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Abstract

This thesis examines the method of forcing in set theory and focuses on aspects
that are set aside in the usual presentations or applications of forcing. It is
shown that forcing can be formalized in Peano arithmetic (PA) and that consis-
tency results obtained by forcing are provable in PA. Two ways are presented
of overcoming the assumption of the existence of a countable transitive model.
The thesis also studies forcing as a method giving rise to interpretations between
theories. A notion of bi-interpretability is defined and a method of forcing over a
non-standard model of ZFC is developed in order to argue that ZFC and ZF are
not bi-interpretable.

Abstrakt

V předložené práci zkoumáme forcing jako metodu teorie množin a zaměřu-
jeme se na okolnosti, které jsou při obvyklých výkladech a aplikaćıch forcingu
ponechávány stranou. Ukážeme, že forcing lze formalizovat v Peanově aritmetice
(PA) a že výsledky o relativńıch konzistenćıch teoríı źıskané pomoćı forcingu jsou
dokazatelné v PA. Předvedeme dva zp̊usoby, jak je možné překonat předpoklad
existence spočetného tranzitivńıho modelu. Studujeme také forcing jako metodu,
na jej́ımž základě je možné konstruovat interpretace teoríı v teoríıch jiných.
Zavád́ıme pojem bi-interpretace a budujeme metodu forcingu přes nestandardńı
model ZFC, pomoćı ńıž ukážeme, že teorie ZFC a ZF nejsou bi-interpretovatelné.
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Introduction

The method of forcing was first used by Paul Cohen in 1963 to prove indepen-
dence of the axiom of choice and the continuum hypothesis from ZF. Since then,
forcing developed into a general technique for obtaining independence and con-
sistency results in set theory. Usually, forcing is seen as a method that allows us
to construct a model M[G], called generic extension, from a countable transitive
model M of ZFC – ground model – using a generic filter G.

This thesis studies forcing as a general method and focuses on aspects that
are set aside when forcing is used to obtain particular results.

First, the assumption of existence of a countable transitive model is useful
for intuition; nevertheless, this assumption is problematic as existence of such a
model is independent from ZFC. We introduce two ways how to overcome this
problem – forcing in the theory ZFCU and forcing over the universe. These two
ways correspond to the two sections of Chapter 4.

Second, in various presentations of forcing, it is usually remarked that forcing
can be formalized in Peano arithmetic (PA). In Section 4.1, we try to give details
of the nature of such a formalization. In Section 4.1.2, we prove that independence
results obtained by forcing are provable in PA.

Third, we show that forcing can be understood as a method giving rise to
interpretations of extensions of ZFC in (extensions of) ZFC.

In the last chapter, we present an unusual application of forcing. We define the
notion of bi-interpretation and show that ZFC and ZF are not bi-interpretable. In
the proof, we use forcing over a non-standard model of ZFC to produce a certain
automorphism. Unlike in the usual applications of forcing, this automorphism is
not an element of the generic extension, it is an external object. Our method of
using forcing over a non-standard model to construct such an object is, as far as
we know, original.
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Chapter 1

Preliminaries

1.1 Peano arithmetic

We assume the reader is familiar with Peano arithmetic (PA) and its ability to
formalize, in certain cases, syntax. We do not go into detail in this respect but
simply recall that PA is able to work with finite sequences and axiomatizations
of recursive theories, can express notions of proof in a theory and consistency of
a theory and allows us to use proofs by induction on the complexity of formulas.
We often say that a metamathematical statement is formalizable in PA and mean
by it that there is a natural, straightforward formalization, usually the one just
translating the syntactical terms to their formal equivalents. Likewise, we may
write PA ⊢ φ, where φ is some metamathematical statement, meaning that PA
proves the formalization of φ.

1.2 Omitting types theorem

The omitting types theorem will be used in Chapter 3. Let us recall that an n-type
(i.e. a type in n variables) Γ of a theory T is called isolated if there is a formula
ϕ(x1, . . . , xn) such that T∪{∃x̄ϕ(x̄)} is consistent and T ⊢ ϕ(x̄) → ψ(x̄), for every
ψ ∈ Γ. ϕ(x1, . . . , xn) is called an isolating formula for Γ. If Γ is not isolated, it is
called non-isolated. The next theorem is one of the classical theorems of model
theory; a proof of the following version can be found in Marker’s book [7, p. 125].

Theorem 1 (Omitting Types Theorem). Let L be a countable language, T an
L-theory and Γ a non-isolated n-type. Then, there is a countable M � T omitting
Γ.

Corollary 2. Let L be a countable language, T an L-theory and Γ an n-type. If
Γ is realized in every model of T , then Γ is isolated.
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1.3 Some set theoretical definitions

Most of these definitions are well known and we present them mainly to introduce
or recall the notation.

Definition 3 (The cumulative hierarchy and ranks). By transfinite recursion, we
define Vα for each α ∈ Ord by:

1. V0 = ∅,

2. Vα+1 = P(Vα),

3. Vλ =
⋃

α<λ Vα if λ is a limit ordinal.

rk(x) denotes the rank of x, i.e. the least α such that x ∈ Vα+1.

Definition 4 (Relativization). Let C be a class, ϕ an ∈-formula. The relativiza-
tion ϕC of ϕ to C is defined by induction on the complexity of ϕ:

• (x = y)C = (x = y),

• (x ∈ y)C = (x ∈ y),

• relativization commutes with logical connectives,

• (∃xϕ)C = (∃x ∈ C)ϕC,

• (∀xϕ)C = (∀x ∈ C)ϕC.

