×M(λ0, λ1)). Moreover, κ+, λ0 and λ+0 are preserved.

Proof. It is common knowledge that Pλ1 preserves cardinals and also it is easy to

see that GCH still holds in V [Pλ1 ]. Hence it is enough to show that (M(κ, λ0) ×
M(λ0, λ1)) preserves the desired cardinals.

Let ξ ≤ κ. Then ξ is preserved since M(κ, λ0)×M(λ0, λ1) is κ-closed. Let ξ ≥ λ1.

Since M(λ0, λ1) is λ1-Knaster and M(κ, λ0) is λ0-Knaster, M(κ, λ0) ×M(λ0, λ1) is

λ1-cc. Therefore ξ is preserved.

Now, we show that κ+, λ0 and λ+0 is preserved. Since M(κ, λ0) is λ0-Knaster, λ0

remains cardinal in V [M(κ, λ0)]. By Easton’s Lemma, M(λ0, λ1) is λ0-distributive

in V [M(κ, λ0)], hence λ0 is still cardinal in V [M(κ, λ0)×M(λ0, λ1)].

Next we show that κ+ and λ+0 are preserved. By Corollary 4.18, κ+ is preserved

by M(κ, λ0) and by Easton’s Lemma the forcing M(λ0, λ1)) is λ0-distributive in

V [M(κ, λ0)]. Since λ0 > κ+, κ+ remains cardinal in V [(M(κ, λ0)×M(λ0, λ1))]. Now,

we focus on λ+0 . By Corollary 4.18, λ+0 is preserved by M(λ0, λ1) and by Easton’s

Lemma the forcing M(κ, λ0)) is λ0-cc in V [M(λ0, λ1)]. Therefore λ0 remains cardinal

in V [(M(κ, λ0)×M(λ0, λ1))].

Now, we are ready to prove the main theorems of this section.

Theorem 5.35. Assume GCH. Let κ be a regular cardinal. If there exist measurable

cardinals λ1 > λ0 > κ, then in the generic extension by Pλ1 ∗ (M(κ, λ0)×M(λ0, λ1))

it holds that

(i) 2κ = λ0 = κ++ and 2κ
++

= λ1 = κ+4;

(ii) κ++ and κ+4 have the tree property.

Proof. Ad (i). 2κ ≥ λ0 follows from the fact that there is a projection from M(κ, λ0)

to Add(κ, λ0). Now, we show that 2κ ≤ λ0. Since M(λ0, λ1) is λ0-closed, each

sequence of ordinals of length less than κ+ is in V [M(κ, λ0)] and by Lemma 4.17, it

is in V [Add(κ, λ0)]. Since this forcing is κ+-cc of size λ0, which is inaccessible in V ,

2κ ≤ λ0 easily follows by a common nice names argument.
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The proof of 2λ0 = λ1 is similar to the proof before. 2λ0 ≥ λ1 follows from the

fact that there is projection from M(λ0, λ1) to Add(λ0, λ1). Now, we show that

2λ0 ≤ λ1. Since M(κ, λ0) is λ0-cc, we can use Lemma 5.33 and so each sequence of

length ≤ λ0 is in V [M(κ, λ0)×Add(λ0, λ1)]. As M(κ, λ0)×Add(λ0, λ1) is λ+0 -cc and

it has size λ1, which is inaccessible in V , 2λ0 ≤ λ1 easily follows by a common nice

names argument.

The equalities κ++ = λ0 and κ+4 = λ1 follow from Lemma 4.21 and Lemma 5.34.

Ad (ii). The tree property at κ+4 follows immediately from the Theorem 4.26.

We now prove that the tree property holds at κ++. Let F be Pλ1-generic over

V and G0 × G1 be M(κ, λ0) × M(λ0, λ1)-generic over V [F ]. Assume that T is

λ0-tree in V [F ][G0 × G1]. Since T is λ0-tree and M(κ, λ0) is λ0-cc, by Lemma

5.33 T is in V [F ][G0][H1], where H1 is Add(λ0, λ1)-generic over V [F ][G0]. As T

is λ0-tree in V [F ][G0][H1] and M(κ, λ0) × Add(λ0, λ1) is λ+0 -cc, T has a name in

V [F ]M(κ,λ0)×Add(λ0,λ1) of size at most λ0. Hence T is already in V [F ][G0][H
ξ
1 ], where

ξ is an ordinal of size λ0 in V [F ] and Hξ
1 = {p � ξ|p ∈ H1} is Add(λ0, λ1) � ξ-generic

over V [F ][G0]. Since ξ is an ordinal of size λ0, the forcing Add(λ0, λ1) � ξ is forcing

equivalent to Add(λ0, 1).

