
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Lukáš Krtek

Learning picture languages using
restarting automata

Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. Frantǐsek Mráz, CSc.

Study programme: Computer Science

Specialization: Theoretical Computer Science

Prague 2014

I would like to thank RNDr. Frantǐsek Mráz, CSc. for his kind and patient guid-
ance, for providing invaluable advice and for all the time he has invested in
supervising this thesis.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on April 10th, 2014 Lukáš Krtek

Název práce: Učeńı obrázkových jazyk̊u pomoćı restartovaćıch automat̊u

Autor: Lukáš Krtek

Katedra: Kabinet software a výuky informatiky

Vedoućı diplomové práce: RNDr. Frantǐsek Mráz, CSc., Kabinet software a
výuky informatiky

Abstrakt: Ačkoliv existuje mnoho model̊u automat̊u pracuj́ıćıch nad dvojrozměr-
nými vstupy (obrázky), málokdo se dosud zabýval tématem učeńı těchto au-
tomat̊u. V této práci představujeme nový model zvaný dvojrozměrný restarto-
vaćı automat s omezeným kontextem. Náš model pracuje podobně jako dvoj-
rozměrný restartovaćı dlaždicový automat, avšak ukazuje se, že má stejnou śılu
jako dvojrozměrný sgrafito automat. V práci jsme navrhli algoritmus učeńı těchto
automat̊u z pozitivńıch a negativńıch př́ıklad̊u obrázk̊u. Tento algoritmus je im-
plementován a následně otestován na několika základńıch obrázkových jazyćıch.

Kĺıčová slova: obrázkový jazyk, gramatická inference, restartovaćı automat

Title: Learning picture languages using restarting automata

Author: Lukáš Krtek

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Frantǐsek Mráz, CSc., Department of Software and Computer
Science Education

Abstract: There are many existing models of automata working on two-dimen-
sional inputs (pictures), though very little work has been done on the subject of
learning of these automata. In this thesis, we introduce a new model called two-
dimensional limited context restarting automaton. Our model works similarly as
the two-dimensional restarting tiling automaton, yet we show that it is equally
powerful as the two-dimensional sgraffito automaton. We propose an algorithm
for learning of such automata from positive and negative samples of pictures.
The algorithm is implemented and subsequently tested with several basic picture
languages.

Keywords: picture language, grammatical inference, restarting automaton

Contents

Introduction 3

1 Existing Models 4
1.1 Basic definitions . 4
1.2 Tiling systems and the class REC 6
1.3 Two-dimensional sgraffito automaton 7
1.4 Two-dimensional restarting tiling automaton 8

2 Two-dimensional limited context restarting automaton 12
2.1 Formal definition . 14
2.2 Correctness Preservation . 14

3 Language Examples 16
3.1 Square picture . 16
3.2 Permutation . 17
3.3 The First Column Equals Some Column 18
3.4 Forest . 19
3.5 Single Object . 20
3.6 SAT . 20

4 2LCRA properties 22
4.1 Closure properties . 22
4.2 Rule format . 26

4.2.1 Tile format . 26
4.2.2 Cross format . 27
4.2.3 Domino format . 29

4.3 Comparison with other models . 30
4.3.1 Recognizable picture languages 30
4.3.2 Two-dimensional sgraffito automaton 31
4.3.3 Two-dimensional restarting tiling automaton 38

5 Recognition and learning algorithms 40
5.1 Recognition . 40

5.1.1 Enumerating feasible reductions 40
5.1.2 Choosing compatible reductions 42
5.1.3 Finding a valid computation 42
5.1.4 Using patterns . 43
5.1.5 Time complexity . 44

5.2 Learning . 45

1

5.2.1 Automaton representation 46
5.2.2 Automaton evaluation . 48
5.2.3 Search . 49
5.2.4 Output Simplification . 50
5.2.5 Speedup . 51
5.2.6 Extension . 52

6 Testing 54
6.1 Setting the parameters . 55
6.2 Quality of the inferred automata 58
6.3 Example outputs . 59
6.4 Inference of intersections . 61
6.5 Limitations . 61

Conclusion 62

Bibliography 63

A User Guide 65
A.1 Installation . 65
A.2 Using the application . 65

A.2.1 Pictures . 66
A.2.2 Automata . 67
A.2.3 Learning . 69
A.2.4 Computation . 71
A.2.5 Input file format . 72

2

Introduction

The first formal model of automaton working on two-dimensional tape was the
four-way finite automaton introduced in 1967 ([5]). This model is a direct ex-
tension of the one-dimensional finite state automaton, but has some undesirable
properties. Because of that, other models were considered for a suitable general-
ization of the class of regular languages for pictures. The most notable candidate
for this extension is the class of recognizable tiling languages. Introduced in
1991, the class was initially defined by so-called tiling systems ([9]). Another
recent candidate is the class induced by the two-dimensional sgraffito automaton
model ([18]), which is a variant of the two-dimensional Turing machine. Both of
these classes, when restricted to one-dimensional inputs, yield the class of regular
languages.

Of course, there are many other two-dimensional models of automata inducing
many different classes of languages. Of special interest to us is the recently
introduced restarting tiling automaton ([17]), which works by cyclic rewriting of
an input picture. This mode of operation makes the model an interesting choice
for procedural learning of picture languages.

In this thesis, we take the restarting tiling automaton and simplify it in hope
of creating a model that is even more suitable for learning. We introduce a new
model called the two-dimensional limited context restarting automaton and study
its properties, e.g. closure properties and the relation to the sgraffito automaton.
With this model, we proceed to fulfill our main goal, that is to propose and
implement an algorithm for learning picture languages from positive and negative
samples.

Perhaps due to the complex nature of the problem, there are virtually no
existing algorithms of this kind. This fact is in stark contrast with the situation
in the field of one-dimensional languages, where a multitude of such algorithms
exists ([10], [4], [7] etc.).

Our thesis consists of six chapters. In the first chapter, we establish the basic
terminology of picture languages and list several existing models of automata.
In the second chapter, we define our new model of a restating automaton and
its so-called correctness preserving variant. Chapter 3 demonstrates the usage of
our model on some specific picture languages. In the fourth chapter, we explore
the properties of our model and compare it to some existing models, most no-
tably the sgraffito automaton. In the fifth chapter, we propose an algorithm for
simulation of our model and, more importantly, the algorithm for learning from
positive and negative samples of pictures. Finally, in the last chapter, we test our
implementation of the proposed learning algorithm on a small collection of basic
picture languages. The implementation itself is documented in the Appendix.

3

Chapter 1

Existing Models

In this chapter we will list some relevant existing models of automata working
with two-dimensional inputs. But first we need to establish the basic definitions
and terminology of picture languages.

1.1 Basic definitions

The notation used for picture languages is almost the same in all the works on the
subject, and we will certainly abide by it. When referring to natural numbers,
we denote by N the set {1, 2, . . . } and by N0 the set {0, 1, 2, . . . }. The rest of this
section is taken mostly from [17].

Definition 1. A picture over a finite alphabet Σ is a two-dimensional rectangular
array of elements from Σ. The set of all pictures over Σ is denoted by Σ∗,∗. A
picture language over Σ is a subset of Σ∗,∗.

Let P be a picture over Σ. We denote the number of rows and columns of
P by rows(P) and cols(P), respectively. The pair (rows(P), cols(P)) is called
the size of P . The empty picture Λ is defined as the only picture of the size
(0, 0). The set of all pictures of size (m,n) over Σ is denoted by Σm,n. Assuming
1 ≤ i ≤ rows(P) and 1 ≤ j ≤ cols(P), P (i, j) (or shortly Pi,j) identifies the
symbol in the i-th row and the j-th column in P .

Two (partial) binary operations are used to concatenate pictures. Let P
and Q be pictures over Σ of sizes (k, l) and (m,n), respectively. The horizontal
concatenation P : Q is defined iff k = m, the vertical concatenation P 	 Q is
defined iff l = n. The corresponding products are depicted below:

P :Q =

P1,1 · · · P1,l
...

. . .
...

Pk,1 · · · Pk,l

Q1,1 · · · Q1,n
...

. . .
...

Qm,1 · · · Qm,n

P 	Q =

P1,1 · · · P1,l
...

. . .
...

Pk,1 · · · Pk,l
Q1,1 · · · Q1,n

...
. . .

...
Qm,1 · · · Qm,n

We also define Λ	 P = P 	 Λ = Λ : P = P : Λ = P for any picture P .
In addition, we introduce the clockwise rotation PR, vertical mirroring PVM

and horizontal mirroring PHM.

4

PR =

Pk,1 · · · P1,1
...

. . .
...

Pk,l · · · P1,l

PVM =

P1,l · · · P1,1
...

. . .
...

Pk,l · · · Pk,1

PHM =

Pk,1 · · · Pk,l
...

. . .
...

P1,1 · · · P1,l

Remark Note that the vertical mirroring can be expressed by the horizontal
mirroring and rotation (and vice-versa).

PVM =
((
PHM

)R
)R

Let π : Σ → Γ be a mapping between two alphabets. The projection by
π of P ∈ Σm,n is the picture P ′ ∈ Γm,n such that P ′(i, j) = π(P (i, j)) for all
1 ≤ i ≤ m, 1 ≤ j ≤ n, we write P ′ = π(P).

We can extend all introduced operations to languages. Let L,L′ be picture
languages over Σ and π : Σ→ Γ be a mapping. Then

L: L′ = {P : P ′ | P ∈ L ∧ P ′ ∈ L′},
L	 L′ = {P 	 P ′ | P ∈ L ∧ P ′ ∈ L′},
π(L) = {π(P) | P ∈ L},
LR = {PR | P ∈ L},

LVM = {PVM | P ∈ L},
LHM = {PHM | P ∈ L}.

Let S = {`,a,>,⊥,#} be a set of special markers (sentinels), Σ be a finite
alphabet such that Σ ∩ S = ∅ and P ∈ Σm,n be a picture over Σ of size (m,n).

We define a boundary picture of P as a picture P̂ over Σ∪S of size (m+2, n+2).
Its symbols are given by the following scheme.

> > · · · > >
` a
... P

...
` a
⊥ ⊥ · · · ⊥ ⊥

Formally

P̂ (i, j) =



P (i− 1, j − 1) for 2 ≤ i ≤ m+ 1 and 2 ≤ i ≤ n+ 1,
` for 2 ≤ i ≤ m+ 1 and j = 1,
a for 2 ≤ i ≤ m+ 1 and j = m+ 2,
> for i = 1 and 2 ≤ j ≤ n+ 1,
⊥ for i = m+ 2 and 2 ≤ j ≤ n+ 1,
for (i, j) ∈ {f(1, 1), (1, n+ 2), (m+ 2, 1), (m+ 2, n+ 2)}.

We call a tile each picture of the size (2, 2). Given a picture P , we denote by

B2,2(P) the set of all tiles that are sub-pictures of P̂ .

5

1.2 Tiling systems and the class REC

Introduced in [9], the class of recognizable picture languages (REC) was first de-
fined using tiling systems. This class is usually considered to be a base class of
picture languages. Indeed, it is often thought to be the most suitable generaliza-
tion of one-dimensional regular languages into two dimensions.

To define tiling systems, we need to introduce the notion of local picture
languages, which will also be useful later for defining restarting tiling automata.

Both of the following definitions are taken from [8].

Definition 2. A two-dimensional language L ⊆ Γ∗,∗ is local if there exists a set
Θ of tiles over Γ ∪ S such that L = {p ∈ Γ∗,∗ | B2,2(p) ⊆ Θ} and we will write
L = L(Θ).

Definition 3. A two-dimensional language L ⊆ Σ∗,∗ is recognized by a tiling
system (Σ,Γ,Θ, π) if L = π (L(Θ)). A language is tiling recognizable if it is
recognized by some tiling system. The family of all tiling recognizable picture
languages is denoted by REC.

Recognizing a language in REC can be NP-hard and so it makes sense to define
a deterministic subclass (DREC) whose languages are recognizable in polynomial
time. The following definition also comes from [8].

Definition 4. A tiling system (Σ,Γ,Θ, π) is tl2br-deterministic (top left to bot-
tom right deterministic) if for any γ1, γ2, γ3 ∈ (Γ ∪ S) and σ ∈ Σ there exists at

most one tile
γ1 γ2
γ3 γ4

∈ Θ, with π(γ4) = σ.

Similarly we define d-deterministic tiling systems for any corner-to-corner di-
rection d. A recognizable two-dimensional language L is deterministic, if it admits
a d-deterministic tiling system for some corner-to-corner direction d. We denote
by DREC the class of Deterministic Recognizable Two-dimensional Languages.

While a tiling system gives us a simple and comprehensive definition of a
language in REC, it is not a model of automaton with a defined operation which
could be simulated. For that reason, several models of automata were introduced
that recognize the same class of languages, like the tiling automaton (introduced
in [1]) or the two-dimensional on-line tessellation acceptor (introduced in [11]).

We recount a concise definition of two-dimensional on-line tessellation accep-
tors (2OTA) from [6].

Definition 5. A 2OTA is a 5-tuple A = (Σ, Q, I, F, δ), where Σ is the input
alphabet, Q is the set of states, I ⊆ Q,F ⊆ Q are the sets of initial and final
states, δ : Q×Q× Σ→ 2Q is the transition function.

A run of A over a picture p ∈ Σ∗,∗ associates a state to each position of p.
At time t = 0 a state q0 ∈ I is associated to all positions of the first row and
column of p̂, then moving diagonally across the array, at time t = k, states are
simultaneously associated to each position (i, j) of the picture with i+ j − 1 = k,
according to δ, using the states associated with positions (i − 1, j) (i, j − 1) and
the input symbol p(i, j). The picture p is recognized by A if there is a run of A
associating a final state to the position (rows(p), cols(p)).

6

1.3 Two-dimensional sgraffito automaton

The two-dimensional sgraffito automaton is a variant of the original Turing ma-
chine working on two-dimensional inputs. In contrast to a Turing machine, every
computation of a sgraffito automaton is finite because it must reduce finite, non-
negative integer weights of its tape in every step.

The following formal definitions are taken from [17].
Let H = {R,L,D,U,Z} be the set of head movements. First four elements on

H denote directions: left, right, up, down. Z stands for zero (none) movement.
We define a mapping ν : S → H such that

ν(`) = R, ν(a) = L, ν(>) = D, ν(⊥) = U and ν(#) = Z.

Definition 6. A (non-deterministic) two-dimensional bounded Turing machine,
bounded 2TM for short, is a tuple A = (Q,Σ,Γ, δ, q0, QF) where

� Σ is an input alphabet, Γ is a working alphabet such that Σ ⊆ Γ and
Γ ∩ S = ∅,

� Q is a finite, nonempty set of states,

� q0 ∈ Q is the initial state,

� QF ⊆ Q is the set of final states, and

� δ : (Q \QF)× (Γ ∪ S)→ 2Q×(Γ∪S)×H is a transition relation.

Moreover, for any pair (q, a) ∈ Q × (Γ ∪ S), each element (q′, a′, d) ∈ δ(q, a)
satisfies:

� a ∈ S implies d = ν(a) and a′ = a, and

� a /∈ S implies a′ /∈ S.

If for for each q ∈ Q and a ∈ Γ ∪ S we have |δ(q, a)| ≤ 1, we say that A is a
deterministic bounded 2TM.

Let P ∈ Σ∗,∗ be an input to a bounded 2TM A. In the initial configuration of
A on P , its tape contains P̂ , its control unit is in state q0 and the head scans the
top-left corner of P . When P = Λ, the head scans the bottom-right corner of P̂
containing #. The machine accepts P iff there is a computation of A starting in
the initial configuration on P and finishing in an accepting state from QF .

Definition 7. A sgraffito automaton (2SA) is a tuple
A = (Q,Σ,Γ, δ, q0, QF , µ) where

� (Q,Σ,Γ, δ, q0, QF) is a two-dimensional bounded Turing machine,

� µ : Γ→ N is a weight function and

� the transition relation δ satisfies

(q′, a′, d) ∈ δ(q, a) ∧ a /∈ S =⇒ µ(a′) < µ(a) for all q, q′ ∈ Q, d ∈ H, a, a′ ∈ Γ ∪ S.

A is a deterministic 2SA, if the underlying bounded 2TM (Q,Σ,Γ, δ, q0, QF)
is deterministic.

7

We denote by L(2SA) the class of all languages accepted by 2SA and by
L(2DSA) the class of all languages accepted by 2DSA.

From the same source ([17]) come the following closure properties of L(2SA)
and L(2DSA), their relation to REC and DREC and also an important lemma that
we often use when asserting that a certain sgraffito automaton can be constructed.

Theorem 1. The class L(2SA) is closed under projection, rotation, mirroring,
union, intersection and both row and column concatenation.

Theorem 2. The class L(2SA) is not closed under complement.

Theorem 3. The class L(2DSA) is closed under complement, rotation, mirror-
ing, union and intersection.

Theorem 4. The class L(2DSA) is not closed under projection or either row or
column concatenation.

Theorem 5. REC is included in L(2SA), DREC is included in L(2DSA).

Theorem 6. The classes L(2DSA) and REC are incomparable.

Lemma 1. Let M = (Q,Σ,Γ, δ, q0, QF) be a two-dimensional bounded Turing
machine. Let k ∈ N be an integer such that during each computation of M over
any picture in Σ∗,∗ each tape field is visited at most k times. Then, there is a 2SA
A such that L(A) = L(M). Moreover, if M is deterministic, A is deterministic
too.

Sgraffito automata are rather well established in the hierarchy of other models.
This as well as the closure properties of the model is significant for us because
our new model is of (practically) the same power and is therefore going to inherit
all of these features.

1.4 Two-dimensional restarting tiling automa-

ton

The restarting tiling automata were the first attempt to generalize one-dimensional
restarting automata to two-dimensional inputs.

There are several variants of models of one-dimensional restarting automata,
first of which was introduced in [12]. Here we give a brief informal description
of an RRWW-automaton ([13]) — one of the most general models of restarting
automata.

An RRWW-automaton operates on a tape, which at the beginning contains an
input word (from an input alphabet Σ) that is surrounded by a special symbols ¢
and $ from the left and the right side, respectively. The automaton’s head has a
lookahead window of fixed size k. The automaton starts in a so-called restarting
configuration, being in an initial state q0 with its head positioned over the first
symbol ¢ (i.e. the window contains ¢ and the first k − 1 symbols of the input).
Then, the automaton performs a sequence of operations described by a transition
function δ.