For any model M of ZFC and any class C of M, a formula ϕ(x1, . . . , xn) is
called absolute for C if M satisfies

(∀x1, . . . , xn ∈ C)(ϕ(x1, . . . , xn) ↔ ϕC(x1, . . . , xn)).

Definition 5 (Gödel operations). By Gödel operations we mean a collection of
the following operations G1–G10:
G1(x, y) = {x, y}
G2(x, y) = x× y
G3(x, y) = {(u, v);u ∈ x ∧ v ∈ y ∧ u ∈ v}
G4(x, y) = x \ y
G5(x, y) = x ∩ y
G6(x) =

⋃

x
G7(x) = dom(x)
G8(x) = {(u, v); (v, u) ∈ x}
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G9(x) = {(u, v, w); (u,w, v) ∈ x}
G10(x) = {(u, v, w); (v, w, u) ∈ x}

cl(x) denotes the closure of x under Gödel operations.

Definition 6. The class OD(A) of all ordinal-definable sets over A is defined as
follows:

OD(A) =
⋃

α∈Ord

cl({Vβ; β < α} ∪ {A} ∪ A).

Definition 7. The class HOD(A) of all hereditarily ordinal-definable sets over A
is defined as follows: HOD(A) = {x; trcl({x}) ⊆ OD(A)}, where trcl denotes the
transitive closure.

1.4 Reflection principle

We state the well-known reflection principle for ZFC, sketch the proof and show
that it can be formalized inside PA. There are many possible formulations of
this principle, our formulation asserts the existence of a countable transitive set
for which certain formulas are absolute. To ensure the countability, we use the
axiom of choice.

Theorem 8. Let φ1, . . . , φn be sentences in the language of ZFC.
ZFC ⊢ ∃A(|A| = ω ∧ “A is transitive” ∧ φ1 ↔ φA1 ∧ . . . ∧ φn ↔ φAn )

Proof. We first form a list of formulas φ1, . . . , φn, φn+1, . . . , φm that contains ax-
iom of extensionality and is subformula-closed, i.e. if α is in the list, then every
subformula of α is in the list. By induction on the complexity of formulas, it can
be proved that, for any class C, the following are equivalent:

1. φ1, . . . , φn, φn+1, . . . , φm are absolute for C.

2. If φi is of the form ∃xφj(x, ȳ), then
∀ȳ ∈ C(∃xφj(x, ȳ) → (∃x ∈ C)φj(x, ȳ)) holds.

For each 1 ≤ i ≤ m, we define a function Fi : Ord → Ord. If φi is
not of the form ∃xφj(x, ȳ) for any 1 ≤ j ≤ m, then Fi(α) = 0. If there is
1 ≤ j ≤ m such that φi is ∃xφj(x, ȳ), then Fi(α) is the least β such that
for any ȳ ∈ Vα if ∃xφj(x, ȳ) holds, then (∃x ∈ Vβ)φj(x, ȳ). Let β0 = ω,
βi+1 = max{βi + 1, F1(βi), . . . , Fm(βi)}, β = sup{βi; i ∈ ω}. We claim that
φ1, . . . , φn, φn+1, . . . , φm are absolute for Vβ, as the construction of β guarantees
that condition 2 is satisfied for C = Vβ. It holds that β > ω, so |Vβ| > ω.
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To finish the proof, we fix a well-order ⊳ of Vβ and make use of some “witness-
choosing” functions once more. Let x0 be the first element of Vβ in the sense of ⊳.
Let li be the number of free variables occuring in φi. Gi : Vli

β → Vβ is defined as
follows. If φi is of the form ∃xφj(x, ȳ) for some 1 ≤ j ≤ m and (∃x ∈ Vβ)φj(x, ȳ),
then Gi(ȳ) is the first such x in the sense of ⊳. (We include the case of li = 0,
for which Gi is a nullary function picking one element of Vβ.) If φi is not of the
form ∃xφj(x, ȳ) or it is ¬(∃x ∈ Vβ)φj(x, ȳ), then Gi(ȳ) = x0. We denote by A′

the closure of Vω under G1, . . . , Gm. Then φ1, . . . , φn, φn+1, . . . , φm are absolute
for A′, as they satisfy the condition 2 from above. Also, |A′| = ω, since A′ is the
closure of a countable set under finitely many functions.
The list φ1, . . . , φn, φn+1, . . . , φm contains axiom of extensionality, so it holds that
(∀x, y ∈ A′)((∀z ∈ A′)(z ∈ x ↔ z ∈ y) → x = y). Thus we can apply
the Mostowski collapse theorem to A′ to obtain a transitive set A and an ∈-
isomorphism f from A′ to A. So |A| = |A′| = ω, A is transitive. For each φi(x̄)
from the list and x1, . . . , xn ∈ A′, it holds φA

′

i (x1, . . . , xn) ↔ φAi (f(x1), . . . , f(xn)).
Therefore, if φi is a sentence, it holds that φAi ↔ φA

′

i ↔ φi.

The reflection principle is not a theorem of ZFC. It is a metamathematical
statement claiming that for any finite list of ZFC-sentences a certain formula χ
(dependent of the list of sentences) is provable in ZFC, so it makes sense to say
that the reflection principle is formalizable and its formalization is provable in
PA. Clearly, the reflection principle can be formalized in PA, as PA allows us to
talk about finite lists of ZFC-formulas and is able to construct the formula χ from
the list. This formalization is provable in PA because all the metamathematical
constructions in the proof (like forming the subformula closed list) can be done
inside PA, and the rest of the proof just takes place in ZFC.