Work in V [F ][Hξ
1 ]. As the forcing Add(λ0, 1) is λ0-closed, V [F ]λ0 = V [F ][Hξ

1 ]λ0 .

Since conditions of the forcing M(κ, λ0)
V [F ] are bounded in V [F ]λ0 , M(κ, λ0)

V [F ][Hξ
1 ] =

M(κ, λ0)
V [F ]. Now, we need to show that λ0 is still measurable in V [F ][Hξ

1 ]. First

we verify that Pλ1 ∗Add(λ0, 1) is forcing equivalent to Pλ1 . Note that Pλ0+1 is forcing

equivalent to Pλ0+1∗Add(λ0, 1) since Pλ0+1∗Add(λ0, 1) = Pλ0∗Add(λ0, 1)∗Add(λ0, 1)

and the two step iteration of Cohen forcing Add(λ0, 1)∗Add(λ0, 1) is forcing equiva-

lent to one Cohen Add(λ0, 1). By Lemma 5.31, the forcing Pλ0+1,λ1 is in V [Pλ0+1] at

least λ+0 -closed, so Pλ1∗Add(λ0, 1) is forcing equivalent to Pλ0+1∗Add(λ0, 1)∗Pλ0+1,λ1 .

Therefore Pλ1 ∗Add(λ0, 1) is forcing equivalent to Pλ1 . Now, we can show that λ0 is

still measurable in V [F ][Hξ
1 ]. By Theorem 5.32, the forcing Pλ0+1 preserves measur-

ability of λ0 and by Lemma 5.31 the forcing Pλ0+1,λ1 is λ+0 -closed in V [Pλ0+1], λ0 is

still measurable in V [F ][Hξ
1 ]. Hence we can continue with V [F ][Hξ

1 ] as the ground

model as in Theorem 4.26.

Remark 5.36. Let κ be a regular cardinal and λ1 > λ0 > κ be weakly compact

cardinals. Compare the two forcings M(κ, λ0)×M(λ0, λ1) and GI(κ, λ0)×GI(λ0, λ1).

As we showed in Theorem 5.35, the forcing M(κ, λ0) × M(λ0, λ1) forces the tree

property at κ++ = λ0 and at κ+4 = λ1. When we verified the tree property at λ0, we

used the fact that a λ0-tree is added already by M(κ, λ0)×Add(λ0, 1). Therefore we

can prepare the model in such a way that we first force with the preparation forcing

which ensures that λ0 is still measurable. In the case of the Grigorieff forcing we do

not know how to ensure that λ0-trees are added by some subforcing of GI(λ0, λ1).
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Hence this construction can not be repeated for the Grigorieff forcing.

Lemma 5.37. Suppose GCH holds. Denote λ0 = ω. Assume that there exists an

increasing sequence of inaccessible cardinals 〈λn|0 < n < ω〉 with the supremum λ.

Let
∏

n<ωM(λn, λn+1) denote the full support product of forcings M(λn, λn+1) for n <

ω. Then for each n it holds that λn and λ+n are preserved by Pλ ∗
∏

n<ωM(λn, λn+1).

Proof. It is common knowledge that Pλ preserves cardinals and also it is easy to see

that GCH still holds in V [Pλ]. Hence it is enough to show that
∏

n<ωM(λn, λn+1)

preserves the desired cardinals.

λ0 is trivially preserved since λ = ω. The cardinal λ+0 = ω1 is preserved since

by Corollary 4.18 it is preserved by M(λ0, λ1) and by Easton’s Lemma the forcing∏
0<n<ωM(λn, λn+1) is λ1-distributive in V [M(λ0, λ1)]. Let n < ω be given. Now we

show that λn+1 is preserved. Since
∏

i≤nM(λn, λn+1) is λn+1-cc, λn+1 is still cardi-

nal in V [
∏

i≤nM(λn, λn+1)]. As
∏

i>nM(λn, λn+1) is λn+1-closed in V , by Easton’s

Lemma it is λn+1-distributive in V [
∏

i≤nM(λn, λn+1)] and therefore λn+1 remains

cardinal in V [
∏

n<ωM(λn, λn+1)].