Based on the current state q and the contents of the lookahead window u, the
automaton can take one of the following actions in each step:

8

� Change its state to some q′ and move the head by one field to the right.

� Change its state to q′ and rewrite u to v, where v is a word containing
symbols from a working alphabet Γ ⊇ Σ . It is required that v is shorter
than u and also that the boundary symbols ¢, $ are kept in their respective
positions. After the rewriting, the automaton’s head is moved to the first
symbol after u (or to the right sentinel $, if it was present in u).

� Perform a restart, i.e. put itself in the restarting configuration.

The computation terminates when the automaton reaches one of its halting states.
These are divided into accepting states and rejecting states.

The restarts divide the computation into cycles. In each cycle (except for the
last one), exactly one rewriting operation must be performed. This means that
after a rewriting is carried out, the rest of the word is only scanned in order to
decide whether to restart or halt. A variant of RRWW-automaton that restarts
immediately after each rewriting is called an RWW-automaton.

The two-dimensional restarting tiling automata (2RTA) were introduced in
[2] and [17]. As with RRWW-automata, a restarting tiling automaton works in
cycles. In every cycle, the automaton scans a boundary picture using a window
of size (2, 2) (a tile). The order in which the tiles of the picture are scanned is
given by a so-called scanning strategy.

A scanning strategy is defined by a starting position (one of the four corners of
a picture) and a partial function f : N4

0 → N2
0 which, for a tile position (i, j) in a

picture of size (m,n), yields a position (i′, j′) = f(i, j,m, n) of the next tile to be
scanned. The scanning strategy must be constructed so that every tile position
of a picture is scanned exactly once.

One cycle of a 2RTA consists of scanning tiles of a boundary picture in the
order given by its scanning strategy until a tile is found which can be rewritten
according to some of the automaton’s rewriting rules. Every rewriting changes
exactly one symbol in the scanned tile and must not affect the boundaries.

After each rewriting, the automaton restarts immediately. If the whole pic-
ture is scanned without finding a rewritable tile, the automaton halts and if the
resulting picture belongs to a supplied local language, it is accepted.

The finiteness of every computation is ensured similarly as with sgraffito au-
tomata — the symbols have assigned non-negative integer weights, and a symbol
can only be rewritten to a symbol of lower weight.

Unlike an RRWW-automaton, 2RTA is a stateless machine. After the in-
troduction of 2RTA, there were introduced another models of two-dimensional
restarting automata — the two-dimensional ordered restarting automaton (see
[15]) and the extended two-way ordered restarting automaton (see [14]), which
use states and are rather more complex than 2RTA as a result. As these models
were introduced only recently, we will not use them in this thesis.

Following this informal introduction we include a formal definition of 2RTA
taken from [17].

Definition 8. A two-dimensional restarting tiling automaton, referred to as
2RTA, is a 6-tuple M = (Σ,Γ,Θf , δ, ν, µ), where Σ is a finite input alphabet, Γ
is a finite working alphabet (Γ ⊇ Σ), Θf ⊆ (Γ∪S)2,2 is a set of accepting tiles, ν
is a scanning strategy, µ : Γ→ N is a weight function and δ ⊆ {(U → V)|U, V ∈

9

(Γ ∪ S)2,2} is a set of rewriting rules satisfying the condition that in every rule
u→ v only a single position of u, containing a symbol s from Γ, is changed into
some t ∈ Γ such that µ(t) < µ(s).

In the following definition, ν(r,m, n) denotes the sequence of the first r posi-
tions of a picture of size (m,n) visited according to the scanning strategy ν.

Definition 9. Let M = (Σ,Γ,Θf , δ, ν, µ) be a two-dimensional restarting tiling
automaton, P1, P2 be two pictures over the alphabet Γ of the same size (m,n) and
ν((m + 1)(n + 1),m, n) = (i0, j0), . . . , (i(m+1)(n+1)−1, j(m+1)(n+1)−1). We say that
the picture P1 can be directly reduced to the picture P2, denoted by P1 `M P2, if
there exists an integer s, 0 ≤ s < (m+ 1)(n+ 1), such that P̂1(k, l) = P̂2(k, l) for

all pairs of the indices (k, l), where 1 ≤ k ≤ rows(P̂1), 1 ≤ l ≤ cols(P̂1) except
the pairs (is, js), (is, js + 1), (is + 1, js), (is + 1, js + 1) and there exists a rule

P1(is, js) P1(is, js + 1)
P1(is + 1, js) P1(is + 1, js + 1)

→ P2(is, js) P2(is, js + 1)
P2(is + 1, js) P2(is + 1, js + 1)

in δ.

Moreover, there is no rule in δ that could be applied to any tile

P1(ir, jr) P1(ir, jr + 1)
P1(ir + 1, jr) P1(ir + 1, jr + 1)

,

where 0 ≤ r < s. We say that P1 can be reduced to P2 (denoted by P1 `∗M P2)
if there exists a sequence of reductions Q1 `M Q2, Q2 `M Q3, . . . , Qn−1 `M Qn,
where n ≥ 1, Q1 = P1 and Qn = P2. Obviously, the relation `∗M is the reflexive
and transitive closure of the relation `M.

Let M = (Σ,Γ,Θf , δ, ν, µ) be a 2RTA. The language accepted by M is the
set

L(M) = {P ∈ Σ∗,∗|∃Q ∈ Γ∗,∗ : P `∗M Q and Q ∈ L(Θf)}.

Definition 10. A deterministic two-dimensional restarting automaton, referred
to as 2DRTA, is a 2RTA M = (Σ,Γ,Θf , δ, ν, µ) with the set of rewriting rules δ
satisfying one additional condition that for every tile T ∈ (Γ ∪ S)2,2 there exists
at most one rule with the left-hand side T in δ.

We denote by L(2RTA) the class of all languages accepted by 2RTA and by
L(2DRTA) the class of all languages accepted by 2DRTA.

The relation between restarting tiling automata and sgraffito automata was
established in [17].

Proposition 1. L(2SA) is included in L(2RTA), L(2DSA) is included in L(2DRTA).

10

REC

DREC

L(2DSA)

L(2SA) L(2DRTA)

L(2RTA)

Figure 1.1: Hierarchy of the presented classes of picture languages. Every line
symbolizes an inclusion of the lower class in the upper class.

11

Chapter 2

Two-dimensional limited context
restarting automaton

For the purpose of procedural generation of restarting automata, we now try to
create a model whose definition is as simple as possible. The restarting tiling
automaton appears to be a good starting point of our efforts.

To construct a 2RTAM = (Σ,Γ,Θf , δ, ν, µ), one needs to define several struc-
tures: a scanning strategy, a working alphabet with weights, a set of rewriting
rules and a local language of accepted results. For our model we will try to reduce
this list.

First candidate for reduction is the scanning strategy. Its variability may
present some interesting possibilities, but here we will focus on shaping the au-
tomaton by the choice of rewriting rules, which renders the scanning strategy
more of an impediment than help. Therefore we choose to omit the concept of
scanning strategies altogether. From practical viewpoint, it means that one step
of an automaton’s computation is made simply by nondeterministically choosing
any possible rewriting in the whole picture rather than looking for the first possi-
bility in some given order. Alternatively, this can be interpreted as allowing the
automaton to ignore a rewriting possibility and continue its scanning path (as it
is with the RRWW-automaton, for example).

The obvious downside of this approach is of course the loss of an effective in-
tuitive algorithm for deterministic simulation. To deal with this issue we propose
an alternative recognition algorithm later in 5.1.

Without a scanning strategy, we lose the main reason why the rewriting rules
come in the form of tiles. A rewriting is now simply an operation which is based
on the contents of the rewritten field itself and its immediate neighborhood. To
reflect that, we will consider the rules in the following form:

r =
n1 n2 n3

n4 s n5

n6 n7 n8

→
n1 n2 n3

n4 s′ n5

n6 n7 n8

Or, for short

r = (s, s′, (n1, n2, . . . , n8)) ∈ Γ× Γ× (Γ ∪ S)8.

This change generally does not alter the power of the automaton, because, as
we will show later in 4.2, a conversion can be made both ways between the two

12

formats.
Another simplification of the automaton can be done by fixing the local lan-

guage Θf , or the condition of accepting a rewritten picture. One of the most
natural conditions for accepting is that combined weight of the whole picture be
zero. That means accepting pictures of the local language

Θ0
f = (S ∪ {a | µ(a) = 0})2,2

A theoretical problem here might be that this gives the automaton no means to

reject the empty picture Λ (when
#
#

/∈ Θf). For our purposes, this problem

is inconsequential.
When not using a scanning strategy, this simplification does not at all alter

the power of the automaton . Given an automaton accepting any local language
Θf , another one can be constructed accepting the same language while accepting
Θ0
f .

This automaton rewrites a picture similarly to the original and then “freezes”
the resulting picture by rewriting every symbol a ∈ Γ to its frozen equivalent
a′ ∈ Γ′ using rules

r =
n1 n2 n3

n4 a n5

n6 n7 n8

→
n1 n2 n3

n4 a′ n5

n6 n7 n8

for all a ∈ Γ, n1, . . . , n8 ∈ Γ ∪ Γ′ ∪ S.
Symbols from Γ′ cannot be further operated upon by the original rewriting

rules. Without a scanning strategy, these rewritings are never forced to be done
prematurely. Therefore any picture created using the original rules can be ob-
tained in the frozen form.

The last stage of the computation is to verify that the tiles in the frozen parts
of the picture belong to Θf . This can be done by rewriting the frozen symbols to
their new zero-weight equivalents from Γ0 by rules

r =
n0

1 n0
2 n0

3

n0
4 a′ n′5
n′6 n′7 n′8

→
n0

1 n0
2 n0

3

n0
4 a0 n′5
n′6 n′7 n′8

where for n1, . . . , n8, a ∈ Γ, the original counterparts of n0
1, . . . , n

0
4 ∈ Γ0, n

′
5, . . . , n

′
8, a
′ ∈

Γ′ (assuming s = s′ = s0 for s ∈ S), we have{
n1 n2

n4 a
,
n2 n3

a n5
,
n4 a
n6 n7

,
a n5

n7 n8

}
⊆ Θf .

Note that the automaton has somewhat loose requirements for ordering of the
performed operations. In a successful computation, some parts of a picture can
already be frozen and even verified for locality before the original computation
is concluded everywhere else. However, the freezing of the symbols ensures that
the two phases of the computation never interfere.

To sum up, a formal definition (which is a modification of a 2RTA definition
from [17]) follows.

13

2.1 Formal definition

Definition 11. A two-dimensional limited context restarting automaton, referred
to as 2LCRA, is a quadruple M = (Σ,Γ, δ, µ), where Σ is a finite input alphabet,
Γ is a finite working alphabet (Γ ⊇ Σ), µ : Γ → N0 is a weight function and
δ ⊆ {(s, s′, N)|s, s′ ∈ Γ, N ∈ (Γ ∪ S)8} is a set of rewriting rules satisfying the
condition (∀(s, s′, N) ∈ δ)µ(s′) < µ(s).

Definition 12. LetM = (Σ,Γ, δ, µ) be a two-dimensional limited context restart-
ing automaton, P1, P2 be two pictures over the alphabet Γ of the same size (m,n).
We say that the picture P1 can be directly reduced to the picture P2, denoted
by P1 `M P2, if there exists a pair (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, such that
P1(k, l) = P2(k, l) for all pairs (k, l) ∈ {1, . . . ,m}×{1, . . . , n} \ {(i, j)} and there
exists a rule

P̂1(i− 1, j − 1) P̂1(i− 1, j) P̂1(i− 1, j + 1)

P̂1(i, j − 1) P̂1(i, j) P̂1(i, j + 1)

P̂1(i+ 1, j − 1) P̂1(i+ 1, j) P̂1(i+ 1, j + 1)

↓
P̂1(i− 1, j − 1) P̂1(i− 1, j) P̂1(i− 1, j + 1)

P̂1(i, j − 1) P̂2(i, j) P̂1(i, j + 1)

P̂1(i+ 1, j − 1) P̂1(i+ 1, j) P̂1(i+ 1, j + 1)

in δ.
We say that P1 can be reduced to P2 (denoted by P1 `∗M P2) if there exists

a sequence of reductions Q1 `M Q2, Q2 `M Q3, . . . , Qn−1 `M Qn, where n ≥ 1,
Q1 = P1 and Qn = P2. Obviously, the relation `∗M is the reflexive and transitive
closure of the relation `M.

LetM = (Σ,Γ, δ, µ) be a 2LCRA. We refer to the symbols in Γ\Σ as auxiliary
symbols. Furthermore, we denote by Γ0 the set {γ | γ ∈ Γ, µ(γ) = 0} and we say
that a picture P ∈ Γ∗,∗ can be rewritten to zero by M if (∃Q ∈ Γ∗,∗0), P `∗M Q.
The language accepted by M is the set

L(M) = {P ∈ Σ∗,∗ | (∃Q ∈ Γ∗,∗0)P `∗M Q}.
We denote by L(2LCRA) the class of all languages accepted by 2LCRA.

2.2 Correctness Preservation

The existing models usually have a deterministic variant which yields a subclass
of automata that can be simulated in polynomial time. Our model does not
allow for any reasonable determinism, but we can substitute it by the notion of
correctness preservation.

For this concept we take inspiration from the correctness preserving property
that was introduced for one-dimensional restarting automata (see e.g. [16]).

A restarting automaton is correctness preserving if every rewriting of an ac-
cepted word yields another accepted word. It means that the automaton is not
capable of making a mistake that would result in false rejection.

We can define this property of inability to make mistakes for our model as
well.

14

Definition 13. LetM = (Σ,Γ, δ, µ) be a two-dimensional limited context restart-
ing automaton. M is correctness preserving (referred to as CP2LCRA) if

(∀P ∈ Γ∗,∗) ((∃P0 ∈ Γ∗,∗0)P `∗M P0) =⇒
(∀P ′ ∈ Γ∗,∗, P `M P ′) (∃P ′0 ∈ Γ∗,∗0)P `∗M P ′0

where Γ0 = {a|a ∈ Γ, µ(a) = 0}.
We denote by L(CP2LCRA) the class of all languages accepted by CP2LCRA.

In other words, with a CP2LCRA, if a picture can be rewritten to zero, then
it can be rewritten to zero even after any valid application of a rewriting rule.

For an automatonM without any auxiliary symbols (Γ = Σ), the correctness
preservation property can be formulated simply as

(∀P ∈ L(M), Q ∈ Σ∗,∗)P `∗M Q =⇒ Q ∈ L(M).

A correctness preserving automaton can be simulated in polynomial time be-
cause we can in every step choose to apply any possible rewriting. Our choice
cannot affect the final outcome, so there is no need to backtrack.

The downside of this definition is that for an arbitrary automaton it is likely
undecidable whether it is correctness preserving.

As a simple example of a CP2LCRA, consider an automaton M = (Σ,Σ, δ, µ)
that recognizes pictures over Σ = {a,b} that only contain b’s in horizontal lines
that do not touch borders of the picture or each other (see example in Fig. 2.1).
The weight function is µ(b) = 1, µ(a) = 0 and δ contains rules

a a a
a b b
a a a

→
a a a
a a b
a a a

a a a
a b a
a a a

→
a a a
a a a
a a a

.

Each rewriting of a picture P to P ′ performed by M either shortens a hori-
zontal line of b’s or erases a line of unit length. Obviously, if P was from L(M),
then P ′ is also from L(M). A successful computation ends with a picture from
{a}∗,∗.

a a a a a a a a
a a b b b b b a
a a a a a a a a
a b b a a a a a
a a a a b b b a
a a b a a a a a
a a a a a b b a
a a a a a a a a

a a a a a a a a
a a b b b b b a
a a a a a a a a
b b b a a a a a
a a a a b b b a
a a b a a a a a
a a b b a b b a
a a a a a a a a

Figure 2.1: An example of a picture that belongs to the language of horizontal
lines (left) and of a picture that does not (right).

15

Chapter 3

Language Examples

In this chapter, we will list some picture languages mostly taken from various
literature, together with descriptions of 2LCRA accepting them. The presented
automata are fairly simple so the usage of our model is well justified. This
simplicity also gives us hope that languages like these can be learned by a generic
learning algorithm.

To describe rewriting rules we will use rule patterns

N1 N2 N3

N4 s N5

N6 N7 N8

→
N1 N2 N3

N4 s′ N5

N6 N7 N8

,

(where s, s′ ∈ Γ are symbols and N1, N2, . . . , N8 ⊆ Γ ∪ S are sets or lists of
symbols) which denote sets of rules

n1 n2 n3

n4 s n5

n6 n7 n8

→
n1 n2 n3

n4 s′ n5

n6 n7 n8

,

where n1 ∈ N1, n2 ∈ N2, . . . , n8 ∈ N8.
If any Ni contains all working symbols as well as the sentinels, we may omit

the respective cell. For better clarity, we highlight the rewritten field by gray
background.

3.1 Square picture

The first example is a very simple language that uses a single letter alphabet. It
contains exactly all pictures P such that cols(P) = rows(P), that is,

L =
⋃
n∈N0

{a}n,n.

This language can be found in many articles, for example in the collection of
examples in [8].

As usual, our automaton can recognize such pictures by drawing a main di-
agonal that has to end in the bottom right corner:

>
` a

→ # >
` 1

,
1 a
a a

→ 1 a
a 1

16

After the diagonal is drawn, all positions to the left and top of the diagonal are
rewritten to zero:

a 0,1 → 0 0,1 ,
a

0,1
→ 0

0,1
,

The weight function is µ(a) = 1, µ(1) = 0, µ(0) = 0.

1 0 0 a a a
0 1 0 0 a a
a a 1 0 a a
a 0 a 1 a a
a 0 0 0 1 a
a a a a a a

Figure 3.1: An example of a possible rewriting of a square picture. Any of the
marked cells can be rewritten in the next step.

Note that the actual rewriting of an input does not need to happen in the
outlined order. The writing of zeros may commence before the whole diagonal is
drawn. The rules might also suggest that the zeros are only propagated horizon-
tally below the diagonal and vertically above it, but that is not the case. Zeros
can always propagate both to the left and to the top (see Fig. 3.1).