Corollary 9. Let T be a theory extending ZFC, φ1, . . . , φn axioms of T in the
language of ZFC. Then

T ⊢ ∃A(|A| = ω ∧ “A is transitive” ∧ φA1 ∧ . . . ∧ φAn ).

For an arithmetically axiomatizable theory T , this corollary is formalizable
and its formalization provable in PA from the same reasons as in the case of the
reflection principle.
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Chapter 2

Extensions of ZFC

We now define the extensions ZFCU and ZFCU+ψ of ZFC and prove some of their
basic properties. These extensions will be used later in Section 4.1. The language
of ZFCU and ZFCU+ψ contains one extra constant symbol U .

Definition 10. The theory ZFCU has the following axioms:

• all axioms of ZFC,

• “U is transitive and countable”,

• ϕU , for every axiom ϕ of ZFC.

Let ψ be a formula in the language of ZFC. Then ZFCU+ψ is ZFCU + {ψU}.

Note that if ZFC is consistent, then ZFCU is consistent as well. It is an easy
consequence of the reflection principle.

The next lemma tells us that we can really view U as a model of ZFC. It also
allows us to prove Corollary 12 without having to work syntactically with proofs
and their transformations.

Lemma 11. Let V be a model of ZFCU , V the universe of V and ∈V the real-
ization of ∈ in V. Let U = {x ∈ V ; V � x ∈ U} and ∈U be the restiction of ∈V

to U. Then W =
〈

U,∈U
〉

is a model of ZFC. Moreover, for any x1, . . . , xn ∈ U

and any ∈-formula ϕ it holds that W � ϕ[x1, . . . , xn] iff V � ϕU [x1, . . . , xn].

Proof. Note that W is a substructure of V with respect to the language of ZFC.
By induction on the complexity of the formula ϕ, we show that W � ϕ[x1, . . . , xn]
iff V � ϕU [x1, . . . , xn]. If ϕ is atomic, it follows from the definition of relativization
and the fact that W is a substructure. The case for logical connectives is easy
since relativization commutes with logical connectives. So let ϕ be ∃xψ(x), for
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brevity we suppress the mention of parameters x1, . . . , xn. Then W � ∃xψ(x) iff
∃u ∈ U(W � ψ(u)) iff ∃u(V � u ∈ U ∧ ψU(u)) iff V � (∃xψ(x))U . The second
equivalence holds because of the induction hypothesis and the definition of U.

Corollary 12. Let ZFC ⊢ ϕ, then ZFCU ⊢ ϕU .

Proof. Let ϕ be provable in ZFC. Using the notation of Lemma 11, we want to
show that ϕU holds in V. But, by Lemma 11, W � ϕ and so V � ϕU .

Theorem 13.

1. ZFCU is a conservative extension of ZFC.

2. ZFCU+ψ is a conservative extension of ZFC + ψ.

Proof. For 1, let ϕ be a formula in the language of ZFC such that ZFCU ⊢ ϕ.
The proof of ϕ contains only finitely many axioms from ZFCU \ ZFC. Let us
denote these axioms by α1, . . . , αn and suppose α1 is the axiom “U is transitive
and countable” (we may always add an axiom to the beginning of the proof).
Then ZFC ⊢ (α1 ∧ . . . ∧ αn) → ϕ.1 Each αi, for 2 ≤ i ≤ n, is of the form βUi ,
where βi is an axiom of ZFC. Therefore

ZFC ⊢ (|U | = ω ∧ “U is transitive” ∧ βU2 ∧ . . . ∧ βUn ) → ϕ.

ϕ is in the language of ZFC, so it does not contain the symbol U . For a
variable A not occurring in ϕ,

ZFC ⊢ ∃A(|A| = ω ∧ “A is transitive” ∧ βA2 ∧ . . . ∧ βAn ) → ϕ.

By Corollary 9,

ZFC ⊢ ∃A(|A| = ω ∧ “A is transitive” ∧ βA2 ∧ . . . ∧ βAn ),

so
ZFC ⊢ ϕ.

The proof of 2 is similar.

However, ZFCU+ψ is not in general a conservative extension of ZFC. Let ψ be
a Σ1-sentence independent of ZFC. ZFC ⊢ ∀x((x is transitive ∧ ψx) → ψ) since
ψ is Σ1. So ZFCU+ψ ⊢ (U is transitive ∧ ψU) → ψ, but “U is transitive” and
ψU are axioms of ZFCU+ψ. Thus ZFCU+ψ proves ψ, the sentence independent of
ZFC.

Moreover, note that Theorem 13 is formalizable and provable in PA. The
reason is that the proof uses only Corollary 9 (that itself can be formalized and
proved in PA) and simple manipulations with finite sequences of formulas.

1Formally, this is not correct; ZFC can not prove formulas containing the symbol U . But we
may always extend the language of a theory with new symbols without changing the axioms.
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Corollary 14.

1. Con(ZFC) → Con(ZFCU),

2. Con(ZFC + ψ) → Con(ZFCU+ψ),

3. PA ⊢ Con(ZFC) → Con(ZFCU),

4. PA ⊢ Con(ZFC + ψ) → Con(ZFCU+ψ).
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Chapter 3

Interpretation

There are many possible definitions of interpretation, differing in allowing pa-
rameters or function symbols, translating equality, allowing more formulas with
different number of free variables defining the domain of interpretation, etc. We
first define the type of translation and interpretation we need for our purposes
and comment later on other possible definitions.