Next we show that λ+n+1 is preserved. Note that
∏

i≤nM(λi, λi+1) is λn+1-cc

in V and
∏

i>n+1M(λi, λi+1) is λn+2-closed in V . By Lemma 4.15, there is a

projection from Add(λn+1, λn+2) × Qn+1 to M(λn+1, λn+2), where Qn+1 is λ+n+1-

closed. Now, we show that λ+n+1 remains cardinal in V [P1 × P2], where P1 =∏
i≤nM(λi, λi) × Add(λn+1, λn+2) and P2 = Qn+1

∏
i>n+1 M(λi, λi+1). Since P1 is

λ+n+1-cc λ+n+1 remains cardinal in V [P1]. By Easton’s Lemma P2 is λn+1-distributive

in V [P1],so λ
+
n+1 remains cardinal in V [P1 × P2].

The cardinal λ is preserved since it is the supremum of λn for n < ω, and by the

previous paragraph each λn is preserved.

The claim that each cardinal ξ > λ is preserved follows from the fact that the

size of
∏

n<ωM(λn, λn+1) is λ.

Theorem 5.38. Suppose GCH holds. Denote λ0 = ω. Assume that there exists an

increasing sequence of measurable cardinals 〈λn|0 < n < ω〉 with the supremum λ.

Let
∏

n<ωM(λn, λn+1) denote the full support product of forcings M(λn, λn+1, ) for

n < ω. Then in the generic extension by
∏

n<ωM(λn, λn+1) for each n < ω it holds

that

(i) 2λn = λn+1 = λ++
n = ω2(n+1) and λ = ℵω,

(ii) λn+1 has the tree property.

Proof. Ad (i). Let n < ω be given. The inequality 2λn ≥ λn+1 follows from the

fact that there is a projection from M(λn, λn+1) to Add(λn, λn+1). Now, we show
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that 2λn ≤ λn+1. Since
∏

i>nM(λi, λi+1) is λn+1-closed, each sequence of ordinals

of length less than λn+1 is in
∏

i≤nM(λi, λi+1). Since
∏

i<nM(λi, λi+1) is λn-cc, we

can use Lemma 5.33 and so each sequence of length ≤λn is in V [
∏

i<nM(λi, λi+1)×
Add(λn, λn+1)]. As

∏
i<nM(λi, λi+1)× Add(λn, λn+1) is λ+n -cc and it has size λn+1,

which is inaccessible in V , 2λn ≤ λn+1 easily follows by a common nice names

argument.

The equalities λn+1 = λ++
n = ω2(n+1) and λ = ℵω follow from Lemma 4.21 and

Lemma 5.37.

Ad (ii). Suppose that Pλ ∗
∏

n<ωM(λn, λn+1) adds a λn+1-tree T . Then T

is added by Pλ ∗
∏

i≤n+1M(λi, λi+1) since the forcing
∏

i>n+1M(λi, λi+1) is λn+2-

closed. Let F be Pλ-generic over V and Gi<n × Gn × Gn+1 be
∏

i≤nM(λi, λi+1) ×
M(λn+1, λn+2)-generic over V [F ]. As T is a λn+1-tree and

∏
i≤nM(λi, λi+1) is λn+1-

cc in V [F ], by Lemma 5.33, T is already in V [F ][Gi<n × Gn][Hn+1], where Hn+1 is

Add(λn+1, λn+2)
V [F ]-generic over V [F ][Gi≤n].

Since T is a λn+1-tree in V [F ][Gi<n×Gn][Hn+1] and the forcing
∏

i≤nM(λi, λi+1)×
Add(λn+1, λn+2) is λ+n+1-cc in V [F ], T has a

∏
i≤nM(λi, λi+1) × Add(λn+1, λn+2)-

nice name in V [F ] of size at most λn+1. Hence T is already in V [F ][Gi<n ×
Gn][Hξ

n+1], where ξ is an ordinal of size λn+1 in V [F ] and Hξ
n+1 = {p � ξ|p ∈ Hn+1}

is Add(λn+1, ξ)-generic over V [F ][Gi<n×Gn]. Since ξ is an ordinal of size λn+1, the

forcing Add(λn+1, ξ) is forcing equivalent to Add(λn+1, 1).

Work in V [F ][Hξ
n+1]. As the forcing Add(λn+1, 1) is λn+1-closed, V [F ]λn+1 =

V [F ][Hξ
n+1]λn+1 . Since the forcing

∏
i<nM(λi, λi+1) has size less than λn+1, the forc-

ing
∏

i<nM(λi, λi+1)
V [F ] =

∏
i<nM(λi, λi+1)

V [F ][Hξ
n+1] and since conditions of forc-

ing M(λn, λn+1) are bounded in V [F ]λn+1 , M(λn, λn+1)
V [F ] = M(λn, λn+1)

V [F ][Hξ
n+1].