However, when a position (i, j) is zeroed, there is always a diagonal cell
(k, k), k ≥ i, j that has already been rewritten to 1. Therefore, in a non-square
picture, positions ({i, j}) where max(i, j) > min({cols(P), rows(P)}) can never
be zeroed.

3.2 Permutation

The language of permutations is an often used example of a recognizable picture
language (for example in [18]). A picture over a two letter alphabet {a,b} rep-
resents a permutation if each row and each column contains exactly one letter b.
A 2LCRA recognizing such pictures performs the following operations:

� If b is not adjacent (vertically or horizontally) to another b, it is rewritten
to a zero-weight symbol b0.

a,>
a,` b a,a

a,⊥
→

a,>
a,` b0 a,a

a,⊥

� A horizontal wave of rewriting of symbols a to a1 is sent from the b0’s.
This wave doesn’t continue if a second b is encountered.

The wave is sent to the left using the rules

a,` a a1,b0 → a,` a1 a1,b0

17

and to the right using the rules

a1,b0 a a,` → a1,b0 a1 a,`

� Then the same procedure is used to verify the number of b’s in each column.
Now the symbol a1 is rewritten to a zero-weight symbol a0:

a1,>
a1

a0,b0

→
a1,>
a0

a0,b0

,
a0,b0

a1

a1,⊥
→

a0,b0

a0

a1,⊥

The weight function µ is defined as µ(a) = µ(b) = 2, µ(a1) = 1, µ(a0) =
µ(b0) = 0.

Like in the previous language, the order of rewriting is not fixed, but the
operations always retain their meaning.

3.3 The First Column Equals Some Column

A set of pictures where the first column is equal to some other column is another
popular recognizable picture language (found for example in [8]). We will assume
a two-letter input alphabet {a,b} for the sake of simplicity.

A 2LCRA recognizing this language can be implemented to announce the con-
tents of the first column to the whole picture

` a → ` aa

aa,ba a → aa,ba aa , aa,ba b → aa,ba ba

` b → ` bb

ab,bb a → ab,bb ab , ab,bb b → ab,bb bb

and then check any number of columns for equality (from top to bottom), rewrit-
ing the equal parts to an auxiliary symbol 1.

>
aa
→ >

1
,

>
bb
→ >

1

1
aa
→ 1

1
,

1
bb
→ 1

1

Finally if a whole column is equal to the first one (and it is not the first column
itself), a symbol 0 is spawned.

s 1
⊥ ⊥ → s 0

⊥ ⊥

where s ∈ {aa,bb, ab,ba,1} The zero-weight symbol 0 is then indiscriminately
spread throughout the whole picture.

The weights of the working symbols are µ(a) = µ(b) = 3, µ(aa) = µ(ab) =
µ(ba) = µ(bb) = 2, µ(1) = 1 and µ(0) = 0.

18

3.4 Forest

A picture P ∈ {a,b}∗,∗ can represent an unoriented graph G(P) = (V,E) where

V = {(i, j) | P (i, j) = b}
E = (V × V) ∩ {((i, j), (i′, j′)) | |i− i′|+ |j − j′| = 1}

The language of forests is then the set of all pictures P such that G(P) is an
acyclic graph (for example in Fig. 3.2). Similar language of trees is mentioned
for example in [2].

A limited context automaton can process such pictures by erasing leaves of
the depicted trees, until there are none left. If a non-empty graph does not have
any leaves, then it necessarily contains a cycle.

A leaf can be matched and erased by one of the following rules:

>, a
`, a b a, a,b

⊥, a
→

>, a
`, a a a, a,b

⊥, a
>, a,b

`, a b a, a
⊥, a

→
>, a,b

`, a a a, a
⊥, a

>, a
`, a,b b a, a

⊥, a
→

>, a
`, a,b a a, a

⊥, a
>, a

`, a b a, a
⊥, a,b

→
>, a

`, a a a, a
⊥, a,b

The result of a successful computation is a picture without a single b, which
induces the weights µ(b) = 1 and µ(a) = 0.

The way in which this automaton operates (rewriting a forest to obtain a
smaller forest) naturally makes it correctness preserving.

a a a a b b b
a b a b a a b
b b b b a a b
a b a a a b b
a b b b b b a
a a a a b a a
a b a b b b b
a b a a a a a

a a a b b b b
a b a b a a b
b b b b a a b
a b a a a a b
a b b b b b b
a a a a b a b
a b a b b b b
a b a a a a a

Figure 3.2: A picture that represents a forest (left) and a picture that does not
(right).

19

3.5 Single Object

Using the same definition of a graph represented by a given picture as above we
can define the language of pictures depicting a single object as the set of those
pictures P where G(P) has at most one component.

In the spirit of correctness preservation, we can build an automaton that
transforms a picture by gradually growing an object until it fills the whole picture.
The rewriting rules facilitating this growth must ensure that two objects are not
connected by the rewriting. For example, rules like

b a a
b a b
b b b

→
b a a
b b b
b b b

or
b b a
a a a
a a a

→
b b a
a b a
a a a

can never connect two disjoint objects whereas rules like

b a a
b a b
a b b

→
b a a
b b b
a b b

or
b b a
a a a
a b a

→
b b a
a b a
a b a

might do that and therefore are not contained in δ.
Unlike the previous example, the zero-weight symbol here is b.
Using the correctness preservation property, this automaton can be simulated

efficiently in linear time. On the other hand, simulating it as an arbitrary au-
tomaton is very inefficient. Given a picture with two objects, the simulator might
have to explore many dead-end computations where the picture is almost filled
and only a little gap is left between the two grown objects.

3.6 SAT

To illustrate NP-completeness of the recognition of languages in L(2LCRA) we
will describe a language of pictures that represent satisfiable Boolean formulas in
conjunctive normal form (CNF).

An input CNF formula

m∧
i=1

ni∨
ji=1

pji

with a total of n variables x1, ..., xn can be represented by a picture P ∈ {T,F,N}m,n
where

P (i, j) =


T if i-th clause contains xj,
F if i-th clause contains ¬xj,
N otherwise.

These pictures are recognized by an automaton that uses following rules:
First, a value (true or false) is selected for each variable (column) and added

to the respective symbol as a subscript.

20

>
T

→ >
TT

,
>
T

→ >
TF

>
F

→ >
FT

,
>
F

→ >
FF

>
N

→ >
NT

,
>
N

→ >
NF

This value is then propagated down the whole column.

TT,FT,NT

T
→ TT,FT,NT

TT
,

TF,FF,NF

T
→ TF,FF,NF

TF

TT,FT,NT

F
→ TT,FT,NT

FT
,

TF,FF,NF

F
→ TF,FF,NF

FF

TT,FT,NT

N
→ TT,FT,NT

NT
,

TF,FF,NF

N
→ TF,FF,NF

NF

If the guessed assignment satisfies the formula, then for each clause (row) at
least one atom is found that makes it true:

TT → 0 , FF → 0

Finally the zeros are propagated horizontally, making the whole rows that
represent satisfied clauses zero. If the chosen assignment does not satisfy some
clauses (and thus the whole formula), then the corresponding rows are left non-
zero (because zero cannot appear in them).

21

Chapter 4

2LCRA properties

In this chapter we will explore the class of languages accepted by 2LCRA. First
we will prove the common closure properties and then we will insert our model
into the hierarchy of existing two-dimensional models.

4.1 Closure properties

Here we will show basic closure properties of our model. Many of them can be
proved similarly as with 2RTA (see [2]). These properties can also be deduced
from the fact that 2LCRA have virtually the same power as 2SA (see 4.3.2).

Observation 1. The class L(2LCRA) is closed under rotation and horizontal and
vertical mirroring.

Proof. Given an automaton M accepting the language L(M) we can construct
an automaton accepting rotation or mirroring of L(M) by simply replacing all
the rewriting rules by their rotated or mirrored versions.

In the case of clockwise rotation, a rule

n1 n2 n3

n4 s n5

n6 n7 n8

→
n1 n2 n3

n4 s′ n5

n6 n7 n8

is replaced by a rule

f(n6) f(n4) f(n1)
f(n7) s f(n2)
f(n8) f(n5) f(n3)

→
f(n6) f(n4) f(n1)
f(n7) s′ f(n2)
f(n8) f(n5) f(n3)

where f(a) = a for all a ∈ Γ and f(`) = >, f(>) =a, f(a) = ⊥, f(⊥) =`, f(#) =
#.

The mirroring of the rules can be done similarly.

Observation 2. The class L(2LCRA) is closed under binary intersection.

Proof. Given two automataM1,M2 we can construct a 2LCRAM that simulates
both of them by first replacing each input symbol s by a pair (s, s) and then
performing computations of M1 and M2 on the first and the second element of

22

the pairs, respectively. M’s weight function is δ(a) = 1 + δ1(a) + δ2(a) for input
symbols and δ ((a, b)) = δ1(a) + δ2(b) for the pairs. This way a symbol’s weight is
zero only if the symbol is a pair of zero symbols (w.r.t. δ1 and δ2) and the picture
is only accepted if both computations terminated successfully.

Proposition 2. The class L(2LCRA) is closed under projection.

Proof. Let M = (Σ,Γ, δ, µ) be a 2LCRA and π : Σ → Σ′ be a projection. We
w.l.o.g. assume that Γ ∩ Σ′ = ∅. To accept π (L (M)) we can construct an
automaton Mπ = (Σ′,Γ′, δ′µ′) where Γ′ = Γ ∪ Σ′ and δ′ contains all the rules
from δ as well as new rules a′ → a for all a ∈ Σ, a′ ∈ Σ′ such that π(a) = a′.
The weight function µ′ is µ′ = µ(a) for a ∈ Γ and µ′(a) = 1 + maxs∈Γ(µ(s)) for
a ∈ Σ′.

Proposition 3. The class L(2LCRA) is closed under binary union.

Proof. Let M1 = (Σ,Γ1, δ1, µ1) and let M2 = (Σ,Γ2, δ2, µ2) be two 2LCRA.
W.l.o.g. we assume that Γ1 ∩ Γ2 = Σ and also that no symbol of the input
alphabet has zero weight with respect to either µ1 or µ2.

ForM1 we can trivially create an equivalent automatonM′
1 = (Σ1,Γ

′
1, δ
′
1, µ

′
1)

operating on a renaming of Σ (i.e. Σ1 ∩ Σ = ∅ and there exists a bijection π1 :
Σ1 → Σ such that µ′1(s) = µ1(π1(s)) for all s ∈ Σ1 and π1(L(M′

1)) = L(M1). In
the same way we can construct M′

2 = (Σ2,Γ
′
2, δ
′
2, µ

′
2) such that Γ′1 ∩ Γ′2 = ∅.

Now we can finally build an automaton accepting L(M1)∪L(M2) = π1(L(M′
1))∪

π2(L(M′
2)). It is a tuple M = (Σ,Γ, δ, µ) where

Γ = Σ ∪ Γ′1 ∪ Γ′2, the weight function is

� µ(a) = µ′1(a) for a ∈ Γ′1,

� µ(a) = µ′2(a) for a ∈ Γ′2 and

� µ(a) = µ′1(π−1
1 (a)) + µ′2(π−1

2 (a)) for a ∈ Σ,

and the rewriting rules are δ = δ′1 ∪ δ′2 ∪ δπ where δπ contains the projection rules
a → π−1

1 (a) and a → π−1
2 (a) for all a ∈ Σ.

In a computation of M, every cell is first rewritten to a symbol from either
Σ1 or Σ2. Then it must be rewritten at least once by a rule from M′

1 or M′
2 to

reach zero weight. If a part of the picture is rewritten to symbols from Σ1 and an
another part is rewritten symbols from Σ2, the cells on the interface between these
parts cannot be rewritten further and the picture cannot be accepted. Therefore
the only accepting computations are equivalent to renaming the whole picture to
one alphabet and subsequent accepting by the respective automaton (although
not necessarily in this strict order — the automaton can begin rewriting the
renamed parts before the picture is completely renamed).

Proposition 4. The class L(2LCRA)is closed under binary horizontal and verti-
cal concatenation.

Proof. An automaton accepting a concatenation of two languages can be con-
structed similarly as with the union. For horizontal concatenation, this automa-
ton can rename left part of a picture to an alphabet of the first automaton and
the right part to an alphabet of the other one and then perform two independent

23

computations over the separated parts. The left computation treats the right
side symbols as right sentinels an vice versa. In a successful computation, there
obviously cannot be any interface between the two alphabets except for the single
vertical border corresponding to the concatenation point.

Lemma 2. The class L(2LCRA) is not closed under complement.

Proof. As with the similar proof for 2RTA in [2], we will use the language of
pictures consisting of two identical vertically concatenated squares, with a slight
modification.

L = {s	 l 	 s|l ∈ Σ1,n, s ∈ Σn,n, n ∈ N},Σ = {a,b}

The complement of this language can be recognized by a 2LCRA that either
verifies that a picture P is not of a size (2n+ 1, n) or checks that the two squares
are not equal.

The former procedure is done by attempting to send a signal from the position
(1, 1) to the position (1, 2cols(P) + 1) (see Fig. 4.1a). If this signal ends up
somewhere else than in the bottom left corner, the picture is rewritten to zero
and accepted. The signal is transmitted using the rules

>
` s

→ # >
` ↘ ,

↘ s
t u

→ ↘ s
t ↘ ,

↘ a
s a →

↘ a
� a ,

� a
s a →

� a
↙ a ,

s ↙
t u

→ s ↙
↙ u

for s, t, u ∈ {a,b}. The fact that the signal had not arrived in the correct corner
is acknowledged by the rules

↘ a
⊥ #

→ 0 a
⊥ #

,
� a
⊥ #

→ 0 a
⊥ #

,

s ↙
⊥ ⊥ → s 0

⊥ ⊥ ,
` ↙
` s

→ ` 0
` s

,

where s ∈ {a,b} and 0 is a zero-weight symbol, which is, after its first appearance,
spread to the whole picture.

The latter procedure uses auxiliary symbols disjoint with those used above.
It begins by nondeterministically choosing a field (i, j) in the upper square that
is supposedly not equal to the corresponding field in the lower square. This field
is marked by either the rule a → a0 or the rule b → b0 . After that, the
rest of the picture is frozen (by rewriting every a to a′ and every b to b′) so
that no other field is selected (using, for example, a technique similar to the one
described in 3.5). The information about the contents of the selected field is then
transferred to the field (i+ cols(P) + 1, j) (see Fig. 4.1b). First, the value of the
marked field is announced to the column below it using the rules

a0, aa,ba

a′
→ a0, aa,ba

aa
,

b0, ab,bb

a′
→ b0, ab,bb

ab
,

a0, aa,ba

b′
→ a0, aa,ba

ba
,

b0, ab,bb

b′
→ b0, ab,bb

bb
.

24

(a) Sending a signal from the top
left corner to the bottom left cor-
ner.

(b) Sending information between
corresponding fields of two squares.

Figure 4.1: Techniques used for recognizing a complement of the language of two
identical, vertically concatenated squares

Then, a signal is sent to ascertain the correct row using the rules

a0,b0 → → , → s′ → → → ,

→ a
s′ a →

→ a
↙ a ,

s′ ↙
t′ u′

→ s′ ↙
↙ u′

,
` ↙
` s′

→ ` ↙
` →

where s′, t′, u′ ∈ {a′,b′, aa,ba, ab,bb}. This signal, in its final phase, eventually
crosses the j-th column in the row (i + cols(P) + 1) and we can check whether
the two corresponding fields differ using rules

→ ab,ba → → 0 ,
` ↙
` ab,ba

→ ` ↙
` 0

.

Again, 0 is a zero weight symbol that can be propagated to the whole picture.
Now we will prove that L /∈ L(2LCRA) by contradiction. Let us assume

that there exists a restarting automaton M = (Σ,Γ, δ, µ) that recognizes L. For
every picture in L we take one accepting computation and informally define its
signature as the complete information about rewritings of symbols on the picture’s
horizontal center line (l). Each signature is a set of rewritings (identified by a
position and the rule used) ordered w.r.t. their order in the whole computation.

Now we proceed to count the maximum number of distinct signatures of com-
putations over pictures of fixed width n. At one position, each rule can be used
at most once, which gives us at most 2|δ| possible combinations of used rules. For
all positions on the line combined, that sums up to (2|δ|)n combinations. Each
combination contains at most n|δ| rewritings, which can be ordered in (n|δ|)!
ways. Therefore the upper bound for the number of distinct signatures is

(2|δ|)n(n|δ|)!.

On the other hand, there are 2(n2) squares of size n over the alphabet {a,b}. The
limit

25

lim
n→∞

2(n2)

(2|δ|)n(n|δ|)!
≥ lim

n→∞

2(n2)

(2|δ||δ|n))(n|δ|) =∞

dictates that for a large enough n there are more squares than signatures of
computations over pictures made up from them. So there must exist two different
squares s1, s2 such that there are accepting computations of M over s1 	 l 	 s1

and s2 	 l 	 s2 sharing the same signature.
We will show that M accepts the picture s1 	 l 	 s2 /∈ L. An accepting

computation here performs rewritings from the signature as well as those that
were done in the upper half of s1	 l	 s1 and the lower half of s2	 l	 s2 during
their respective accepting computations. All of these rewritings are done in order
that respects the partial ordering imposed by the two original computations over
s1	l	s1 and s2	l	s2. Specifically, if a rewriting in the upper half was performed
between two rewritings on the center line during the computation on s1 	 l	 s1,
it must also be performed between them in the computation on s1 	 l 	 s2. An
analogous principle is used for ordering the rewritings performed in the lower
square during the computation on s2 	 l 	 s2.

That way, every time a rewriting takes place in the upper (or lower) square, all
of the fields in the neighboring positions (from the square and the center line) are
the same as in the original computation, and therefore the rewriting is possible.
The same is true for the rewritings on the center line, because at the time we
perform such rewritings, the current picture is, both below and above the line, in
a state that allows the usage of the particular rule.
M accepting this picture contradicts the assumption that M recognizes L.

Therefore such automaton cannot exist.

4.2 Rule format

We have defined the automaton to use rules in the form of a 3-by-3 sub-picture,
where the central symbol is rewritten. This expresses, in the most general form,
that the rewriting of a cell is based on its immediate neighborhood. There are,
however, other formats of rules that yield automata of equal power. Here we will
explore the most notable of them.