In the next definitions, S, T are theories, L(S), L(T ) their languages. For the
sake of simplicity, we suppose that L(S) does not contain function and constant
symbols, yet the definitions can be easily generalized to allow them as well. Also,
to avoid mentioning free variables in the axioms of S and T , we suppose both
theories are axiomatized by sentences.

Definition 15 (Translation). Let L(S), L(T ) be as above. A translation τ from
L(S) to L(T ) specifies formulas δ(x), ε(x, y) of L(T ) and assigns to every n-ary
relation symbol R of L(S) a formula ϕR(x1, . . . , xn) of L(T ).
For every formula ψ in L(S) the translation ψτ is defined inductively:

• R(x1, . . . , xn)
τ is ϕR(x1, . . . , xn),

• (x = y)τ is ε(x, y),

• translation commutes with logical connectives,

• (∃xψ)τ is ∃x(δ(x) ∧ ψτ ),

• (∀xψ)τ is ∀x(δ(x) → ψτ ).

Definition 16 (Interpretation). Let S, T , L(S), L(T ) be as above. A translation
τ from L(S) to L(T ) is an interpretation of S in T if the following are provable
in T :

• ∃xδ(x),
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• ∀x(δ(x) → ε(x, x)),

• ∀x, y(δ(x) ∧ δ(y) → (ε(x, y) → ε(y, x))),

• ∀x, y, z(δ(x) ∧ δ(y) ∧ δ(z) → (ε(x, y) ∧ ε(y, z) → ε(x, z))),

• ∀x̄, ȳ(δ(x1) ∧ δ(y1) ∧ . . . ∧ δ(xn) ∧ δ(yn) ∧ ε(x1, y1) ∧ . . . ∧ ε(xn, yn) →
(ϕR(x1, . . . , xn) ↔ ϕR(y1, . . . , yn))), for every R from L(S) with appropriate
arity,

• ψτ , for every axiom ψ of S.

We say that S is interpretable in T , writing S ≤ T , if there exists some inter-
pretation τ of S in T . We may write S ≤τ T to indicate that S is interpretable
in T via the translation τ .

From a model-theoretical point of view, the interpretation τ gives us a uniform
way how to construct a model N of S from a model M of T . The relation defined
by ε is a congruence with respect to ϕR on the nonempty set defined in M by
δ. Therefore we may factorize the set defined by δ by the relation ε to get the
universe of N . The realization of a symbol R is given by ϕR. The fact that
translations of all axioms of S hold in M implies that N is a model of S.

Definition 17 (Translation with finitely many parameters). The definition of
translation with finitely many parametes is the same as the definition of transla-
tion without parameters, except that we allow finitely many extra free variables
p1, . . . , pk to appear in any of the formulas δ, ε, ϕR. We denote such a translation
τ [p1, . . . , pk].

If ϕ is a formula, then its translation under τ [p1, . . . , pk] is ϕτ [p1,...,pk]. Note that
p1, . . . , pk appear in the translation as free variables. Thus we write ϕτ (p1, . . . , pk)
instead of ϕτ [p1,...,pk].

For the concept of interpretation with finitely many parameters, different
definitions can be found throughout the literature. We present two definitions –
the first one follows the definition in Friedman’s article [3], the second approach
appears in the book by Hájek and Pudlák [4].

Definition 18. Let S, T , L(S), L(T ) be as above. A translation τ [p1, . . . , pk]
from L(S) to L(T ) is a model-theoretical interpretation of S in T if for
every model M � T there exist c1, . . . , ck ∈ M such that the following formulas
are satisfied in M:

• ∃xδ(x, c̄),
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• ∀x(δ(x, c̄) → ε(x, x, c̄)),

• ∀x, y(δ(x, c̄) ∧ δ(y, c̄) → (ε(x, y, c̄) → ε(y, x, c̄))),

• ∀x, y, z(δ(x, c̄) ∧ δ(y, c̄) ∧ δ(z, c̄) → (ε(x, y, c̄) ∧ ε(y, z, c̄) → ε(x, z, c̄))),

• ∀x̄, ȳ(δ(x1, c̄)∧δ(y1, c̄)∧. . .∧δ(xn, c̄)∧δ(yn, c̄)∧ε(x1, y1, c̄)∧. . .∧ε(xn, yn, c̄) →
(ϕR(x1, . . . , xn, c̄) ↔ ϕR(y1, . . . , yn, c̄))), for every R from L(S) with appro-
priate arity,

• ψτ (c̄), for every axiom ψ of S.

Definition 19. Let S, T , L(S), L(T ) be as above. A translation τ [p1, . . . , pk]
from L(S) to L(T ) is a syntactical interpretation of S in T if there exists an
L(T )-formula α(x1, . . . , xk) such that T proves the following:

• ∃s̄α(s̄),

• α(s̄) → (∃xδ(x, s̄)),

• α(s̄) → (∀x(δ(x, s̄) → ε(x, x, s̄))),

• α(s̄) → (∀x, y(δ(x, s̄) ∧ δ(y, s̄) → (ε(x, y, s̄) → ε(y, x, s̄)))),

• α(s̄) → (∀x, y, z(δ(x, s̄)∧δ(y, s̄)∧δ(z, s̄) → (ε(x, y, s̄)∧ε(y, z, s̄) → ε(x, z, s̄)))),

• α(s̄) → (∀x̄, ȳ(δ(x1, s̄)∧ δ(y1, s̄)∧ . . .∧ δ(xn, s̄)∧ δ(yn, s̄)∧ ε(x1, y1, s̄)∧ . . .∧
ε(xn, yn, s̄) → (ϕR(x1, . . . , xn, s̄) ↔ ϕR(y1, . . . , yn, s̄)))), for every R from
L(S) with appropriate arity,

• α(s̄) → ψτ (s̄), for every axiom ψ of S.