Now, we need to show that λn+1 is still measurable in V [F ][Hξ
1 ]. First we verify that

Pλ ∗ Add(λn+1, 1) is forcing equivalent to Pλ. Note that Pλn+1+1 is forcing equiva-

lent to Pλn+1+1 ∗Add(λn+1, 1) since Pλn+1+1 ∗Add(λn+1, 1) = Pλn+1 ∗Add(λn+1, 1) ∗
Add(λn+1, 1) and the two step iteration of Cohen forcing Add(λn+1, 1)∗Add(λn+1, 1)

is forcing equivalent to one Cohen Add(λn+1, 1). By Lemma 5.31, the forcing

Pλn+1+1,λ is in V [Pλn+1+1] at least λ+n+1-closed, so Pλ ∗Add(λn+1, 1) is forcing equiv-

alent to Pλn+1+1 ∗ Add(λn+1, 1) ∗ Pλn+1+1,λ. Therefore Pλ ∗ Add(λn+1, 1) is forcing

equivalent to Pλ. Now, we can show that λn+1 is still measurable in V [F ][Hξ
1 ].

By Theorem 5.32, the forcing Pλn+1+1 preserves measurability of λn+1 and by the

Lemma 5.31 the forcing Pλn+1+1,λ is λ+n+1-closed in V [Pλn+1+1]. Therefore λn+1 is

still measurable in V [F ][Hξ
n+1].

Let V [F ][Hξ
n+1] = W , now we can continue similarly way as in the proof of

Theorem 4.26. Since λn+1 is measurable in W , there is an elementary embedding

j : W →M with critical point λn+1 and λn+1M ⊆M , where M is a transitive model

of ZFC.
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In M , the forcing j(M(λn, λn+1)) is M(λn, j(λn+1))
M by the elementarity of

j. Since Wλn+1 = WM
λn+1

and each condition in M(λ0, λ1) is bounded in Wλn+1 ,

M(λn, j(λn+1))
M � λn+1 = M(λn, λn+1)

M = M(λn, λn+1)
W . We also know that

j(
∏

i<nM(λi, λi+1) =
∏

i<nM(λi, λi+1)
M =

∏
i<nM(λi, λi+1)

W since it has size λn

and λn < λn+1 in W . Therefore the filter Gi<n × Gn is also (
∏

i<nM(λi, λi+1)) ×
M(λn, λn+1))

M -generic over M .

By Lemma 4.20, there is a projection from M(λn, j(λn+1)) to M(λn, λn+1) and

we can define in M [Gn] the forcing M(λn, j(λn+1))/M(λn, λn+1). Since the or-

dering M(λn, j(λn+1))/M(λn, λn+1) is definable in M [Gn], it is also definable in

W [Gn]. Let Hn be M(λn, j(λn+1))/M(λn, λn+1)-generic over W [Gi<n×Gn], then Hn

is M(λn, j(λn+1))/M(λn, λn+1)]-generic over M [Gi<n × Gn] since M [Gi<n × Gn] ⊆
W [Gi<n ×Gn].

Work in W [Gi<n × Gn][Hn]. By Lemma 2.3, we can lift j to j∗ : W [Gi<n ×
Gn]→M [Gi<n ×Gn][Hn]. Now, we show that our λn+1-tree T has a cofinal branch

in W [Gi<n × Gn]. We can consider T as some subset of λn+1 and so T has a

nice name Ṫ in W . Since |Ṫ | ≤ λn+1 and λn+1M ⊆ M , Ṫ is in M . Hence T ∈
M [Gi<n×Gn]. By elementarity of j∗, j∗(T ) is a j∗(λn+1)-tree in M [Gi<n×Gn][Hn]

and since j∗ is the identity below λn+1, j
∗(T ) � λn+1 = T . As j∗(T ) is j∗(λn+1)-tree

in M [Gi<n ×Gn][Hn], it has branch b of length λn+1 in M [Gi<n ×Gn][Hn].