4.2.1 Tile format

This is the format used by 2RTA. Each rule describes rewriting of a tile

s1 s2

s3 s4
→ s′1 s′2

s′3 s′4

where for exactly one i ∈ {1, 2, 3, 4}, si 6= s′i.
With such rules, any rule of the form

r =
n1 n2 n3

n4 s n5

n6 n7 n8

→
n1 n2 n3

n4 s′ n5

n6 n7 n8

26

can be simulated by the set of following four rules:

n1 n2

n4 s
→ n1 n2

n4 s1
r

n2 n3

s1
r n5

→ n2 n3

s2
r n5

n4 s2
r

n6 n7
→ n4 s3

r

n6 n7

s3
r n5

n7 n8
→ s′ n5

n7 n8

where s1
r, s

2
r, s

3
r are new symbols unique to the rule r, with weights such that

µ(s) > µ(s1
r) > µ(s2

r) > µ(s3
r) > µ(s′) (to accommodate these weights, the weights

of the original alphabet can be multiplied by four to ensure that µ(s)−µ(s′) ≥ 4).
During the rewriting of a cell by this sequence, no neighbor can be successfully

rewritten to a symbol of the original working alphabet. Thus these sequences are
practically atomic. Therefore, using these rules instead of the original rules does
not expand the accepted language.

4.2.2 Cross format

Here we will show that for every 2LCRA M = (Σ,Γ, δ, µ) there exists an au-
tomaton M′ accepting the same language, which utilizes rules in the following
form:

nu

nl s nr

nd

→
nu

nl s′ nr

nd

To do that, we will describe an automaton M′ = (Σ,Γ′, δ′, µ′) that, in order to
simulate M, keeps at every position in the picture information about its four
neighbors.

The working alphabet Γ′ contains the input alphabet Σ, a special zero-weight
symbol 0 and all six-tuples

(c, u, l, r, d, x) ∈ Γe × Γe × Γe × Γe × Γe × {N,U,L,R,D},Γe = Γ ∪ S

or, graphically,  u

l c r
d

, x

 .

These symbols describe contents of a cell and its neighbors and a lock that
will be instrumental in keeping this structure consistent.

The computation of M′ begins by informing cells of their neighbors using
rules

27

 ∗
n1 n2 n3

s
,N


 n1
∗ n4 s

n6

,N

 s n5

n7

↓ ∗
n1 n2 n3

s
,N


 n1
∗ n4 s

n6

,N

  n2
n4 s n5

n7

,N

 n5

n7

(where each ∗ stands for any symbol) and their apparent variations for positions
at the edges of the picture, for example

> n1
∗ n4 s

n6

,N

 s n5

n7

↓
> n1

∗ n4 s

n6

,N

  >
n4 s n5

n7

,N

 n5

n7

Then, the steps of M are simulated. Simulation of one rewriting consists of
locking the four neighbors of the rewritten position, performing the rewriting and
finally updating and unlocking the neighbors.

To lock a cell means rewriting the last element of the tuple by the rules u

l c r

d
,N

 →

 u

l c r

d
,X


where X ∈ {U,L,R,D}.

The actual rewriting corresponding to rule

n1 n2 n3

n4 s n5

n6 n7 n8

→
n1 n2 n3

n4 s′ n5

n6 n7 n8

is carried out by a rule matching

28

 ∗
n1 n2 n3

s
,U


 n1
∗ n4 s

n6

,L

  n2
n4 s n5

n7

,N

  n3
s n5 ∗

n8

,R


 s

n6 n7 n8
∗

,D


↓ ∗

n1 n2 n3
s

,U


 n1
∗ n4 s

n6

,L

  n2
n4 s′ n5

n7

,N

  n3
s n5 ∗

n8

,R


 s

n6 n7 n8
∗

,D


or a variation for borders of the picture.

Then, the neighbors are updated and unlocked by rules u1

l1 s1 r1

s2

,U


 s1

l2 s′2 r2

d2

,N

 →

 u1

l1 s1 r1

s′2

,N


 s1

l2 s′2 r2

d2

,N


and their analogues for left (L), right (R) and down (D) locks.

For these rules to form a valid automaton, the tuples must be weighed with
respect to their lexicographical ordering (with locks sorted for example D < R <
L < U < N)

At the end of the simulation, the tuples where the center symbol has a weight
of zero according to µ are rewritten to the special 0 symbol.

Observe that by using a similar principle for of keeping the states of neighbors
in every field, we can simulate rules matching 5-by-5 sub-pictures with 3-by-3
rules.

4.2.3 Domino format

Perhaps the simplest format of the rules is that which only uses one of the four
closest neighbors of the cell and the cell itself:

n
s
→ n

s′
,

s
n
→ s′

n
, n s → n s′ , s n → s′ n

With such, a cross rule

r =

nu

nl s nr

nd

→
nu

nl s′ nr

nd

29

(where s, s′ ∈ Γ, nu, nl, nr, nd ∈ Γ ∪ S for the working alphabet Γ) can be, like in
the case of conversion between tile and 3-by-3 format, simulated via

nu

s
→ nu

s1
r

,
s1
r

nd
→ s2

r

nd
, nl s2

r → nl s3
r , s3

r nl → s′ nl

and therefore the automata utilizing this format of rules still retain the power of
the originally defined 2LCRA.

4.3 Comparison with other models

In this section we insert our model into the hierarchy of existing models. The
most important observation here is that 2LCRA are equally powerful as sgraffito
automata. This fact immediately gives us comparisons with various other models.

4.3.1 Recognizable picture languages

Observation 3. L ∈ REC =⇒ L ∪ {Λ} ∈ L(2LCRA).

Proof. Let T = (Σ,Γ,Θ, π) be a tiling system such that Σ ∩ Γ = ∅.
Then we can build a 2LCRA that recognizes pictures from L(T) by rewriting

it in one pass using rules

� for fields not on the right or the bottom edge of the picture:

γ1 γ2 σ3

γ4 π(γ) σ5

σ6 σ7 σ8

→
γ1 γ2 σ3

γ4 γ σ5

σ6 σ7 σ8

for all γ ∈ Γ, γ1, γ2, γ4 ∈ (Γ ∪ S), σ3, σ6 ∈ (Σ ∪ S), σ5, σ7, σ8 ∈ Σ such that
γ1 γ2
γ4 γ

∈ Θ,

� for fields on the right edge of the picture, but not in the bottom right corner:

γ1 γ2 s3

γ4 π(γ) a
σ6 σ7 a

→
γ1 γ2 s3

γ4 γ a
σ6 σ7 a

for all γ ∈ Γ, γ1, γ2, γ4 ∈ (Γ ∪ S), σ6 ∈ (Σ ∪ S), σ7,∈ Σ, s3 ∈ S such that
γ1 γ2

γ4 γ
,
γ2 s3

γ a ∈ Θ,

� for fields on the bottom edge of the picture, but not in the bottom right
corner:

γ1 γ2 σ3

γ4 π(γ) σ5

s6 ⊥ ⊥
→

γ1 γ2 σ3

γ4 γ σ5

s6 ⊥ ⊥
for all γ ∈ Γ, γ1, γ2, γ4 ∈ (Γ ∪ S), σ3 ∈ (Σ ∪ S), σ5 ∈ Σ, s6 ∈ S such that
γ1 γ2

γ4 γ
,
γ4 γ
s6 ⊥

∈ Θ

30

� and for a field in the bottom right corner of the picture:

γ1 γ2 s3

γ4 π(γ) a
s6 ⊥ #

→
γ1 γ2 s3

γ4 γ a
s6 ⊥ #

for all γ ∈ Γ, γ1, γ2, γ4 ∈ (Γ ∪ S), s3, s6,∈ S such that

γ1 γ2

γ4 γ
,
γ2 s3

γ a ,
γ4 γ
s6 ⊥

,
γ a
⊥ #

∈ Θ.

The weight function µ is defined as µ(σ) = 1 for all σ ∈ Σ and µ(γ) = 0 for all
γ ∈ Γ.

4.3.2 Two-dimensional sgraffito automaton

Theorem 7. For every picture language L, L ∈ L(2SA) ⇐⇒ L ∪ {Λ} ∈ L(2LCRA).

To verify this claim we will show how a limited context restarting automaton
can be simulated by a sgraffito automaton and vice versa.

Lemma 3. L(2LCRA) ⊆ L(SA).

Proof. Let M = (Σ,Γ, δ, µ) be an arbitrary 2LCRA. To prove the inclusion we
will construct a sgraffito automatonMS accepting the language L(MS) = L(M).
We will w.l.o.g. assume that M uses rules in the cross format and that all its
input symbols have non-zero weight.

For a rule

r =

nu

nl s nr

nd

→
nu

nl s′ nr

nd

we denote the left neighbor nl by ln(r), the right neighbor nr by rn(r), the upper
neighbor nu by un(r), the lower neighbor nd by dn(r), the central symbol s by
ctr(r) and the result s′ by res(r).

Definition 14. Let M = (Σ,Γ, δ, µ) be a 2LCRA and s ∈ Σ an input symbol. A
reduction of s by M is a sequence of rewriting rules (r1, r2, . . . , rn), ri ∈ δ such
that

1. ctr(r1) = s

2. µ(res(rn)) = 0

3. (∀i ∈ {2, . . . , n}) : res(ri−1) = ctr(ri).

We define R(M) as the set of all reductions of all symbols in Σ by M.

In other words, a reduction is a way in which one particular symbol can be
rewritten to a zero weighed result.

31

Definition 15. Let M = (Σ,Γ, δ, µ) be a 2LCRA and let r = (r1, . . . , rm) be a
reduction of a ∈ Σ by M and s = (s1, . . . , sn) be a reduction of b ∈ Σ by M. We
say that r is horizontally compatible with s if there exists a linear ordering ≤c
of {(r1,←), . . . , (rm,←), (s1,→), . . . , (sn,→)} such that for all i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}

1. (ri,←) <c (ri+1,←) if i < m,

(sj,→) <c (sj+1,→) if j < n,

2. (ri,←) <c (s1,→) =⇒ (rn(ri) = b),

(sj,→) <c (r1,←) =⇒ (ln(sj) = a),

3. (ri,←) >c (sn,→) =⇒ (rn(ri) = res(sn)),

(sj,→) >c (rm,←) =⇒ (ln(sj) = res(rm)),

4. (sj,→) <c (ri,←) < (sj+1,→) =⇒ (rn(ri) = res(sj)) if j < n,

(ri,←) <c (sj,→) < (ri+1,←) =⇒ (ln(sj) = res(ri)) if i < m.

This defines a relation Ch on the set of all reductions of all symbols in Σ:

rChs ⇐⇒ r is horizontally compatible with s.

We can see that horizontal compatibility is a necessary (though not sufficient)
condition for two reductions happening in the neighboring positions in the same
row. We can similarly define a relation of vertical compatibility (Cv) for neighbors
in the same column. Note that these relations are not symmetrical.

Observation 4. For a pair of reductions r, s there exists at most one ordering ≤c
witnessing their horizontal compatibility and at most one ordering ≤′c witnessing
their vertical compatibility.

With these definitions, we can now describe a way of recognizing pictures
in L(M) that is achievable by a sgraffito automaton. The recognition consists
of guessing the correct reduction for every position in the picture and verifying
whether these reductions can be assembled into a valid computation.

Lemma 4. Let M = (Σ,Γ, δ, µ) be a 2LCRA and P ∈ Σm,n be a picture. Then
P ∈ L(M) if and only if there exists a mapping f : {1, . . . ,m} × {1, . . . , n} →
R(M) between positions in P an reductions byM such that for all i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}

1. f(i, j) = (r1, . . . , rk) =⇒ ctr(r1) = P (i, j),

2. f(1, j) = (r1, . . . , rk) =⇒ ln(rs) =` for each s ∈ {1, . . . , k},
f(i, 1) = (r1, . . . , rk) =⇒ un(rs) = > for each s ∈ {1, . . . , k},
f(m, j) = (r1, . . . , rk) =⇒ rn(rs) =a for each s ∈ {1, . . . , k},
f(i, n) = (r1, . . . , rk) =⇒ dn(rs) = ⊥ for each s ∈ {1, . . . , k},

3. f(i, j)Chf(i, j + 1) if j < n,

f(i, j)Cvf(i+ 1, j) if i < m

32

and there exists a linear ordering ≤g of a set of rewritings S = ∪mi=1 ∪nj=1 Si,j,
where for each pair (i, j) s.t. f(i, j) = (r1, . . . , rk) we define
Si,j = {(i, j, r1), (i, j, r2), . . . , (i, j, rk)}, and ≤g satisfies

1. for every witness ≤c of horizontal compatibility between f(i, j) and f(i, j + 1),

(i, j, r) ≤g (i, j + 1, s) ⇐⇒ (r,←) ≤c (s,→)

(i, j + 1, r) ≤g (i, j, s) ⇐⇒ (r,→) ≤c (s,←)

(i, j, r) ≤g (i, j, s) ⇐⇒ (r,←) ≤c (s,←)

(i, j + 1, r) ≤g (i, j + 1, s) ⇐⇒ (r,→) ≤c (s,→)

2. for the witness ≤c of vertical compatibility between f(i, j) and f(i+ 1, j),

(i, j, r) ≤g (i+ 1, j, s) ⇐⇒ (r, ↑) ≤c (s, ↓)
(i+ 1, j, r) ≤g (i, j, s) ⇐⇒ (r, ↓) ≤c (s, ↑)

(i, j, r) ≤g (i, j, s) ⇐⇒ (r, ↑) ≤c (s, ↑)
(i+ 1, j, r) ≤g (i+ 1, j, s) ⇐⇒ (r, ↓) ≤c (s, ↓)

Proof. Let P ∈ L(M) be a picture. Then there exists an accepting computation
which can be described as a sequence of rewriting rules being applied at specific
positions. By selecting rules applied to one fixed position (i, j), we obtain a
reduction of P (i, j) and the desired mapping f(i, j). The ordering ≤g is obviously
given by the order of the rewritings in the computation.

Conversely, let there be such mapping f and ordering ≤g. We have to verify
that performing rewritings from dom(≤g) in order suggested by ≤g constitutes a
valid accepting computation.

Let (i, j, r) ∈ dom(≤g) and let the picture P ′ be P after performing, in
the order given by ≤g, exactly all rewritings (i′, j′, r′) ∈ dom(≤g) such that
(i′, j′, r′) <g (i, j, r). Pick any neighbor of (i, j), for example the right one. If

j = n, then P̂ (i, j + 1) =a and rn(r) =a (because of mapping f requirement
(2)). Otherwise, because ≤g respects orderings that witness compatibility with
all neighboring reductions, P ′(i, j + 1) must be equal to rn(r) (enforced by the
definition of compatibility). The same argument applies to all of the neighbors
as well as for the center of the rule. Therefore the rewriting and by induction the
whole computation is valid.

When we choose a matrix of reductions M ∈ R(M)m,n where the neighboring

reductions are properly compatible, we can define an oriented graph G = (V, ~E)

where V = {(i, j, r)|r ∈Mij} and ~E contains following types of edges:

1. ((i, j, r), (i, j, r′)) if Mij = (r1, . . . , r, . . . , r
′, . . . , rn)

2. ((i, j, r), (i, j + 1, r′)) if r ≤c r′, ((i, j + 1, s), (i, j, s′)) if s ≤c s′ (≤c being
the respective horizontal compatibility witness)

3. ((i, j, r), (i+ 1, j, r′)) if r ≤c r′, ((i+ 1, j, s), (i, j, s′)) if s ≤c s′ (≤c being the
respective vertical compatibility witness)

33

We can observe that edges of a graph representing ≤g from the lemma (defined

as (V, ~E ′) where ~E ′ = {(v1, v2) | v1 <g v2}) must be a superset of ~E and that any
linear ordering whose graph is an extension of G meets all of the requirements of
the lemma.

Such an ordering obviously cannot exist if there is an oriented cycle in G.
Conversely, if there is no cycle, the graph has a topological ordering which can
be used as the wanted ≤g. This means that the existence of any ordering ≤g
is equivalent to non-existence of an oriented cycle in G. This property can be
verified by a simple depth-first search.

For a given restarting automaton, the size of R(M) as well as any reduction by
M is finite. Therefore the graph has a special form. Each position of the matrix
corresponds to a limited number of vertices and edges in the graph only lead
between vertices belonging to the same cell or between vertices of two neighboring
cells. When suitably represented, a sgraffito automaton can perform depth-first
search on such graphs (see [18]).

Now we can finally describe the sought sgraffito automatonMS. If the input
picture is empty, it is immediately accepted. Otherwise, the automaton works in
three stages.

1. In the first pass, a whole reduction is guessed at every position of the
picture. This requires only one visit of each position (except for the edges
of the picture).

2. In the second pass, neighbors are checked for local compatibility and the
aforementioned graph G is built. To do this, every position only needs to
be visited at most k times for some constant k.

3. Finally, a depth-first search of G is performed. If an oriented cycle is found,
The picture is rejected. If the whole graph is explored without finding a
cycle, the picture is accepted.

Lemma 5. For all picture languages L in L(2SA), the language L ∪ {Λ} is in
L(2LCRA).

Proof. For any sgraffito automaton we can construct a limited context restart-
ing automaton simulating it. This can be done virtually the same way as with
restarting tiling automata. Therefore the following proof is an almost identical
to the respective proof from [17].

LetA = (Q,Σ,Γ, δ, q0, QF , µ) be a 2SA. We describe a 2LCRA T = (Σ,Γ′, δ′, µ′)
such that L(T) = L(A). The idea is to simulate a computation of A over any
input P ∈ Σ∗,∗. If A scans the tape field f and the control unit is in state q, then
T stores q into f . A set of rewriting rules is designed for changing the current
configuration of A into a configuration after a single step of A.

Let k = |Γ|,m = max{k, 5} and I = {0, . . . , k}. Elements in Γ′ are of six
types:

1. a ∈ (Σ ∪ S), µ′(a) = mk + 4, is an initial input symbol,

34

2. (i, a) ∈ (I×Γ)), µ′((i, a)) = mi+3, represents a field containing a, the head
of A is not placed here, at most i instructions of A can be performed over
the field,

3. (i, a, q) ∈ (I × Γ × Q), µ′((i, a, q)) = mi + 1, the same meaning of a and i
as above, moreover, the head of A scans this field and the control unit is in
the state q,

4. (i, a, q, d) ∈ (I × Γ×Q×H), µ′((i, a, q, d)) = mi, the same meaning of a, i
and q as above, moreover, A will move from this field in the direction d,

5. (i, a, q, b) ∈ (I × Γ × Q × Γ), µ′((i, a, q, b)) = mi + 2, an auxiliary symbol
with the meaning: A moved to this field containing a in the state q from a
neighboring field by an instruction which writes b,

6. 0, µ′(0) = 0, a special zero weight symbol.