Theorem 20. Let S, T , τ [p1, . . . , pk] be as above. If T is complete and in a count-
able language, then the model-theoretical definition and the syntactical definition
of interpretation with finitely many parameters are equivalent.

Proof. Clearly, syntactical interpretation implies model-theoretical one, as for
any model M of T we may choose as parameters c1, . . . , ck any k-tuple satisfying
α(x1, . . . , xn).

For the other direction, suppose that τ [p1, . . . , pk] is a model-theoretical inter-
pretation. To show that it is a syntactical interpretation as well, we have to find
the formula α(x1, . . . , xn). This will be done using the Omitting Types Theorem.
The model-theoretical definition requires certain formulas to be satisfied by the
chosen parameters. Let us denote the set of these formulas by Γ. Then Γ is a k-
type realized in every model, and, by Corollary 2, Γ is isolated. Let α(x1, . . . , xk)
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be the isolating formula. Then T ∪ {∃x̄α(x̄)} is consistent. As T is complete, we
have, in fact, T ⊢ ∃x̄α(x̄). Also, α(x1, . . . , xk) implies in T all the formulas of Γ.
So T proves all the formulas that Definition 19 requires it to.

We demanded T to be in a countable language because of the restriction of the
Omitting Types Theorem. But all the theories we use are in a countable language
anyway. The restriction to complete theories seems more serious. Note that we
used the completeness of T in the proof just once, to prove that T ⊢ ∃x̄α(x̄).
But even with an incomplete T it may often happen that ∃x̄α(x̄) is provable. In
fact, this will be the case with the interpretations in the next chapter – there, the
isolating formula α(x) will be “x is generic”.

Let us now comment on possible generalizations and restrictions of the defi-
nition of interpretation.

Instead of the formula δ(x), we could take finitely many formulas δ1, . . . , δn,
where each of these formulas has different number of free variables. This gen-
eralizes the way in which the interpretation determines the new universe. The
new universe (or what becomes universe after we perform the factorization) may
consist of tuples of mixed lengths. Of course, we have to allow finitely many
formulas instead of just one also in the case of ε(x, y) and ϕR(x̄). Instead of one
formula ε(x, y), we need a different formula for every pair of lenghts of tuples
from the universe and in the case of ϕR(x̄) we need formulas for all combinations
of lenghts. Such an interpretation is called multidimensional.

As we have mentioned above, another possible generalization is to allow func-
tion symbols in L(S). This would require of the translation to assign to every
n-ary function symbol its translation – a formula with n+ 1 free variables. This
translation must provably act like a function on the set defined by δ(x) and ε has
to be a congruence with respect to it.

Sometimes, the symbol = is not allowed to be translated. In this case ε(x, y)
is always x = y. Such an interpretation is said to have absolute equality.
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Chapter 4

Forcing

In this chapter, we present two main approaches to forcing – forcing over a count-
able transitive model and forcing over the universe. We show that forcing con-
struction is formalizable in PA and can be looked at as an interpretation.

4.1 Forcing over a countable transitive model

4.1.1 Definitions and basic forcing theorems

In the naive version of this approach, one works within a countable transitive
model M of ZFC. The naivety lies in the fact that one can not prove inside ZFC
that such a model exists. We overcome this difficulty by working inside ZFCU .
However, by Theorem 13, ZFCU can not prove existence of such a model either.
In other words – ZFCU does not know there exists a countable transitive model
of ZFC, yet we know there always is one, namely the constant U .

Before we start with a presentation of the forcing technique, let us comment
on two issues.

First, most of the work will take place “inside U” or “in the sense of U”. By
this expression we mean that we work in U viewed as a model of ZFC, or in
other words, all of our work is relativized to U . So, if ϕ(x) is a formula of ZFC
describing some property, we say that y has this property in the sense of U iff
y ∈ U and ϕU(y) holds. Similarly, if ϕ(x) is a formula defining a new constant C
in ZFC, we write CU for the unique object satisfying the formula ϕU(x), i.e. CU

is the constant C in the sense of U.
Second, we often use the fact that some formulas are absolute for U . It is a

well-known fact that, for a transitive class, all ∆0-formulas are absolute. More-
over, notions defined by recursion using only absolute notions are itself absolute
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for transitive models of ZFC.1

In the rest of this section, we work in ZFCU . As we have remarked above,
most of the work is done in the sense of U . The only crucial place where we step
outside of U is, as we will see, when we choose a generic. The following definitions
and theorems closely follow the presentation of forcing in Kunen’s book [6]. The
difference is the general setup – Kunen uses the naive approach, we work in ZFCU .

Definition 21 (Forcing notion). A forcing notion is a triple 〈P,≤,1〉 ∈ U , where
≤ partially orders P and 1 is the largest element of this ordering. Elements of P

are called forcing conditions. We say that p, q ∈ P are compatible, writing p ‖ q,if
(∃r ∈ P)(r ≤ p ∧ r ≤ q). Otherwise, they are incompatible, p ⊥ q.

We often write just P instead of 〈P,≤,1〉.

Definition 22 (Dense set). A set D ⊆ P is P-dense if for every p ∈ P there
exists d ∈ D such that d ≤ p.
D is P-dense below p0 if (∀p ∈ P)(p ≤ p0 → (∃d ∈ D)(d ≤ p)).