By Lemma 4.23, in M [Gn] there is a projection from Add(λn, [λn+1, j
∗(λn+1)))×

Q∗n to M(λn, j
∗(λn+1))/M(λn, λn+1), where Q∗n is λ+n -closed. Therefore M [Gi<n ×

Gn][Hn] ⊆M [Gi<n×Gn][H1
n×H2

n], where H1
n×H2

n is Add(λn, [λn+1, j
∗(λn+1)))×Q∗n-

generic over M [Gi<n ×Gn]. Therefore b is in M [[Gi<n ×Gn][H2
n][H1

n].

Note that in M [Gi<n × Gn][H2
n] Add(λn, [λn, j

∗(λn+1))) is λ+n -Knaster since it

holds that λ<λnn = λn. In M [Gi<n × Gn][H2
n][H1

n] it holds that λn+1 is collapsed to

λ+n . As the forcingAdd(κ, [λ, j∗(λ))) is λ+n -Knaster in M [Gi<n × Gn][H2
n], λn+1 has

to be collapsed to λ+n already in M [Gi<n × Gn][H2
n]. Therefore λn+1 is an ordinal

of cofinality λ+n in M [Gi<n × Gn][H2
n]. Let T ′ = T � A, where A is a cofinal subset

of λn+1 of size λ+n . By Lemma 4.1, Add(λn, [λn+1, j
∗(λn+1))) does not add cofinal

branches to the tree T ′, hence it does not add the branch b to the tree T . Therefore

b ∈M [Gi<n ×Gn][H2
n].

In M [Gn], since M(λn, λn+1) is λn-closed, it holds that (
∏

i<nM(λi, λi+1))
M =

(
∏

i<nM(λi, λi+1))
M [Gn] and therefore

∏
i<nM(λi, λi+1) is λn-cc. Since 2λn ≥ λn+1,∏

i<nM(λi, λi+1) is λn-cc and Q is λ+n -closed, the assumptions of Lemma 4.5 are

satisfied and so b is already in M [Gn ×Gi<n] and so in V [Gi<n ×Gn].

As in the case of the weak tree property, this result can be extended to an

arbitrary regular κ and force the weak tree property at every κ+2n, for n such that

0 < n < ω, under the assumption of ω-many weakly compact cardinals above κ.
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6 Conclusion

In this thesis we studied the tree and the weak tree property at a given regular

cardinal κ. The tree property means that there are no Aronszajn trees at κ and the

weak tree property means that there are no special Aronszajn trees at κ.

First we considered special κ+-Aronszajn trees for regular κ and we examined

generalizations of definitions of a special Aronszajn tree. We introduced the concepts

of M-special, S-special and non-Suslin Aronszajn trees and showed that

Asp(κ+) ⊆ AS−sp(κ+) ⊆ ANS(κ+) and AM(κ+) ⊆ AS−sp(κ+); (6.1)

where Asp(κ+), AM(κ+), AS−sp(κ+), ANS(κ+) denote the classes of all special, M-

special, S-special and non-Suslin κ+-Aronszajn trees. The first inclusion follows

immediately from the definition of a special Aronszajn tree and the definition of

an S-special Aronszajn trees, the second from Lemma 3.36 and the last inclusion

follows from Lemma 3.28. We also showed that each of these inclusions can be con-

sistently proper. This can be found in Section 3.2 as Corollary 3.42, Corollary 3.49

and Lemma 3.43. In connection with the weak tree property we showed (Theorem

3.38) that there are no special Aronszajn trees if and only if there are no M-special

Aronszajn trees if and only if there are no S-special Aronszajn trees.

Next we examined the Mitchell forcing and the Grigorieff forcing. Both of these

forcings can be used to show that it is consistent that the weak tree property or

the tree property holds at the double successor of a regular cardinal κ, under large

cardinals assumptions. The Mitchell forcing uses the fact that it is a projection

of the product of two forcings, as we showed in Lemma 4.15, where the first has

a good chain condition and the second is sufficiently closed. On the other hand,

the Grigorieff forcing uses the fact that it has the fusion property, as we showed in

Lemma 4.37. These properties were crucial for showing that κ+ is preserved by these

forcings and also for the proofs of the main theorems in Chapter 4. These theorems

state that using either the Mitchell forcing or the Grigorieff forcing we can get a

model, where the weak tree property holds at κ++, under the assumption of a Mahlo

cardinal (Theorem 4.24 and Theorem 4.44), and a model, where the tree property

holds at κ++, under the assumption of a weakly compact cardinal (Theorem 4.26 and