There is no loss of generality in assuming that A moves the head in each compu-
tation step. The specification of rewriting rules follows. For each a ∈ Σ, there is
a rule creating the representation of the initial configuration:

>
` a

→ # >
` (k, a, q0)

.

For each instruction (q, a)→ (q′, a′, R) in δ, rules matching the following patterns
are added:

(i, a, q) (j, b) → (i, a, q, R) (j, b)

(i, a, q) b → (i, a, q, R) b

(i, a, q, R) (j, b) → (i, a, q, R) (j, b, q′, a′)

(i, a, q, R) b → (i, a, q, R) (0, b, q′, a′)

(i, a, q, R) (j, b, q′, a′) → (i− 1, a′) (j, b, q′, a′)

(i− 1, a′) (j, b, q′, a′) → (i− 1, a′) (j, b, q′)

where i, j ∈ I, 0 < i ≤ k, b ∈ Γ \ S, s, t ∈ Σ∪S ∪ (I ×Γ). By writing an auxiliary
symbol of the form (i, a, q, d) on the tape, we ensure that T cannot start to
simulate simultaneously two instructions of A moving from a field in different
(e.g. opposite) directions.

A special attention has to be paid to the situation, when the head of A moves
outside P . We do not represent such a configuration, but rather the following con-
figuration reached by applying a next instruction of the form (q′,a)→ (q′′,a, L).
Thus, the set of rules is completed by

(i, a, q) a → (i− 1, a′, q′′) a

The weight function µ has been defined to conform the rules. Similar rules
are added also for the remaining instructions which move the head of A left, up
or down.

The fact that A has reached an accepting state is manifested by rewriting any
field to (i, a, qf), where a ∈ Γ, i ∈ I, qf ∈ QF . Such symbol is then rewritten to
0, which is subsequently propagated to the whole picture.

35

In addition to the equivalence between our model and the nondeterministic
sgraffito automaton, we will now show that the correctness preserving variant of
our model is equivalent to a deterministic sgraffito automaton.

Theorem 8. For every picture language L, L ∈ L(2DSA) ⇐⇒ L ∪ {Λ} ∈
L(CP2LCRA).

Proof. First, observe that the limited context restarting automaton simulating a
given deterministic sgraffito automaton (constructed according to the description
from the previous proof) is correctness preserving. The simulator is at all times
bound to do one specific operation and cannot therefore deviate from an accepting
computation.

To prove the other implication we will describe a deterministic sgraffito au-
tomaton simulating CP2LCRAM = (Σ,Γ, δ, µ). We will w.l.o.g. use a 2DSA that
can move its head in eight directions. A diagonal movement of the head can be
simulated by a four-way 2DSA using two movements (which raises the number of
visits of some fields, but only by a constant).

The correctness preservation property ensures that whenever a rewriting is
possible, it can be carried out without fear of straying from an accepting com-
putation. The only problem for a sgraffito automaton is keeping track of places
where the rewritings can be done. For that it needs a data structure that will
hint the next position to check for possible rewriting. This structure can take
advantage of the fact that once you make sure that a cell is not rewritable, it
stays that way until at least one of its neighbors is rewritten.

To implement this structure, the automaton can keep an oriented tree that
spans over all possibly rewritable positions. This tree has at most one vertex
corresponding to each cell of the picture (meaning there is a chance of rewriting),
and its edges can only lead between neighboring cells.

The automaton operates as follows:

� First, the automaton marks all positions as potentially rewritable, i.e. con-
structs a tree that has vertices in all of them (a snakelike simple path), and
moves its head to a leaf of that tree. This can be done in a single pass over
the picture.

� After that, the rewriting of the picture is simulated. This is done in series
of steps in which the automaton, if possible, rewrites the symbol at the
current position and then moves to a next one.

At the beginning of each step, the head of the automaton is positioned over
a leaf of the tree. Here the automaton checks whether any rewriting can be
done according to δ.

If so, it is performed and all the neighbors that are not already part of
the tree are connected to this leaf. Then the head moves to one of these
new descendants (see Fig. 4.2b). If no children are spawned, the head stays.

If not, the leaf is removed from the tree and the head moves to its
parent. If this parent is not a leaf now, the head moves to one of the node’s
children (see Fig. 4.2c). These children are all leaves, because they have
not been visited since their creation (after a child node is visited, it is not
possible to return to its parent until the child is erased).

36

(a) Tree before a step. (b) Tree after a rewriting
step.

(c) Tree after a non-
rewriting step.

Figure 4.2: An example of a step of a 2DSA simulating a CP2LCRA. At the
beginning the automaton’s head is above the leaf of the tree within the gray field
(a). If a rewriting is carried out, the tree is extended (b). Otherwise the leaf is
removed (c). Finally, the head moves to another leaf.

This process is repeated until there are no more leaves and the tree is erased
completely.

� After the tree is reduced to zero vertices (meaning no more rewritings are
possible), the automaton checks in a single pass whether all resulting sym-
bols are of zero weight. If they are, the picture is accepted, otherwise it is
rejected.

It remains to verify that in the second part of the computation the number of
visits of each position is limited by a constant. Upon visiting a node of the tree,
one of the three following actions is done:

� A leaf is removed (when no rewriting is possible),

� a leaf is transformed into an inner node (after rewriting) or

� an inner node loses one of its children (when returning from a removed leaf).

Each cell can be added to the tree (as a leaf) every time a rewriting is exe-
cuted in the neighboring positions, which cannot happen more than 8|δ| times.
Obviously, the number of removals from the tree is the same.

A leaf can become an inner node of the tree only when a rewriting of its field
is carried out (at most |δ| times). After its creation, the inner node is visited at
most eight times (when returning from erased children) before becoming a leaf
again.

The above calculations do not account for visits that are made when exploring
a neighborhood of a cell (when matching a rule or looking for new cells to connect
to a tree). Number of these visits for one position is however proportional to the
number of actions performed in the neighboring positions and is thus still limited
by a constant.

37

4.3.3 Two-dimensional restarting tiling automaton

It was shown in [17] that with an arbitrary scanning strategy, the restarting tiling
automata are properly stronger than sgraffito automata (even in the class of one-
dimensional inputs). This implies that 2RTA is more powerful than our model
as well. However, a question remains whether there exists a “simple” scanning
strategy ν such that L(ν-2RTA) ⊆ L(2SA) where ν-2RTA denotes the class of
restarting tiling automata using the scanning strategy ν.

One obvious argument against this inclusion is the difference in time com-
plexity. In a picture of size (m,n), a sgraffito automaton can visit every field
only constant times, so the whole computation has time complexity O(mn). A
restarting tiling automaton also performs O(mn) rewritings, but every rewriting
is preceded by scanning of O(mn) tiles, so the total time complexity is O(m2n2).

This disparity poses a problem for a potential simulation of a ν-2RTA R
by some 2SA S (and a 2LCRA in extension). We unsuccessfully considered two
approaches for such a simulation.

First approach is to simulate rewritings performed by R in the order in which
R would perform them. To do that, S needs to implement a structure akin to a
priority queue that hints possibly rewritable tile positions, in the order given by
ν. At the beginning, this queue contains all (m + 1)(n + 1) tile positions in the
picture. Whenever a rewriting of R is simulated, up to four tiles that contain
the rewritten field are added to the queue. So, in total, O(mn) tile positions are
enqueued during the computation.
S runs in O(mn) time, so the described queue would have to perform both

extraction of the first element and insertion of a new element in amortized O(1)
time. This seems unlikely to be achievable with the limited means of a sgraffito
automaton.

Second approach we considered is to guess, or simulate the rewritings per-
formed by R regardless of the correct order and then verify that they can be
ordered to form a valid ν-2RTA computation. In a valid order, a rewriting is
done if

� the rewritten tile matches the left-hand side of the associated rewriting rule
and

� there is no rewritable tile position on the previous scanning path.

The problem lies with the second condition. The scanning strategy may cause
that a rewriting of a tile (i, j) satisfying the first condition cannot be done by R
because some rewritings of earlier scanned tiles lead to modification of the tile
(i, j).

These relations between rewritings are not always easy to detect. As an
example, consider a simulation where we guess a rewriting of the tile position
(i, j + 1) by a rule

b c
b c

→ b x
b c

and also a rewriting of the tile position (i, j) that precedes the position (i, j + 1)
on the scanning path by a rule

a b
a b

→ a x
a b

.

38

There are two possibilities. The first one is that the latter rewriting can be
performed independently of the former and is forced to be executed first by the
scanning strategy. In this case the former rewriting cannot be executed, rendering
our guess wrong.

The second possibility is that the first rewriting launches a series of changes
that propagate throughout the picture, eventually leading to changing the tile
(i, j) so as to enable the second rewriting. In this case our guess might have been
correct. Tracking this kind of dependency requires non-local exploration of the
picture, which could probably be done for one instance of this problem. However,
these ambiguous situations can occur many times in one picture and performing
the tracking for all of them might be impossible for a sgraffito automaton. If so,
the two presented cases are generally indistinguishable and the simulation cannot
function properly as a consequence.

In conclusion, the question of existence of a scanning strategy ν such that
L(ν-2RTA) ⊆ L(2SA) remains open.

39

Chapter 5

Recognition and learning
algorithms

The main focus of this chapter is to present an algorithm for learning of automata.
First, though, we need to address the problem of recognition of pictures by our
model.

5.1 Recognition

By not using a scanning strategy, we have lost the ability to effectively simulate
the automaton’s operation by simple backtracking. Instead, we can take an al-
ternative approach similar to the simulation via sgraffito automaton introduced
in 4.3.2.

To implement this method, the recognition algorithm first generates a list of
feasible reductions for every position of the picture and then repeatedly chooses
sets of locally compatible reductions, until a set is found such that it constitutes a
valid computation of 2LCRA. We will now describe each of these steps separately.

5.1.1 Enumerating feasible reductions

The input of the algorithm is comprised of a 2LCRA M = (Σ,Γ, δ, µ) and a
picture P . In the first phase, we need to procure for every position (i, j) in P a
list of possible reductions such that if there exists an accepting computation ofM
over P , then the list contains the reduction performed to rewrite the field (i, j)
to zero. We also need to establish the relations of local compatibility between
possible reductions of neighboring positions.

One way to obtain these lists is to generate the set of all reductions R(M)
and assign to each position (i, j) all reductions from R(M) that are applicable to
the symbol P (i, j). However, with this method, the resulting lists of reductions
are needlessly large, which might considerably slow down the next phase of the
algorithm.

Instead, we try to generate for each position a smaller number of reductions
that are relevant to that position in the context of P . We launch a sort of
parallel simulation, where we, in a way, represent all possible states into which
the picture can be rewritten byM. This is done by trying to perform all possible
rewritings in each position of P , which results in a set of all states to which the

40

said position can be rewritten. Each state is linked to the rest of the picture only
by keeping sets of compatible states of neighboring positions. These compatibility
sets determine whether it is possible for a field in a given state to be rewritten
further, and they are formed in the process of the parallel rewriting.

In accordance with the proof in 4.3.2, we call these states partial reductions.
Unlike a reduction, a partial reduction does not have to lead to a zero-weight
symbol. We represent a partial reduction p by a structure

p =
N1 N2 N3

N4 s N5

N6 N7 N8

where s ∈ Γ is the resulting symbol of the partial reduction and Ni are sets
of locally compatible partial computations which can be performed within the
respective neighboring positions.

At the beginning of the processing of a picture P , we define one partial re-
duction (consisting of zero rewritings) ci,j for each position
(i, j) ∈ {0, . . . , rows(P) + 1} × {0, . . . , cols(P) + 1}:

ci,j =

{ci−1,j−1} {ci−1,j} {ci−1,j+1}
{ci,j−1} P̂ (i+ 1, j + 1) {ci,j+1}
{ci+1,j−1} {ci+1,j} {ci+1,j+1}

.

In the cases of borders of the extended picture the sets of compatible partial
reductions are empty for the non-existing neighbors. For example, at the left
border of P̂ we have for 1 ≤ i ≤ rows(P) the partial computations

ci,1 =
∅ {ci−1,0} {ci−1,1}
∅ ` {ci,1}
∅ {ci+1,0} {ci+1,1}

.

From this initial setup, the algorithm begins to generate new partial reductions
by extending the existing ones, using an operation that is analogous to performing
a rewriting in P .

An extension of a partial computation

p =
N1 N2 N3

N4 s N5

N6 N7 N8

by a rule
n1 n2 n3

n4 s n5

n6 n7 n8

→
n1 n2 n3

n4 s′ n5

n6 n7 n8

is a partial reduction

p′ =
N ′1 N ′2 N ′3
N ′4 s′ N ′5
N ′6 N ′7 N ′8

where each N ′i , i ∈ {1, . . . , 8} is a set of all partial reductions from Ni that result
in ni. An extension can only be made if no N ′i is empty.

41

Upon creating an extension, we need to keep the symmetry of the compati-
bility relations. Therefore if a partial reduction

q =
M1 M2 M3

M4 ni M5

M6 M7 M8

becomes a compatible neighbor of p′ and is added to N ′i , then p′ must accordingly
be added to M9−i (for example, if q is a left neighbor of p′, then q is added to N4

and p′, as a right neighbor of q, must be added to M9−4 = M5).
Partial reductions generated for each position (i, j) ∈ {1, . . . , rows(P)} ×

{1, . . . , cols(P)} are kept in an oriented tree Gi,j = (V, ~E) where V is the set

of the partial reductions and ~E contains edges (p, q) such that q is an extension
of p. The initial empty partial reductions are the roots of these trees. Note that
every edge is associated with a rewriting rule that facilitated the respective ex-
tension and a path from a root of a tree to a node — a partial reduction p —
gives us the sequence of rewriting rules of p.

To limit the size of these trees, we require that no partial reduction is extended
by the same rule twice. If a partial reduction p gains a new compatible neighbor
q which matches a rewriting rule that had already been used to extend p to p′,
then, instead of extending p again, q also becomes a compatible neighbor of p′

(and vice versa). This operation is then recursively propagated to the relevant
descendants of p′.

As a result of this, the size of one tree is independent of the size of the input
picture and is at most exponential in the number of rules. Therefore, for a fixed
automaton, the size of the tree is bounded by a constant, albeit possibly a big
one.

The algorithm generates new partial reductions until there is no partial reduc-
tion among the existing ones that can be extended further by any rewriting rule.
From the resulting trees we can extract the sought reductions (corresponding to
leaves with a zero-weight result) and the local compatibility relations defined by
the sets of compatible neighbors.

5.1.2 Choosing compatible reductions

In the second part of the algorithm we need to enumerate all possible combi-
nations of reductions that might make up an accepting computation. This can
be formulated as a constraint satisfaction problem (CSP; see e.g. [3]) where we
have a variable for every position in P that selects a reduction for that position
and the constraints are given by an enumeration of compatible pairs of neighbor-
ing reductions. A solution of this problem is a matrix of reductions M of size
(rows(P), cols(P)), where Mij is one of the listed possible reductions of P (i, j)
that is locally compatible with all of its neighbors in M .

For solving constraint satisfaction problems there exists a multitude of differ-
ent techniques. The problem itself, however, is generally NP-complete.

5.1.3 Finding a valid computation

The final step of the algorithm is to verify that the found set of rewritings (given
by the selected reductions in M) can be linearly ordered to form a valid compu-

42

tation. Every rewriting is represented here by the resulting partial reduction.
Each selected reduction Mij represents a set of partial reductions (or rewrit-

ings) Sij containing Mij itself and all the ancestors of Mij in the tree of partial
reductions Gij except for the root of Gij (because the root represents no rewrit-
ing). On the set of all rewritings from all Sij we build the graph containing the
information about the local ordering of the neighboring rewritings.

If we take a partial reduction p ∈ Sij and restrict its list of compatible left
neighbors Nl to the rewritings in Si(j−1), one of the three following cases occurs.

� Nl∩Si(j−1) contains no partial reduction whose result matches the last rule
used in p, meaning that the rule matches the original symbol P (i, j). In
this case we have p < q for all q ∈ Nl ∩ Si(j−1).

� The last rule used in p matches the result of the reduction Mi(j−1) an thus
we have p > Mi(j−1).

� There is exactly one pair of rewritings q1, q2 ∈ Nl ∩ Si(j−1) such that q2 is
an extension of q1 and the result of q1 matches the last rewriting rule used
in p. In this case the local ordering must satisfy q1 < p < q2.

A similar principle applies to all eight neighboring positions. Apart from these
inequalities, a partial reduction must also always come before its extension, so
for all p1, p2 ∈ Sij such that p2 is an extension of p1 we have p1 < p2.

As with the simulation by a sgraffito automaton, we need verify that the graph
incorporating the described orderings does not contain any oriented cycle. This
can be done by a depth-first search. If no cycle is found, the rewritings can be
topologically sorted, which gives us a possible order of rewritings in an accepting
computation.

If a cycle is found, then the particular CSP solution is dropped and the al-
gorithm moves to another one. When all solutions are depleted without finding
any suitable one, the picture is rejected.

5.1.4 Using patterns

We have seen in Chapter 3 that it is usually easier to work with groups of rules
represented by patterns rather than with single rules. For that reason it is ad-
visable to use those patterns instead of rules when creating extensions of partial
reductions in the first part of the algorithm.

Extending partial computation

p =
N1 N2 N3

N4 s N5

N6 N7 N8

by a pattern

r =
M1 M2 M3

M4 s M5

M6 M7 M8

→
M1 M2 M3

M4 s′ M5

M6 M7 M8

yields a partial reduction p′ such that the respective sets of compatible neighbors
N ′i contain those partial reductions that result in any of the symbols in Mi (and
not just one particular symbol given by a rule).