If P is clear from the context, we write just dense instead of P-dense. Note that
we defined forcing notion to belong to U . Also, by absoluteness, ≤ partially orders
P in the sense of U and 1 is the largest element in the sense of U . Compatibility
and density are absolute as well, thus all of our definitions so far have been in
the sense of U .

Definition 23 (Generic). Let P be a forcing notion. G is a P-generic if G is a
filter on P and for every P-dense D ∈ U it holds that G ∩D 6= ∅.

Again, we often write just generic instead of P-generic. Let G be a generic,
p ∈ G. Note that if D ∈ U is dense below p, then also D ∩ G 6= ∅.

Lemma 24. For any forcing notion P and p0 ∈ P there exists G which is a
P-generic and p0 ∈ G.

Proof. U is countable, so we may consider an at most countable enumeration
D1, D2, D3, . . . of all dense sets from U . We start with p0 and form a sequence
(pn)n∈ω, such that p0 ≥ p1 ≥ p2 . . . and pn ∈ Dn, for n ≥ 1. This is enabled by
the density of each Dn. We set G to be the filter generated by {pn;n ∈ ω}.

Definition 25. By induction on rank, we define the notion of P-name. τ is a
P-name if τ is a relation, τ ∈ U and

∀〈π, p〉 ∈ τ(π is a P-name and p ∈ P).

We write UP for the class of all P-names.

1The exact formulation and its proof can be found in [6] as Theorem 5.6.
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Note that once again, we defined names to belong to U , and, by absoluteness,
names may be viewed as defined in the sense of U .

Definition 26. Let P be a forcing notion, x ∈ U . By induction on rank, we
define the canonical P-name x̌ of x by x̌ = {〈y̌,1〉; y ∈ x}.

Definition 27. Let P be a forcing notion and G a P-generic. Then the G-value
τG for a P-name τ is defined as follows:

τG = {πG;∃p ∈ G(〈π, p〉 ∈ τ)}.

Moreover, we define U [G] = {τG; τ ∈ UP}. U [G] is called the G-generic
extension of U .

We may define, in the sense of U , the name γ = {〈p̌, p〉; p ∈ P}. Then for any
generic G, γG = G. This implies G ∈ U [G]. The goal is to show that U [G] is
a model of ZFC, i.e. all axioms of ZFC hold relativized to U [G]. To do so, we
define a forcing relation and prove basic forcing theorems.

Definition 28. Let P be a forcing notion, p ∈ P, τ1, . . . , τn P-names. The forcing
relation 

∗ is defined for all ZFC-formulas by induction on complexity as follows:

(a) By induction on pairs of ranks under the canonical well-ordering,

p 
∗ τ1 = τ2 if

(i) for all 〈π1, s1〉 ∈ τ1

{q ≤ p; q ≤ s1 → ∃〈π2, s2〉 ∈ τ2(q ≤ s2 ∧ q 
∗ π1 = π2)}

is dense below p, and

(ii) for all 〈π2, s2〉 ∈ τ2

{q ≤ p; q ≤ s2 → ∃〈π1, s1〉 ∈ τ1(q ≤ s1 ∧ q 
∗ π1 = π2)}

is dense below p.

(b) p 
∗ τ1 ∈ τ2 if

{q;∃〈π, s〉 ∈ τ2(q ≤ s ∧ q 
∗ π = τ1)}

is dense below p.

(c) p 
∗ φ(τ1, . . . , τn) ∧ ψ(τ1, . . . , τn) if

p 
∗ φ(τ1, . . . , τn) and p 

∗ ψ(τ1, . . . , τn).
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(d) p 
∗ ¬φ(τ1, . . . , τn) if there is no q ≤ p such that q 

∗ φ(τ1, . . . , τn).

(e) p 
∗ ∃xφ(x, τ1, . . . , τn) if

{r;∃σ ∈ UP(r 
∗ φ(σ, τ1, . . . , τn))}

is dense below p.

The nature of this definition deserves some comments. First of all, we did not,
in fact, define a new relation 

∗ in ZFCU – it would have to be a relation between
forcing conditions from P and formulas, which, formally, makes no sense. Never-
theless, we can look at the Definition 28 as defining for each formula φ(x1, . . . , xn)
a relation Fφ so that Fφ(τ1, . . . , τn,P, p) is equivalent to p 

∗ φ(τ1, . . . , τn). Thus
the induction on the complexity of formulas takes place in the metatheory. There-
fore, formally, the proof of the next theorem uses metamathematical induction
as well. We have to keep this fact in mind for the later comments on formalizing
the forcing method in PA.

Also, note that in the clauses (a)–(d) all of the quantifiers are bound by an
element of U . Only in the clause (e) we have ∃σ ∈ UP, but UP is a subclass of U ;
hence, by absoluteness, Definition 28 is in the sense of U . For some p ∈ P and
ϕ(x), let us define the class C = {τ ; τ ∈ UP∧p 

∗ ϕ(τ)}. Then C is a class in the
sense of U . Similarly, for any τ ∈ UP and ϕ(x), the set D = {p; p ∈ P∧p 

∗ ϕ(τ)}
is a set in the sense of U . This is important; as we often define dense sets in a
similar way, this fact allows us to conclude that they belong to U and therefore
have nonempty intersections with the generic.

Lemma 29. Let P be a forcing notion, G a generic, p ∈ P. Then for any formula
ϕ the following holds:

((p 
∗ ϕ) ∧ (r ≤ p)) → r 

∗ ϕ.