Theorem 4.45). Actually, we used the assumption of the existence of a measurable

cardinal instead of a compact cardinal, but the weakening to the existence of a

weakly compact cardinal poses no problem. Theorem 4.24 and Theorem 4.26 were

first proved by Mitchell and Silver in [Mit72]. Theorem 4.44 and Theorem 4.45

were first proved by Baumgartner and Laver for the case κ = ω in [BL79] and later

generalized for an arbitrary regular cardinal by Kanamori in [Kan80].
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At the end, we focused on the weak tree property and the tree property at more

cardinals. The method of Mitchell and Silver can be quite easly generalized to get

a model where the weak tree property holds at ω-many successive cardinals, under

the assumption of ω-many Mahlo cardinals, and also to get a model where the

tree property holds at ω-many non-successive cardinals, under the assumption of ω-

many weakly compact cardinals. We presented this result in Chapter 5 as Theorem

5.22 and Theorem 5.38. Again we assumed the existence of ω-measurable cardinals

instead of weakly compact cardinals, but as in the previous case the weakening to

the assumption of ω-many weakly compact cardinals poses no problem.

77



References

[Abr83] Uri Abraham. Aronszajn Trees on ℵ2 and ℵ3. Annals of Pure and Applied

Logic, 24:213–230, 1983.

[Abr10] Uri Abraham. Proper forcing. In Matthew Foreman and Akihiro

Kanamori, editors, Handbook of Set Theory, volume 1, pages 333–394.

Springer, 2010.

[Bau70] James Baumgartner. Decomposition and embeddings of trees. Notices of

the American Mathematical Society, 17, 1970.

[Bau83] James Baumgartner. Iterated forcing. In A.R.D. Mathias, editor, Surveys

in Set Theory, London Mathematical Society Lecture Note Series 87, pages

1–59. Cambridge University Press, 1983.

[BL79] James Baumgartner and Richard Laver. Iterated Perfect-Set Forcing.

Annals of Mathematical Logic, 17:271–288, 1979.

[BMR70] James Baumgartner, Jerome Malitz, and William Reinhardt. Embedding

Trees in the Rationals. Proceedings of the National Academy of Sciences,

67(4):1748–1753, 1970.

[CF98] James Cummings and Matthew Foreman. The Tree Property. Advances

in Mathematics, 133(1):1–32, 1998.

[Cum10] James Cummings. Iterated forcing and elementary embeddings. In

Matthew Foreman and Akihiro Kanamori, editors, Handbook of Set The-

ory, volume 2, pages 737–774. Springer, 2010.

[Dev72] Keith Devlin. Note on a theorem of J. Baumgartner. Fundamenta Math-

ematicae, 76(3):255–260, 1972.

[Dev84] Keith Devlin. Constructibility. Springer-Verlag, Berlin, 1984.

[DJ74] Keith Devlin and H̊avard Johnsbr̊aten. The Souslin Problem. Lecture

Notes in Mathematics. Springer-Verlag, Berlin, third edition, 1974. The

third millennium edition, revised and expanded.

[FH] Sy-David Friedman and Radek Honzik. The Tree Property at the ℵ2n’s

and the Failure of SCH at ℵω. Revised, submitted.

[Gri71] Serge Grigorieff. Combinatorics on Ideals and Forcing. Annals of Mathe-

matical Logic, 3(4):363–394, 1971.

78



[Han81] Masazumi Hanazawa. Various Kinds of Aronszajn Tree with No Subtree

of a Different Kind. Lecture Notes in Mathematics, 891:1–21, 1981.

[HV] Radek Honzik and Jonathan Verner. A Lifting Argument for the Gen-

eralized Grigorieff Forcing. To appear in Notre Dame Journal of Formal

Logic.

[Jec03] Thomas Jech. Set Theory. Springer Monographs in Mathematics.

Springer-Verlag, Berlin, 2003.

[Jen72] Ronald Jensen. The Fine Structure of The Constructible Hierarchy. An-

nals of Mathematical Logic, 4:229–308, 1972.

[Kan80] Akihiro Kanamori. Perfect-Set Forcing for Uncountable Cardinals. Annals

of Mathematical Logic, 19:97–114, 1980.

[KT79] Kenneth Kunen and Franklin D. Tall. Between Martin’s Axiom and

Souslin’s Hypothesis. Fundamenta Mathematicae, 102:174–181, 1979.

[Kun80] Kenneth Kunen. Set theory : An Introduction To Independence Proofs.

Studies in logic and the foundations of mathematics. Elsevier science,

1980.

[Kur35] Djuro R. Kurepa. Ensembles ordonnés et ramifiés. Publications
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