43

In this algorithm we require that for each i ∈ {1, . . . , 8} the set Mi ⊆ (Γ ∪
S), apart from sentinels, only contains consecutive symbols w.r.t. the working
alphabet Γ weighed by µ, meaning

(∀s, t ∈Mi)(∀u ∈ Γ)µ(s) ≤ µ(u) ≤ µ(t) =⇒ u ∈Mi. (5.1)

The usage of patterns affects the final part of the algorithm (the depth-first
search) because it relaxes the local orderings of the rewritings. When using
single rules, the rewritings of every pair of neighboring positions have a unique
linear ordering and there is always only one way a given partial reduction can be
inserted in the sequence of partial reductions of a neighbor in the ordering of the
computation.

On the other hand, when we use patterns, a partial reduction can be inserted
between several pairs of neighbor rewritings. Due to the condition (5.1) imposed
on the patterns, the partial reductions q1, q2, . . . , qk ∈ Si(j−1) (k ∈ N0) that result
in symbols matching the last pattern used in a partial reduction p ∈ Sij form
a consecutive string of rewritings such that ql+1 is an extension of ql for all l ∈
{1, . . . , k − 1}.

Because of this fact, we usually only need to set two inequalities for the
ordering. First, if q1 is an extension of a partial reduction q0 such that the result
of q0 does not match the last pattern used in p, then we define p > q1. Second,
if there exists a partial reduction qk+1 ∈ Si(j−1) such that qk+1 is an extension
of qk, then we define p < qk+1. The last special case is for k = 0, meaning
that the p’s last pattern only matches the input symbol P (i, j − 1). As with the
similar case for single rules, we then have p < q for all q ∈ Si(j−1). By imposing
these inequalities for all neighbors, we ensure that in a computation based on
the resulting global ordering, a pattern used for any rewriting matches all of the
neighbors’ contents at the time of the rewriting.

5.1.5 Time complexity

The time complexity of the presented algorithm depends significantly on the simu-
lated automaton. On several examples from the previous chapter, the algorithm
can be made to run in linear time, on others the recognition problem is NP–
complete (for example the language of satisfiable CNF formulas). Here we will
describe the worst case time complexity for a simulation of an automaton M =
(Σ,Γ, δ, µ) on a picture P . We denote n = (cols(P)rows(P)),m = maxa∈Γµ(a)
and by r the maximal number of reductions for any input symbol.

First, let us estimate the maximal number of reductions per position. In a
reduction, each rewriting rule can be use at most once, and therefore there cannot
be more than 2|δ| distinct reductions. On the other hand, Γ can contain up to
m+ 1 symbols of distinct consecutive weights. Let us assume that for every non-
zero symbol s there are k rules that rewrite s to the symbol t with µ(t) = µ(s)−1.
Then there are km reductions constructed from a set of km rules. This implies

that for an arbitrary automaton there can be at least
(
|δ|
m

)m
possible reductions.

With r reductions per symbol, a tree of partial reductions for one position has
no more than rm nodes. When an extension of partial reduction is created, the
new partial reduction can become a compatible neighbor of all rm neighboring
partial reductions (which then have to be checked for possible extension by |δ|)

44

rules). This gives a rough upper bound on the time complexity of the first part
of the algorithm to be O(|δ|(rm)2).

The second part, solving a CSP, is NP-complete, which (probably) makes the
worst-case time complexity exponential in n.

The last part of the algorithm is a depth-first search of an oriented graph
that has at most mn vertices (each of the n reductions consists of at most m
rewritings) and of O(mn) edges (because a rewriting is only compared to the
rewritings that create and later destroy the 3-by-3 sub-picture matching the used
rule). Therefore, for one search, the time complexity is O(mn). This operation
might have to be done for all solutions of the CSP.

5.2 Learning

In this section we will explore some possibilities for creating a learning algo-
rithm for 2LCRA. The goal is to infer from sets of positive and negative samples
〈S+, S−〉, where S+, S− ∈ Σ∗,∗, a 2LCRAM = (Σ,Γ, δ, µ) such that S+ ⊆ L(M)
and S− ∩ L(M) = ∅.

The inferred automaton should be as simple as possible so as not to be over-
fitted. Consider a simple automaton MP that accepts a single picture P of size
(m,n) by applying, from the top left corner to the bottom right corner, the rules

γi−1,j−1 γi−1,j

γi,j−1 P (i, j)
→ γi−1,j−1 γi−1,j

γi,j−1 γi,j

for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, where γ0,0 = # and for all k ∈ {1, . . . ,m}, l ∈
{1, . . . , n}, γ0,l = >, γk,0 =` and γk,l is an auxiliary symbol with zero weight.
Union of such automata for each P ∈ S+ (meaning an automaton that nondeter-
ministically guesses P and simulatesMP) accepts all positive samples and rejects
all negative, but is obviously not a satisfactory result.

On the other hand, if we suitably throttle the possible power of the inferred
automaton, it will have to base its computation on a general principle hinted by
the examples. This limitation can be imposed by fixing the size of the working
alphabet to a small value k ≥ |Σ|.

Even for a small k, the number of possible automata is very big. As an
example, we can count the number of possible automata that

� have a fixed injective weight function and

� only accept pictures with more than one row and more than one column.

The only structure that is still variable is the set of rewriting rules. To count the
number of distinct rules we first consider all possible configurations of neighbors
of a field.

1. A field in one of the four corners has three arbitrary neighbors, so there are
4k3 corner configurations,

2. a field on one of the four borders has five neighbors, so we have 4k5 border
configurations and

3. all other fields have eight neighbors, resulting in another n8 configurations.

45

A valid rewriting rule can be assembled from any configuration of neighbors and
any pair of symbols from Γ (where the symbol with higher weight is rewritten to
the other one). This makes the number of possible rewriting rules

d =

(
k

2

)
(4k3 + 4k5 + k8)

From all these rules we can build 2d different sets to define 2d different automata.
For k = 2 (for example an automaton with two input symbols and no auxiliary
symbols) this number is 2416, for k = 3 (for example two input symbols and
one auxiliary symbol) it is 222923. Obviously, we need to make some further
simplifications in order to have a smaller search space.

First simplification lies in using rewriting rules in the cross format, which
reduces the number of neighbors to four. We also do not seek single rules, but
rule patterns

N1

N2 Nc N3

N4

→
N1

N2 s N3

N4

with lists of admissible symbols for each position (as outlined in Chapter 3).
To find automata defined by these patterns, we encode them in bit vectors of

fixed length and perform a randomized search among these vector representations.

5.2.1 Automaton representation

For easier handling, we represent an automatonMB = (Σ,Γ, δ, µ) by a bit vector
B = (b1, b2, . . . , bd) (where (∀i ∈ {1, . . . , d})bi ∈ {0, 1}) of some fixed length d
(which depends on how a conversion from vectors to automata is implemented).

For our search algorithm, we impose two conditions for the bit-vector repre-
sentations.

(Bit 1) If B = (1, 1, . . . , 1), then L(MB) = Σ∗,∗ (which implies S+ ⊆ L(MB)).

(Bit 2) For any B1 = (b1, b2, . . . , bd) and B2 = (c1, c2, . . . , cd),

if (∀i ∈ {1, . . . , d})bi ≤ ci, then L(MB1) ⊆ L(MB2).

There are many ways in which we can perform the conversion between au-
tomata and bit vectors. We want all the bit vectors to be of the same length, so
we use a fixed architecture of automata where

� Σ contains all symbols appearing in pictures from S+ and S−,

� Γ contains Σ and a fixed number of auxiliary symbols,

� δ is described by a fixed number (which is tied to the size of Γ) of rule
patterns and

� µ is fixed to be 1 for input symbols and 0 for auxiliary symbols.

46

Our definition of µ results in automata that can only perform one rewriting per
field.

We propose three different architectures of encoded automata. In all of them,
the complexity of the automata is regulated by a single input parameter k ∈ N.
Given k, we build implicit Σ, Γ and µ and define the number of rule patterns kp.
Each pattern pi is represented by di bits (bi1, . . . , b

i
di

). An automatonMB is then
represented by a concatenation of these patterns’ vectors:

B = (b1
1, . . . , b

1
d1
, b2

1, . . . , b
2
d2
, . . . , b

kp
1 , . . . , b

kp
dkp

)

The proposed architectures are outlined below.

(Arch 1) For a given k, Γ contains k zero-weight auxiliary symbols {s1, . . . , sk} and
each si is associated with a single pattern

pi =

N1

N2 Nc N3

N4

→
N1

N2 si N3

N4

where N1, N2, N3, N4 ∈ (Γ∪S), Nc ∈ Σ. For every pattern, we encode each
Ni, i ∈ {1, 2, 3, 4} in |Γ|+ 1 bits (bi0, . . . , b

i
|Γ|) so that

� bi0 = 1 =⇒ S ⊆ Ni, b
i
0 = 0 =⇒ S ∩Ni = ∅,

� (∀j ∈ {1, . . . , |Γ|}) bij = 1 ⇐⇒ γj ∈ Ni, where {γ1, . . . , γ|Γ|} = Γ.

Note that we use a single bit to represent a possibility of any sentinel — the
kind of the sentinel is always decided by its relative position in the pattern.

Similarly, we encode Nc in |Σ| bits (b1, . . . , b|Σ|) so that

(∀j ∈ {1, . . . , |Σ|})bj = 1 ⇐⇒ σj ∈ Nc, where {σ1, . . . , σ|Σ|} = Σ.

Every pattern is then represented by a concatenation of these five vectors.
One pattern is encoded in 4(|Γ| + 1) + |Σ| bits, which makes the length of
the representation of the automaton

d = k [4 (|Γ|+ 1) + |Σ|]
= k [4(|Σ|+ k + 1) + |Σ|]
= 4k2 + (5|Σ|+ 4)k.

(Arch 2) To obtain even simpler automata, we can reduce the auxiliary alphabet to
a single symbol z and have k patterns

N1

N2 Nc N3

N4

→
N1

N2 z N3

N4

which are encoded similarly as before. By this simplification, we can reduce
the length of an automaton representation to

d = k [4 (|Γ|+ 1) + |Σ|]
= k [4(|Σ|+ 1 + 1) + |Σ|]
= (5|Σ|+ 8)k.

47

(Arch 3) To use a different approach for the encoding, we can for the given k define
k|Σ| auxiliary symbols sσi where σ ∈ Σ, i ∈ {1, . . . , k} that are identified
by an input symbol and one of k categories. Again, there is a rule pattern
for each sσi, but now the center of the rule is specified:

pσi =

N1

N2 σ N3

N4

→
N1

N2 sσi N3

N4

Every set of admissible neighbors Ni is encoded by |Σ|+ k + 2 bits

(b0, b1, . . . , b|Σ|, c0, c1, . . . , ck) which define Ni in the following way.

� For sentinels we have b0 = 1 =⇒ S ⊆ Ni, b0 = 0 =⇒ S ∩Ni = ∅.
� For σl ∈ {σ1, . . . , σ|Σ|} = Σ we define σl ∈ Ni ⇐⇒ bl = 1 ∧ c0 = 1.

� For sσj ∈ Γ \ Σ, where σ = σl ∈ {σ1, . . . , σ|Σ|} = Σ, we define

sσj ∈ Ni ⇐⇒ bl = 1 ∧ cj = 1.

Informally, this means that a set of admissible neighbors is described by a
list of acceptable input symbols (or symbols rewritten from them) and a
list of acceptable categories. This approach performs well in practice, even
though it generates larger bit representations of automata.

We have k|Σ| patterns, each represented by 4(|Σ|+k+2) bits, so a complete
automaton is represented by

d = 4k|Σ|(|Σ|+ k + 2)

= 4k2 + 4|Σ|2k + 8k

bits.

Of course, many other possible architectures could be devised. Here we have only
listed some of the most straightforward concepts.

5.2.2 Automaton evaluation

When performing a local search we must evaluate automata in order to choose a
best specimen from a set of candidates.

The main measure of the quality of an automaton M is how well it accepts
pictures from S+ and rejects pictures from S−, which is expressed by a function

fs(M) = |S+ ∩ L(M)| − |S− ∩ L(M)|.
There are other aspects that we can measure:

� The simplicity of the automaton from the human point of view. For a
human, the rules are more comprehensible if the sets of admissible symbols
in the patterns contain complete sets of symbols (meaning the symbol in the
respective position is not important) or either very few symbols or almost
all of them (which gives the position a clearer meaning).

We rate every set of admissible symbols N that can only contain symbols
from some Na ⊆ Γ ∪ S by

48

fn(N) =


ca if N = Na

cb

(
|N |
|Na|

)2

if |Na|
2
≤ |N | ≤ |Na|

cb

(
|Na|−|N |
|Na|

)2

if |N | < |Na|
2

where ca, cb are constants subject to tuning. In our experiments, we used
the values ca = cb = 1.

The total rating fn(M) is then a sum of fn(N) of all sets N of admissible
symbols in all positions of all rule patterns.

� The simplicity of the automaton from the computer’s point of view. We
want the resulting automata to be as easy to simulate as possible, so we
factor in the time complexity of the hardest part of the simulation — solv-
ing the underlying CSP problem. For a picture P , we can estimate this
complexity (denoted by fc(P)) in two ways.

One possibility is to actually count the steps performed by the employed
CSP solving algorithm. The downside of this approach is that the estimate
very much depends on the used CSP solver.

The second possibility is to estimate an upper bound of the complexity
based on the counts of reductions that are produced by the recognition
algorithm in every position of P . Denoting by rij the number of reductions
in a position (i, j), there are

fc(P) =
∏

(i,j)∈I

rij

(where I = {1, . . . , rows(P)}×{1, . . . , cols(P)}) combinations of reductions
that the CSP solver can potentially explore. Obviously, this estimate is
usually somewhat exaggerated.

For an automaton M, we rate its simplicity by

fc(M) = −
∑

P∈S+∪S−

fc(P).

To compare automata according to these measures, we combine them in a
tuple

f(M) = (fs(M), fn(M), fc(M)),

which we sort by a lexicographical ordering.

5.2.3 Search

Now we can describe the search procedure itself.
We confine the search space to bit vectors B such that S+ ⊆ L(MB) (i.e. the

represented automata accept all positive samples). At the beginning we take the
vector (1, 1, . . . , 1), which must represent an automaton accepting Σ∗,∗ because
of the condition (Bit 1). Then we perform a series of steps in which we change
some elements of the vector to zero, thus reducing the power of the represented
automaton.

49

Evaluating an automaton is a relatively complicated operation (as it includes
simulation over all samples), so we aim to change more than one bit in one step
using as little effort as possible.

To do that, we represent a bit vector of length d by a pair (p, z) where p is a
permutation of d elements and 0 ≤ z ≤ d is an integer. This pair is interpreted
as a vector B(p, z) = (b1, . . . , bd) where bp(i) = 0 for i ≤ z and bp(i) = 0 for i > z.

Due to the condition (Bit 2) for the bit vectors, we have for a permutation p
the following inclusions.

L(MB(p,d)) ⊆ L(MB(p,d−1)) ⊆ L(MB(p,d−2)) ⊆ · · · ⊆ L(MB(p,0))

Because of that, we can define zp as an index of the least powerful automaton
that still accepts all pictures in S+, i.e. L(MB(p,i)) ⊇ S+ for all i ≤ zp and
L(MB(p,i)) + S+ for all i > zp. For a given permutation p, we can find zp by the
interval bisection method using at most log2 d steps consisting of simulating an
automaton over all positive picture samples.

In every step of the search algorithm, we have a current bit vector B = B(p, zp)
(except for the beginning, when we have B(p, 0)). We try to modify B by several
ways by changing p to some permutations p1, p2, . . . , pb (where b is a tunable
constant) using random permutations q1, q2, . . . , qb of (d− zp) elements:

pj(i) =

{
p(i), i ≤ zp
p(zp + q(i)), i > zp

In other words, we scramble the end of p that corresponds to ones in B(p, zp). For
all the new permutations pj we find zpj and evaluate the corresponding automata
MB(pj, zpj). If the best of these automata is an improvement over the current
MB, we take it as the new current automaton.

If the algorithm fails to improve the current automatonMB in bf consecutive
steps (bf being a tunable constant), we assume that a locally best result has been
reached. If this result satisfies L(MB) ∩ S− = ∅, we return it as the solution.
Otherwise the search is restarted with B = (1, . . . , 1).

5.2.4 Output Simplification

Due to the random nature of the search, the output rule sets usually seem need-
lessly complex and confusing for a human. To make them more readable, we can
try to simplify it by two kinds of changes:

� Replacing a set of admissible symbols in a pattern by a set of all symbols —
this symbolizes that a content of the respective field is in fact not important
to the rewriting (which occurs commonly in man-made automata).

� Removing symbols from a set of admissible symbols — if some symbols are
unnecessary, then it is obviously better not to include it and obtain as small
set as possible.

These changes can be made in any position in any pattern, but only if they
do not adversely affect the performance of the automaton. When we perform a

50

simplification of an automatonM, we must verify that the simplified automaton
M′ satisfies

L(M′) ⊇ (L(M) ∩ S+) ∧ (L(M′) ∩ S−) ⊆ L(M).

If the condition is not met, the particular simplification cannot be made.

5.2.5 Speedup

In the process of searching, the sample pictures need to be checked for acceptance
by many generated automata. These automata are very random, which means
that there is no guarantee that their simulation (especially the CSP-solving part)
will not take a long time.

We can make an assumption that the sought automaton is relatively simple to
simulate, i.e. the time complexity of the associated CSP is polynomial in the size
of the input picture. With this assumption we can set a polynomial time limit
for every computation of the employed CSP solver and if the limit is exceeded,
the computation concludes with a “not accepted” result for positive samples and
with a “not rejected” result for negative samples.

We can use a different approach by considering a deterministic variant of our
model.

Enforcing determinism requires re-addition of some sort of scanning strategy.
Here we take inspiration from 2OTA (see 1.2) to implement scanning of a picture
in diagonal lines {P (i, j) | i+j = t−1} for steps t from 1 to rows(P)+cols(P)−1.
A cycle of this model consists of finding the first diagonal line where a rewriting is
possible, performing all possible rewritings on that diagonal line in parallel (this
is possible when using rules in the cross format) and restarting.

In our case we also need an ordering of the rule patterns so that when more
patterns are matched at one position, one is deterministically selected.