Proof. By induction on the complexity of ϕ. For atomic formulas we use the fact
that if a set is dense below p, then it is also dense below any r ≤ p. The induction
step for the logical connectives is obvious. The case for ∃ is similar to the case
for atomic formulas.

Theorem 30. Let P be a forcing notion, G a P-generic, τ1, . . . , τn P-names and
φ(x1, . . . , xn) a ZFC-formula. Then the following holds:

(1) If p 
∗ φ(τ1, . . . , τn) and p ∈ G, then φ(τ1G, . . . , τnG)U [G].

(2) If φ(τ1G, . . . , τnG)U [G], then ∃p ∈ G(p 
∗ φ(τ1, . . . , τn)).

Proof. By metamathematical induction on the complexity of φ.
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(a) Let φ be of the form x1 = x2. The proof proceeds by induction on pairs of
ranks under the cannonical well-ordering.
For (1), assume p 

∗ τ1 = τ2 and p ∈ G. We show that τ1G ⊂ τ2G and
τ2G ⊂ τ1G, concluding τ1G = τ2G. Fix a ∈ τ1G. There is some 〈π1, s1〉 ∈ τ1
such that a = π1G and s1 ∈ G. Fix some r ∈ G such that r ≤ p and r ≤ s1.
By Definition 28,

{q ≤ p; q ≤ s1 → ∃〈π2, s2〉 ∈ τ2(q ≤ s2 ∧ q 
∗ π1 = π2)}

is dense below p and therefore also dense below r. Fix t belonging to this
set such that t ≤ r, t ∈ G. As t ≤ r ≤ s1, it holds that ∃〈π2, s2〉 ∈ τ2
(t ≤ s2 ∧ t 

∗ π1 = π2). Fix one such 〈π2, s2〉. t ∈ G and t ≤ s2 imply
s2 ∈ G and π2G ∈ τ2G. We have t 

∗ π1 = π2 and t ∈ G; thus, by induction
hypothesis, a = π1G = π2G. Therefore a ∈ τ2G, showing τ1G ⊂ τ2G. The
case of τ2G ⊂ τ1G is similar.

To prove (2), we use a density argument. Assume τ1G = τ2G. We construct
a set D and show it is a dense set. D consists of all r ∈ P such that one of
the following holds:

(a) r 
∗ τ1 = τ2,

(b) ∃〈π1, s1〉 ∈ τ1 such that

r ≤ s1 ∧ (∀〈π2, s2〉 ∈ τ2)(∀q ∈ P)[(q ≤ s2 ∧ q 
∗ π1 = π2) → q ⊥ r],

(c) ∃〈π2, s2〉 ∈ τ2 such that

r ≤ s2 ∧ (∀〈π1, s1〉 ∈ τ1)(∀q ∈ P)[(q ≤ s1 ∧ q 
∗ π1 = π2) → q ⊥ r].

The conditions (b) and (c) were chosen so that they prevent any r ∈ G from
satisfying them. For contradiction, suppose r ∈ G and fix 〈π1, s1〉 satisfying
the condition (b). As r ≤ s1, it holds that s1 ∈ G, so π1G ∈ τ1G = τ2G.
Let us then fix 〈π2, s2〉 ∈ τ2 with s2 ∈ G and π1G = π2G. By induction
hypothesis, there is t ∈ G with t 

∗ π1 = π2. We fix q ∈ G such that q ≤ t
and q ≤ s2. By Lemma 29, it follows that q 

∗ π1 = π2. By (b) we have
q ⊥ r. This is a contradiction as both q, r ∈ G. The case for the condition
(c) is similar.

Now, if D is dense, then there exists r ∈ G ∩D such that r 
∗ τ1 = τ2, so

(2) holds.

To check the density of D, fix p ∈ P. If p 
∗ τ1 = τ2, then p ∈ D and we are

done. If not, then one of the conditions (i), (ii) from Definition 28 is not
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satisfied. Let us analyze the case when (i) fails, the other case is similar.
Fix 〈π1, s1〉 ∈ τ1 for which

{q ≤ p; q ≤ s1 → ∃〈π2, s2〉 ∈ τ2(q ≤ s2 ∧ q 
∗ π1 = π2)}

is not dense below p. Further, fix r ≤ p such that

∀q ≤ r[q ≤ s1 ∧ (∀〈π2, s2〉 ∈ τ2)¬(q ≤ s2 ∧ q 
∗ π1 = π2)].

Now, it can be easily checked that r satisfies the condition (b) for the fixed
〈π1, s1〉, so r ∈ D.

(b) Let φ be of the form x1 ∈ x2.
We assume p 

∗ τ1 ∈ τ2 and p ∈ G. By (b) of Definition 28, the set

{q;∃〈π, s〉 ∈ τ2(q ≤ s ∧ q 
∗ π = τ1)}

is dense below p. Therefore we may fix q ∈ G and 〈π, s〉 ∈ τ2 so that q ≤ s
and q 

∗ π = τ1. Then πG ∈ τ2G and, by induction hypothesis, πG = τ1G.
Thus τ1G ∈ τ2G and (1) is proved.

For (2), assume τ1G ∈ τ2G. We need to find some p ∈ G such that

{q;∃〈π, s〉 ∈ τ2(q ≤ s ∧ q 
∗ π = τ1)}

is dense below p. Fix 〈π, s〉 ∈ τ2 such that s ∈ G and πG = τ1G. By
induction hypothesis there is r ∈ G such that r 

∗ π = τ1. Fix p ∈ G so
that p ≤ s and p ≤ r. It is easy to check that p is the forcing condition we
have been looking for as for every t ≤ p it holds that t ≤ s and t 

∗ π = τ1
(because t ≤ r and r 

∗ π = τ1).