This ordering leads to breaking the condition (Bit 2) for the bit representations
of all our architectures. For example, an automaton M can have the first rule
pattern such that it rewrites parts of a picture P to a symbol that is incompatible
with other rules and blocks the computation. In that case, P is rejected. However,
by changing some elements of the bit representation ofM to zero we can disable
that pattern altogether and enable rewriting of P to zero by the other patterns.

Despite this shortcoming, our experiments show that the search algorithm
still performs well using this deterministic variant. In this case the bisection
method, used in the search to find the least powerful automaton from a sequence
of automata, loses its consistency and effectively becomes a heuristic that finds
some weakened automaton, though possibly not the weakest one there is.

Another way we can reduce the complexity of the computation is to use cor-
rectness preservation. This property cannot be verified for an arbitrary automa-
ton, but we can assume that the sought automaton is correctness preserving.
With this assumption we can, for all generated automata, run computations over
positive samples using the fast recognition algorithm for CP2LCRA (see 2.2). If a
picture is not accepted using this algorithm, we assume that it is not accepted at
all. The usage of this algorithm causes, like in the case of determinism, breaking
of the condition (Bit 2) because here we also try to use the rewriting rules in
some fixed order.

51

The correctness preservation of any automaton is, however, not guaranteed,
so the negative samples have to be processed normally to ensure that there exist
no accepting computations. This disparity between processing of the positive
and of the negative samples is somewhat balanced by the fact that our search
procedure performs more computations over positive samples than over negative
samples.

5.2.6 Extension

We have focused on a class of very simple automata that perform at most one
rewriting in each tape field. In theory, a similar algorithm could be used to infer
arbitrarily powerful automata by using an architecture with different arrangement
of the weight function. For example, for a fixed number of auxiliary symbols k,
one could define the weight function to be µ(s) = k for all s ∈ Σ and µ(si) = i−1
for {s1, s2, . . . , sk} = Γ \ Σ. Then we could define rewriting rules using one rule
pattern per auxiliary symbol si

N1

N2 Nc N3

N4

→
N1

N2 si N3

N4

where N1, N2, N3, N4 ∈ Γ ∪ S and Nc ∈ Σ ∪ {s1, s2, . . . , si−1}.
With this setup, we can represent any 2LCRA M = (Σ′,Γ′, δ′, µ′) using the

following conversions.

� Different weighs of symbols in Σ′ can be simulated by rewriting input sym-
bols to some new auxiliary symbols that represent them while having the
desired weights.

� If there are several zero-weight symbols, we can add a rule that rewrites
them to a single zero-weight symbol. In order to do this, the original weights
of symbols in Γ′ have to be incremented by one.

� If more patterns are necessary to describe all the rules resulting in a symbol
s ∈ Γ′, we can replace s by a sufficiently large set of new symbols (which
are all treated as s in the other rules) and have each pattern result in a
different symbol from this set.

� Finally, we observe that any automaton (Σ,Γ, δ, µ) with a single zero-weight
symbol can be modified to use a weight function µ′′ such that

(∀s1, s2 ∈ Γ \ Σ)µ′′(s1) 6= µ′′(s2).

This µ′′ is induced by any topological ordering of a directed graph (Γ, E)
where E = {(s1, s2) | ∃N ∈ (Γ∪S)8, (s1, s2, N) ∈ δ}. This graph is acyclic,
so the ordering always exists.

Using a conversion to a bit-vector similar to (Arch 1), we obtain a representa-
tion that is lengthened by the bits that represent possibilities of auxiliary symbols

52

in the centers of the rules. Its length for a parameter k is

d = 4k2 + (5|Σ|+ 4)k +
k−1∑
i=0

i

= 4k2 + (5|Σ|+ 4)k +
k

2
(k − 1)

=
9

2
k2 + (5|Σ|+ 7

2
)k.

Apart from increasing the length of the bit representation, this architecture also
rapidly increases the number of possible reductions for one field. In the worst
case there can exist for every set of non-zero auxiliary symbols a reduction that
uses exactly the symbols from this set (and the zero), which gives us a total of
2k−1 distinct reductions.

Another way to increase the power of the algorithm is to consider intersections
of several inferred automata By an intersection of automataM1, . . .Mn we mean
an automatonMI such thatMI accepts a picture P if everyMj, j ∈ {1, . . . , n}
accepts P . We represent MI simply by the list of the intersected automata.

The proposed search algorithm only explores automata accepting all positive
samples, so by an intersection we get an automaton that also accepts all the
positive samples yet might reject more of the negative samples.

Using unlimited number of intersecting automata may lead to over-fitting so
we set a maximum number of them, denoted by m. With that we can implement
the following simple accumulator of automata.

At the beginning, the accumulator is empty. Every time the search algorithm
is about to restart, the inferred automaton (that rejects some of the negative
samples) is committed to the accumulator’s pool of automata. If the pool now
contains m + 1 items, one of them is removed so that the intersection of the
rest rejects the most negative samples. When every negative sample is rejected
by at least one automaton in the current pool, we declare the result to be an
intersection of all the pooled automata.

53

Chapter 6

Testing

In this chapter we present the results achieved with our implementation of the
learning algorithm. We tested both the speed of the algorithm and the quality
of the inferred automata. For the testing we used six basic picture languages we
describe below. All of them use a two-letter alphabet {a,b}.

L1 is the language of pictures where the letters are “sorted” in the sense that
whenever a position (i, j) in P ∈ L1 contains a, all positions (i′, j′), 1 ≤
i′ ≤ i, 1 ≤ j′ ≤ j also contain a.

a a a a a
a a a a b
a a a b b
a a b b b
a b b b b

a a b
a a b
a a b
b b b
b b b

b b b b b
b b b b b
b b b b b

(a) Positive examples of L1.

a a b
b a b
a a b
b b b

a a a b b
a a b b b
a a a b b
a b b b b
b b b b b

a b b b b
b b b b b
b b b b a

(b) Negative examples of L1.

L2 is the language of pictures with alternating horizontal stripes of both sym-
bols, i.e. for a picture P and all positions (i, j), 2 ≤ i ≤ rows(P), 2 ≤ j ≤
cols(P), we have P (i, j) = P (i, j − 1) and P (i, j) 6= P (i − 1, j) (and, of
course, P (1, 1) = P (1, 2) 6= P (2, 1)).

a a a a
b b b b
a a a a

a a a a
b b b b
a a a a
b b b b
a a a a

b b b
a a a

(a) Positive examples of L2.

b b b b b
a a a a a
b b b b b
a a a a a
a a a a a

a a b b b
b b a a a
a a b b b
b b a a a

a a a a
b b b b
a b a a
b b b b
a a a a

(b) Negative examples of L2.

L3 contains pictures where b’s form horizontal or vertical lines (of unit width)
that do not touch each other.

a a a a a
b b b b a
a a a a a
a a a a a

b a a b a
a a a b a
b b b a a
a a a a a
b b b b a

b b a a
a a b a
a a b a
a a b a

(a) Positive examples of L3.

a a a a b
b a b a b
a a a a b
b b b b a
b b b b a

b b b b b
a a a a b
a a a a b
b b b b a

b a a a
a a b a
a a b a
a b b a
a a a a

(b) Negative examples of L3.

54

L4 contains pictures with exactly one b in each row.

b a a a a
b a a a a
a a a b a
b a a a a

a b a
a a b
a a b
b a a

b a a a a
a a a a b
a b a a a
a a b a a
b a a a a

(a) Positive examples of L4.

b a a a
a b b a
b a a a
b a a a
a a a b

b a a a a
a a b a b
a b a a a
a b a a a
a a a b a

a a a a a
a a a a b
b a a a a
a a a b a

(b) Negative examples of L4.

L5 is the language of pictures with a path of b’s leading from the upper left
corner to the bottom right corner. These paths only turn right or down.

b a a a
b a a a
b b a a
a b a a
a b b b

b b a a a
a b b b a
a a a b a
a a a b b

b a a a a
b b b b b
a a a a b
a a a a b
a a a a b

(a) Positive examples of L5.

a a a a a
b a a a a
b a a a a
b b b b a
a a a b b

b a a a
b b a a
a a b b

b b b a a
a a b b b
a a a a b
a a a a a

(b) Negative examples of L5.

L6 contains pictures P such that cols(P) = 3 and the first column of P is equal
to the last column (i.e. P (i, 1) = P (i, 3) for all i, 1 ≤ i ≤ rows(P)).

a b a
b b b
a b a
b a b
a a a
a a a

a b a
a a a
b b b
b a b

a b a
a b a
b b b
a b a
a a a

(a) Positive examples of L6.

a b b
b b b
a a a
b b b
b b b

a a a
b b b
b b a
b a b
a b a
b b b

a b a
a a b
b b b
b b b

(b) Negative examples of L6.

In the following table we list the complexity parameters which we use for these
languages when utilizing the automaton architectures described in 5.2.1. k de-
notes the input parameter for each architecture and d denotes the length of the
respective bit vector representation.

Arch 1 Arch 2 Arch 3
k d k d k d

L1 1 18 1 18 1 40
L2 2 44 2 36 1 40
L3 3 78 3 54 2 96
L4 3 78 3 54 2 96
L5 3 78 3 54 3 168
L6 4 120 4 72 4 256

6.1 Setting the parameters

In this section, we focus on tuning of the variable aspects of the learning algorithm
in order to maximize its speed. For now, the only measure of the quality of the
algorithm is the average time of finding an arbitrary solution.

The parameters we try to optimize are

� the variant of the 2LCRA model (discussed in 5.2.5),

55

� the automaton architecture (discussed in 5.2.1) and

� the parameters of the search algorithm (discussed in 5.2.3) — the number of
generated modifications of the current automaton in each step (denoted by
b) and the number of unsuccessful consecutive steps allowed before forcing
a restart (denoted by bf).

We tune each of these aspects separately with a possibly incorrect assumption
that by changing one parameter, we do not dramatically change the impact of
the others.

The learning algorithm works in cycles. Each cycle terminates with a restart,
after which the search begins anew without retaining any information from the
previous cycles. Thus the search can be viewed as a sequence of independent
experiments, each one of which has some (small) constant probability of success,
meaning that the time of finding a result is a random variable with geometric
distribution.

This fact has two implications. The first is that if we want to estimate the
speed of the algorithm accurately, we need to average the times of many runs
because of the great variance of this distribution.

The other implication is that it is beneficial to run the algorithm in several
independent threads at once. By running m threads, we increase the chance of
success at any time m-fold, so the average time needed to find a solution is m
times shorter as a result.

To compare different settings of the algorithm, we randomly generated a train-
ing set of 50 positive and 50 negative samples for every test language. Then we
ran, one by one, all of the tested configurations of the algorithm on this set
in eight parallel threads for a fixed time t. We measured the performance by
counting the cycles in which a solution has been found.

In the first experiment, we compared the variations of the model of the au-
tomata used for recognition of the samples. We tested three approaches:

(M1) All samples are processed by an unmodified 2LCRA with unlimited compu-
tation time.

(M2) Positive samples are processed by a 2LCRA with the assumption that the
automaton is correctness preserving, and negative samples are processed
by the full 2LCRA recognition algorithm with its running time limited by a
polynomial p(mn) of the size of the input picture (m,n). In this experiment,
we set the limit as p(mn) = mn

√
mn.

(M3) The deterministic variant of 2LCRA is used for recognition of both positive
and negative samples.

For this comparison, we used the architecture (Arch 3) and fixed the search
parameters to b = bf = 4. The results are shown in the following table. For a
given language and a given model, the displayed value is the number of solutions
found in the time interval indicated by t. Obviously, a higher number means a
better performance.

56

L t M1 M2 M3
L1 10 s 15 50 423
L2 10 s 18 49 411
L3 100 s 3 18 80
L4 100 s 0 1 9
L5 100 s 1 2 20
L6 200 s 1 0 9

Even though the values show some variance in repeated runs, the dominance
of the deterministic model appears to be indisputable. Apparently, the determin-
isation of our model is instrumental in fast learning.

The second experiment compares the three architectures described in 5.2.1.
For this comparison we use the deterministic variant of our model and, as before,
we fix the search parameters to b = bf = 4.

The following table shows the results in the same form as the previous one,
i.e. each value is a number of found solutions in time t for the given language,
using the respective architecture.

L t Arch 1 Arch 2 Arch 3
L1 10 s 50 61 423
L2 10 s 52 23 411
L3 100 s 3 0 80
L4 100 s 2 1 9
L5 100 s 10 9 20
L6 200 s 1 3 9

We can see that the third architecture is clearly the most useful, at least for
the tested languages. This is despite the fact that this architecture generates
longer bit representations of automata, thus exponentially expanding the search
space. Conversely, the second architecture using the shortest bit representations
has the worst performance. This may be because it is usually harder to design
for a given language an automaton that uses only one auxiliary symbol rather
than a larger working alphabet.

In the final comparison, we try to find the ideal values of the parameters b, bf .
Here we use the deterministic variant of 2LCRA and the architecture (Arch 3).
The columns of the following tables correspond to different values of b and the
rows correspond to values of bf . Again, the values in the table record the number
of found solutions in time t for the respective combination of b and bf .

HHH
HHHbf

b
1 5 10 20 30 50

1 251 389 345 232 179 117
5 382 425 347 237 181 114

10 434 427 357 242 179 122
20 496 444 348 225 173 118
30 509 408 340 235 166 118
50 513 397 325 229 178 119

Language L1, t = 10 s

57

HH
HHHHbf

b
1 5 10 20 30 50

1 7 43 33 55 59 57
5 13 47 49 52 55 33

10 20 52 40 33 37 22
20 31 37 30 33 28 27
30 30 43 31 35 21 16
50 35 19 10 24 14 11
Language L3, t = 50 s

H
HHH

HHbf

b
1 5 10 20 30 50

1 1 11 26 29 36 36
5 1 20 37 35 33 30

10 7 34 24 28 25 25
20 21 29 21 32 26 14
30 30 24 19 14 17 23
50 38 25 11 13 10 11
Language L5, t = 100 s

There does not appear to be a single best combination of these parameters.
Indeed, the ideal setting might be different for each language. As a compromise,
we take the values b = 5, bf = 10.

In summary, we deem the following parameters to be the best choice for the
learning algorithm:

� The deterministic variant of our model,

� the architecture (Arch 3) and

� the search parameters b = 5 and bf = 10.

Note that we have arrived at this conclusion with the assumption that the
parameters can be tweaked separately, which might not be the case. There might
exist a better configuration that could not be discovered using our method.

6.2 Quality of the inferred automata

So far, we have only concerned ourselves with finding any solution, not inspecting
its quality. Using the parameters established in the previous section, we now test
the ability of our algorithm to produce robust, generalizing automata. Our testing
was done using the following procedure.

For each language L ∈ {L1, . . . , L6} we generated a test data set 〈S+, S−〉
of 1000 positive and 1000 negative samples of pictures of varying sizes (k, l) for
k, l ∈ {10, . . . , 50} (except for L6 where the width is fixed) and then we performed
10 measurements for each n ∈ {10, 20, 50, 100} consisting of

� generating a training set 〈S+
tr , S

−
tr〉, |S+

tr | = |S−tr | = n with pictures of sizes
(k, l) for k, l ∈ {5, . . . , 10},

58

� inferring an automaton M from 〈S+
tr , S

−
tr〉 and

� measuring its performance on 〈S+, S−〉 as

x =
|S+ ∩ L(M)| − |S− ∩ L(M)|

1000
.

The values of x range from −1 (indicating thatM accepts the complement of L)
to 1 (indicating that L(M) ≈ L).

From the ten measured values of x we computed their mean E(x) and standard
deviation σ. The following table displays the results in the format E(x)± σ.

HH
HHHHL

n
10 20 50 100

L1 0.973± 0.033 1.000± 0.000 1.000± 0.000 1.000± 0.000
L2 0.941± 0.090 1.000± 0.000 1.000± 0.000 1.000± 0.000
L3 0.898± 0.094 0.911± 0.062 0.955± 0.037 0.953± 0.044
L4 0.964± 0.032 0.999± 0.002 0.998± 0.005 1.000± 0.000
L5 0.909± 0.076 0.968± 0.046 0.998± 0.003 1.000± 0.000
L6 0.719± 0.273 0.804± 0.174 0.995± 0.015 0.998± 0.006

The results show that the inferred automata generally perform fairly well. By
limiting the possible complexity of the automata we allow the learning algorithm
to infer little else than the actual principle of the sampled languages.

In addition, we also include the following table of the average times of learning
of the respective automata. These times correspond to a single-thread computa-
tion, so the expected times are m times lower when running m threads at once
due to the aforementioned geometric distribution of the measurements. Specif-
ically, on our testing machine with eight logical processors, the expected values
are 8 times lower.

H
HHH

HHL
n

10 20 50 100

L1 0.045 s 0.075 s 0.193 s 0.391 s
L2 0.037 s 0.066 s 0.183 s 0.496 s
L3 0.628 s 2.285 s 5.126 s 10.764 s
L4 12.706 s 34.546 s 78.140 s 214.852 s
L5 3.189 s 15.507 s 71.781 s 45.225 s
L6 13.252 s 49.714 s 65.549 s 206.650 s

When divided by the number of logical cores of a modern CPU, these times
become quite bearable.

The results were achieved on a computer with Intel Core i7 2600k (4.25GHz)
processor and 8GB RAM running Microsoft Windows 8 x64 operating system.

6.3 Example outputs

The learning algorithm is designed to produce automata in a relatively compre-
hensible form of few rewriting rule patterns. The readability of the results is
further augmented by the simplification procedure described in 5.2.4.

59

Below we show two examples of automata inferred by our algorithm using
the deterministic model (M3) and the architecture (Arch 3) with k = 2. In both
cases, the training set contained 50 positive and 50 negative examples.

The first example is an automaton inferred from examples of L3. The au-
tomaton contains three rule patterns:

∗
∗ a ∗

∗
→

∗
∗ a1 ∗

∗
>, a1

∗ ∗ ∗
⊥, a1

→
>, a1

∗ b0 ∗
⊥, a1

∗
`, a1 ∗ a, a1

∗
→

∗
`, a1 b1 a, a1

∗

The stars denote sets of all applicable symbols for the respective positions ({a,b}
for the central positions and S∪{a,b, a1,b0,b1} elsewhere). The implicit weights
of the symbols are 1 for the input symbols a and b and 0 for the auxiliary symbols
a1, b0 and b1.

These patterns have a very clear interpretation — the second and the third
pattern facilitate rewriting of horizontal and vertical lines, respectively. Note that
the fourth pattern associated with the symbol a0 has been completely removed.
This often happens during the simplification phase, when all symbols are removed
from any set of admissible symbols in the pattern, rendering the pattern unusable.

The second example is an automaton learned from examples of L4. The
patterns are in the same format as above.

∗
`, a0 a a,b

∗
→

∗
`, a0 a0 a,b

∗
∗

a1,b1 a ∗
∗

→
∗

a1,b1 a1 ∗
∗

∗
`, a0 b ∗

∗
→

∗
`, a0 b1 ∗

∗
Again, the patterns have an obvious interpretation. In each row of an input
picture, the rules corresponding to the first pattern rewrite all a’s between the
left border and the first b to a0. The third pattern’s rules then rewrite this b to
b1 and the second pattern’s rules rewrite the following a’s to a1. If there is no b
in the whole row, the automaton fails to rewrite the last a. Conversely, if there
are two or more b’s in the same row, the second b is never rewritten and causes
the computation to fail.

The shown examples are similar to the manually created automata for the
respective languages, which makes them the best possible results. The imperfect
average performance of the inferred automata measured in the previous section
indicates that the outputs are not always so flawless, but they often are.

60

6.4 Inference of intersections

At the end of Chapter 5, we have outlined a technique for finding solutions in
the form of intersections of automata. We tested this method on the language of
permutations (described in 3.2), which can be defined as

LPERM = L4 ∩ LR
4 .

As such, it can be learned as an intersection of languages of two automata
with complexity limited by k = 2 (for architecture (Arch 3)).

With the same basic parameters as in the previous section (model (M3), ar-
chitecture (Arch 3), b = 5, bf = 10) we have performed ten measurements, where
in each measurement we have generated a set of 50 positive samples of size (5, 5)
and 50 negative samples of sizes (4, 5), (5, 4) and (5, 5), on which we have run
the learning algorithm with the complexity parameter k = 2 and the maximum
number of intersections set to m = 2. We measured the performance of the in-
ferred automata (denoted by x) on a test set containing 1000 positive samples
of size (20, 20) and 1000 negative samples of sizes (20, 19), (19, 20) and (20, 20),
using the same formula for x as in the previous section.

From all ten measurements we have computed the average performance and
the standard deviation, arriving at the values

E(x) = 0.98, σ = 0.05.

The average time of finding one solution was 7.79 seconds. Unlike the averages
in the previous section, this value is computed from the actual times needed to
find a solution using eight threads running in parallel.

The language LPERM can, in theory, be learned using a single automaton of
the architecture (Arch 3) with the complexity parameter k = 4. In our attempt
to do that, we have run the learning algorithm with similar training data as
before in eight threads for one hour, in which a solution has not been found. The
best result was an automaton rejecting 46 of 50 negative training samples, with
test performance x = 0.791. Clearly, the concept of intersections significantly
increases the ability of the algorithm to learn languages like LPERM.

6.5 Limitations

The introduced algorithm, in its present form, is unable to learn some more
complex picture languages in reasonable time. An example a of language that is
difficult to learn is the language of forests described in 3.4.

The automaton accepting this language uses only four relatively simple rule
patterns. However, the underlying concept of detecting a cycle in a graph is not
so simple. The rewriting rules form a compact package that works well as a whole,
and by changing or removing some rules, the rest ceases to function completely. It
is therefore hard to learn this automaton using a local search algorithm that tries
to find a solution through a sequence of minor improvements of one automaton.

This and other picture languages show us that there is certainly a room for
improvement in our learning algorithm. They also suggest a possible direction
for further research.

61

Conclusion

We had two main goals in this thesis. The first goal was to introduce a new model
of a two-dimensional restarting automaton suitable for learning. We proposed
a model called two-dimensional limited context restarting automaton, which is
a simplified version of the restarting tiling automaton. Surprisingly, our model
turned out to have the same power as the sgraffito automaton, which operates on a
wholly different principle. In addition, we have defined the correctness preserving
variant of our model which is equivalent to the deterministic sgraffito automaton.
In contrast with the sgraffito automaton, our model allows for a comparatively
easy and intuitive definition of many automata accepting commonly used picture
languages. It also provides an alternative approach for the study of the shared
class of accepted languages.

Because of the equivalence with sgraffito automata, the class of languages
accepted by our model has rather well defined properties and comparisons with
other classes of languages. An unsolved question is whether our model can be
as powerful as restarting tiling automata using some limited scanning strategy.
A second open question pertains the correctness preservation — it is yet to be
seen whether it is indeed an undecidable problem to verify this property for an
arbitrary automaton.

The second goal of this thesis was to present a learning algorithm for our
model. As expected, the problem of learning of picture languages has proven
itself to be a very challenging one. We have introduced a concise format for
representing limited subclasses of our model and then we presented a modification
of a local search algorithm suitable for learning thus represented automata. We
have implemented and tested this algorithm and we have found that it is capable
of learning some basic picture languages.

Our algorithm is not able to learn more complex picture languages in reason-
able time, but, being the first of its kind, it can perhaps serve as a basis for future
development in this unexplored field of study.

Overall, we can say that all of the goals outlined for this thesis were met in a
satisfactory way.

62

Bibliography

[1] M. Anselmo, D. Giammarresi, M. Madonia. A computational mod-
el for tiling recognizable two-dimensional languages. Theoretical Computer
Science Vol. 410-37, pp. 3520–3529, Elsevier, 2009.

[2] J. Barták. Recognition of picture languages. Master thesis, Faculty of
Mathematics and Physics, Charles University, Prague, 2006.

[3] R. Barták. Constraint Programming: In Pursuit of the Holy Grail. Pro-
ceedings of the Week of Doctoral Students (WDS99), Part IV, pp. 555-564,
MatFyzPress, 1999.

[4] S. Basovńık. Learning Restricted Restarting Automata using Genetic Al-
gorithm. Master thesis, Charles University, Faculty of Mathematics and
Physics, 2010.

[5] M. Blum, C. Hewitt. Automata on a two-dimensional tape. IEEE Sym-
posium on Switching and Automata Theory, pp. 155–160, 1967.

[6] A. Cherubini, M. Pradella. Picture Languages: from Wang tiles to 2D
grammars. Lecture Notes in Computer Science Vol. 5725, pp 13-46, Springer,
2009.

[7] P. Černo. Grammatical inference of lambda-confluent context rewriting
systems. Vol. 294 of books@ocg.at, pp. 85-100, Österreichische Computer
Gesellschaft, 2013

[8] D. Giammarresi. Exploring Tiling Recognizable Picture Languages to Find
Deterministic Subclasses. International Journal of Foundations of Computer
Science Vol. 22, No. 7, pp. 1519-1532, 2011.

[9] D. Giammarresi, A. Restivo. Recognizable picture languages. Interna-
tional Journal Pattern Recognition and Artificial Intelligence Vol. 6, No. 2
& 3, pp. 241-256, 1992.

[10] C. de la Higuera. Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press, 2010.

[11] K. Inoue, A. Nakamura. Some properties of two-dimensional on-line tes-
sellation acceptors. Information Sciences Vol. 13, pp. 95–121, Elsevier, 1977.

[12] P. Jančar, F. Mráz, M. Plátek, J. Vogel. Restarting automata.
Lecture Notes in Computer Science Vol. 965, pp 283-292, Springer, 1995.

63

[13] P. Jančar, F. Mráz, M. Plátek, J. Vogel. Different Types of Mono-
tonicity for Restarting Automata. Lecture Notes in Computer Science Vol.
1530, pp 343-354, Springer, 1998.

[14] F. Mráz, F. Otto. Extended Two-Way Ordered Restarting Automata
for Picture Languages. Lecture Notes in Computer Science Vol. 8370, pp
541-552, Springer, 2014.

[15] F. Mráz, F. Otto. Ordered Restarting Automata for Picture Languages.
Lecture Notes in Computer Science Vol. 8327, pp 431-442, Springer, 2014.

[16] F. Mráz, F. Otto, M. Plátek. Hierarchical Relaxations of the Correct-
ness Preserving Property for Restarting Automata. Lecture Notes in Com-
puter Science Vol. 4664, pp 230-241, Springer, 2007.

[17] D. Pr̊uša, F. Mráz. New Models for Recognition of Picture Languages:
Sgraffito and Restarting Tiling Automata. Research Reports of CMP, Czech
Technical University in Prague, No. 8, 2012.

[18] D. Pr̊uša, F. Mráz. Two-Dimensional Sgraffito Automata. Lecture Notes
in Computer Science Vol. 7410, pp 251-262, Springer, 2012

64

Appendix A

User Guide

In this chapter we provide a concise guide for using the attached program imple-
menting the learning algorithm. The application provides an interface for man-
aging picture sample sets, manual design of limited-context restarting automata,
simulation of these automata over input pictures, procedural generation of sam-
ple sets of several picture languages and, last but not least, learning of automata
from positive and negative samples through our proposed learning algorithm.

First we explain the installation of the program, then we describe the user
interface.

A.1 Installation

The target platform of the program is Microsoft Windows XP SP3 or higher. The
application requires Microsoft .NET Framework 4 to run. This framework can
be installed using the download tool supplied on the attached CD in the dotNET4

folder.
The main binary file of the application, 2LCRA.exe, can be found on the

attached CD in the folder program\bin. The program does not require any
installation, it can be run either directly from the CD or from a local copy of the
binary file.

The program’s C# source files can be found in the program\source folder.
The supplied project files are compatible with Microsoft Visual Studio 2010 or
newer. As the program is only a supplement of this thesis, we reduce the source
code documentation to the form of commentaries within the code.

A.2 Using the application

In this section we explain how to use the application itself. The graphical user
interface offers various controls, which are split into four tabs, and a log that
displays results of the performed operations. We now describe each of the four
tabs separately. At the very end we describe the format for storing the program’s
input data in files.

65

A.2.1 Pictures

This tab serves for managing training and test sets of picture examples for
learning as well as for inputting a single picture for an automaton simulation.

Selected picture In the box on the left, you can edit a single picture. Each
line in the box corresponds to one row in the picture, and alphanumeric
strings on each line separated by white spaces correspond to single symbols.
With the displayed picture you can, using the controls below, do one of the
following:

Run simulation simulates the automaton defined in the Automa-
ta tab over the selected picture. An appropriate recognition algorithm is
chosen according to the model selected in the left drop-down menu — the
general 2LCRA recognition algorithm described in 5.1, the algorithm for cor-
rectness preserving automata (2.2), or the deterministic simulation (5.2.5).
If the Selected picture box contains no input, the simulation is run on the
current training and test data sets. The result of the simulation is shown
in the log on the right.

C clears all symbols from the picture.

+P, +N adds the picture as a positive or as a negative sample to the
current data set (training or test).

Examples The boxes on the right display the positive and negative samples of
pictures that are contained in the data set selected below — either the
training set used for inference of automata or the test set used for verifying
their performance. Each box offers four operations:

-All removes all pictures from the respective collection.

66

-Sel removes the selected picture from the list.

Save writes the picture set in a selected file, using a text format de-
scribed later in A.2.5.

Load reads a set from a selected file using the same text format.

A.2.2 Automata

In this tab, you can manage automata and use them for simulation over pictures
defined in the Pictures tab. The automata inferred by the learning algorithm
are also displayed here.

Automata The lower left box contains a current list of automata. Using the
buttons below, you can add a new empty automaton to the list, remove
the selected automaton, or load an automaton from a selected file that
contains a definition in a format described below in A.2.5. You can also
run a simulation of the current automata over the selected picture in the
Pictures tab, using any of the three recognition algorithms. If there are
more automata on the list, the simulation results are merged using the
selected merge operation.

Selected automaton The lower right box displays the definition of the selected
automaton. An automaton is defined by a set of rewriting rules and a list of
zero-weight symbols (The alphabet and its weights are generated implicitly
from this definition). The rewriting rules are described by the displayed list

67

of rule patterns. This list can be modified using the pattern editor above or
by removing one or all patterns using the buttons below. The automaton
can be saved to a file using the format outlined in A.2.5.

Rule pattern In the upper box you can edit a selected rule pattern. The pattern
(in the sense explained in Chapter 3) consists of a 3-by-3 array of sets of
accepted symbols for each position and a resulting symbol. One set of
accepted symbols is defined using one of the following expressions.

* A star denotes any symbol of the working alphabet or a sentinel.

! An exclamation mark denotes an empty set (which renders the pat-
tern unusable).

S An alphanumeric string, interpreted as a name of a symbol, denotes
a set containing only this symbol. The hash sign (#) is a special name that
denotes any sentinel from S.

[S1,S2,...,SN] A list of symbol names in square brackets, separated
by commas (without white spaces), denotes a set of the listed symbols.

^expr A caret denotes a negation of the following expression. This
expression can be any of the above.

After defining a pattern, you can either add it as a new element of the list
of patterns or use it to update the selected pattern.

Note that the deterministic 2LCRA model uses rules in the cross format
(see 4.2.2), so the corner positions of the patterns are ignored during its
simulation.

68

A.2.3 Learning

In this tab you can generate examples of the predefined languages or launch the
learning algorithm.

Example generator The upper panel serves for generating sample sets of lan-
guages. Upon clicking the Generate button, the data set selected in the
Pictures tab (the training set or the test set) is populated by n positive
and n negative examples of the selected language, where n is specified by
the Count field. The Parameters field allows a text-based parametriza-
tion of the selected generator. The usual contents of this field is a string
“size X-Y”, where X is the minimal and Y is the maximal number of rows
and columns of every generated picture.

The program source allows for relatively simple addition of new language
generators. For reference, see the example class in the file

ExampleGenerator.cs.

Learning The lower box contains the controls of the learning algorithm. The
basic parameters of the algorithm include a selection of the used model
of automata (see 6.1), the architecture of automata (see 5.2.1) and the
complexity parameter k (see 5.2.1). Additional parameters can be found in
the drop-down menu:

AllowedFailures, StepWidth denote the parameters bf , b of the
search algorithm (see 5.2.3, 6.1),

69

StarWeight, ListWeight denote the parameters ca, cb of evaluation
of automata (see 5.2.2).

A time limit can be imposed on every computation by setting the desired
time, in seconds, in the corresponding field. After reaching the limit, the
computation is stopped regardless of its result. A zero value means no time
limit.

The algorithm can be run in the following three modes.

SingleSolutionSearch is the standard mode, in which all threads
(whose number is determined automatically) try to learn an automaton
from the training data set defined in the Pictures tab. When a solution is
found, all threads are terminated and the inferred automaton is displayed
in the Automata tab. Additionally, in this mode you can set a maximum
intersection size parameter, which, if greater than one, causes the learning
algorithm to look for a solution in the form of an intersection of automata
(as described in 5.2.6).

SuccessCount is a mode where the computation does not stop upon
finding a solution, but runs until it is explicitly canceled or the time limit is
reached. The result of this mode is the count of the found solutions. This
mode was used in Section 6.1.

MultipleDataTesting is a mode where the training data are split in n
equally large parts (n is specified by the Training data split field) and the
learning algorithm is run on all of them, one thread per part. The inferred
automata are then tested on the whole test set defined in the Pictures tab.
The result is an average performance of the automata on the test data. This
mode was used in Section 6.2.

The results of the learning are displayed in the log on the right side of the
program window.

70

A.2.4 Computation

In this tab, you can explore the last simulation of an automaton performed over
a single picture. This tab is activated automatically after running each simula-
tion except for the case of rejecting a picture by a nondeterministic 2LCRA. By
selecting a step of the computation in the upper right box you can visualize the
state of the picture after performing all rewritings up to the selected step.

71

A.2.5 Input file format

Here we describe the used formats of files containing definitions of automata and
sets of pictures. In both of these formats, a single symbol is represented by an
alphanumeric string of arbitrary length.

Picture files

The picture files are used for storing sets of pictures defined in the Pictures tab.
One file contains a list of pictures, separated by semicolons. Each picture’s rows
are defined by consecutive lines. Each line contains a list of symbols (one for each
column) separated by spaces.

An example follows.

a b a b

a b a b

a a a a;

a b a

a a a;

a b

b a

a a

b a

a ab a a a a ba

a ab a a a ba a

a a ab a ba a a

a a ab a ba a a

a a a bab ab a a

a ba ba a a ab ab

ba a a a a a a;

Automata files

These files are used for storing definitions used in the Automata tab. One file
contains a definition of a single automaton, given by a list of zero-weight symbols
and a list of rewriting rule patterns.

The first line of the file contains a label “zeros:” followed by a space and a
list of zero symbols separated by spaces, terminated with a semicolon.

Following that is a list of patterns separated by semicolons. Each pattern
consists of eleven atoms separated by white spaces:

E11 E12 E13

E21 E22 E23

E31 E32 E33 -> R

EIJ are expressions defining the pattern, written in the format described in
A.2.2. R is the resulting symbol of the pattern.

An example definition of an automaton accepting squares from {a}n,n follows.

72

zeros: 1 d u;

#

a *

* * -> 1;

1 * *

* a *

* * * -> 1;

* * *

[u,1] a *

* [u,1] * -> u;

* [d,1] *

* a [d,1]

* * * -> d;

73

	Introduction
	Existing Models
	Basic definitions
	Tiling systems and the class REC
	Two-dimensional sgraffito automaton
	Two-dimensional restarting tiling automaton

	Two-dimensional limited context restarting automaton
	Formal definition
	Correctness Preservation

	Language Examples
	Square picture
	Permutation
	The First Column Equals Some Column
	Forest
	Single Object
	SAT

	2LCRA properties
	Closure properties
	Rule format
	Tile format
	Cross format
	Domino format

	Comparison with other models
	Recognizable picture languages
	Two-dimensional sgraffito automaton
	Two-dimensional restarting tiling automaton

	Recognition and learning algorithms
	Recognition
	Enumerating feasible reductions
	Choosing compatible reductions
	Finding a valid computation
	Using patterns
	Time complexity

	Learning
	Automaton representation
	Automaton evaluation
	Search
	Output Simplification
	Speedup
	Extension

	Testing
	Setting the parameters
	Quality of the inferred automata
	Example outputs
	Inference of intersections
	Limitations

	Conclusion
	Bibliography
	User Guide
	Installation
	Using the application
	Pictures
	Automata
	Learning
	Computation
	Input file format