(c) The case for ∧ is just easy checking of definitions.

(d) The induction step for negation.
For (1), assume p ∈ G and p 

∗ ¬φ(τ1, . . . , τn). We want to show that
¬φ(τ1G, . . . , τnG)U [G] holds. Suppose for contradiction φ(τ1G, . . . , τnG)U [G].
By induction hypothesis, there is q ∈ G with q 

∗ φ(τ1, . . . , τn). By
choosing r ∈ G so that r ≤ q and r ≤ p, we reach contradiction with
p 

∗ ¬φ(τ1, . . . , τn).

For (2), assume ¬φ(τ1G, . . . , τnG)U [G]. We construct the set of all conditions
that already decide φ, i.e.

D = {p ∈ P; p 
∗ φ(τ1, . . . , τn) ∨ p 

∗ ¬φ(τ1, . . . , τn)}.

D is dense by Definition 28 and belongs to U . Fix p ∈ G ∪ D. p 
∗

φ(τ1, . . . , τn) would, by induction hypothesis, imply φ(τ1G, . . . , τnG)U [G],
contradicting our assumption. Thus p 

∗ ¬φ(τ1, . . . , τn) and we are done.
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(e) The induction step for ∃.
For (1), assume p ∈ G and p 

∗ ∃xφ(x, τ1, . . . , τn). Then the set

{r;∃σ ∈ UP(r 
∗ φ(σ, τ1, . . . , τn))}

is dense below p and belongs to U . Thus we may fix some r ∈ G and σ ∈ UP

such that r 
∗ φ(σ, τ1, . . . , τn). Then, by induction hypothesis, it holds that

φ(σG, τ1G, . . . , τnG)U [G] and σG ∈ U [G]. By the definition of relativization,
we have (∃xφ(x, τ1G, . . . , τnG))U [G].

For (2), assume (∃xφ(x, τ1G, . . . , τnG))U [G]. Fix some σ ∈ UP such that
φ(σG, τ1G, . . . , τnG)U [G]. By induction hypothesis, there is p ∈ G such that
p 

∗ φ(σ, τ1, . . . , τn). Therefore r 
∗ φ(σ, τ1, . . . , τn) for every r ≤ p. So, by

Definition 28, p 
∗ ∃xφ(x, τ1, . . . , τn), and we are done.

As we have noted above, it is not formally correct to use the symbol 
∗

in ZFCU -formulas. However, for any ZFC-formula φ it is possible to rewrite
Theorem 30 in a formally correct way. Thus, there is a formula α, provable in
ZFCU , claiming that Theorem 30 holds for atomic formulas. As ZFCU ⊢ α, it
holds that PA ⊢ “ZFCU proves α”. Likewise, for any formula φ there is a formula
αφ claiming that Theorem 30 holds for φ. As before, ZFCU ⊢ αφ for any φ, so
PA ⊢ “ZFCU proves αφ” for any φ. To say that Theorem 30 is formalizable in
PA we need a bit more, namely that PA ⊢ “ZFCU proves αφ for any formula φ”.
To argue that this holds, observe that the function mapping φ to αφ is recursive
and that the metamathematical induction in the proof above can be performed
inside PA.

Definition 31. Let P be a forcing notion, p ∈ P, φ(x1, . . . , xn) a ZFC-formula,
τ1, . . . , τn P-names. The forcing relation  is defined as follows: p  φ(τ1, . . . , τn)
if

∀G[(G is a P-generic ∧ p ∈ G) → φ(τ1G, . . . , τnG)U [G]].

This definition is not in the sense of U . It quantifies over all generics and it is
often the case that a generic does not belong to U . As with 

∗, the forcing relation
 is not formally a relation of ZFCU . In this case we can view p  φ(τ1, . . . , τn)
just as a shortcut for ∀G[(G is P-generic ∧ p ∈ G) → φ(τ1G, . . . , τnG)U [G]].

The next theorem shows that forcing relations 
∗ and  are in fact equivalent.

Theorem 32. Let P be a forcing notion, φ(x1, . . . , xn) a ZFC-formula, τ1, . . . , τn
P-names, G a P-generic. Then

24



1. ∀p ∈ P(p  φ(τ1, . . . , τn) ↔ p 
∗ φ(τ1, . . . , τn)).

2. φ(τ1G, . . . , τnG)U [G] ↔ ∃p ∈ G(p  φ(τ1, . . . , τn)).

Proof. The second statement follows immediately from the first one and Theorem
30. As for the first statement, the implication from right to left is immediate from
Theorem 30. We prove the other implication.

First, we argue that to conclude p 
∗ φ(τ1, . . . , τn) it suffices to show that

D = {r; r 
∗ φ(τ1, . . . , τn)} is dense below p. This follows, by induction on the

complexity of φ, from Definition 28 and the fact that if D is dense below p and
for each d ∈ D there is Hd dense below d, then

⋃

d∈DHd is dense below p.
So suppose, for contradiction, that D = {r; r 

∗ φ(τ1, . . . , τn)} is not dense
below p. Fix q ≤ p such that ¬(∃r ≤ q)(r ∈ D). By Definition 28, we have
q 

∗ ¬φ(τ1, . . . , τn), and so q  ¬φ(τ1, . . . , τn). Fix some generic G such that
q ∈ G. By definition of , we have ¬φ(τ1G, . . . , τnG)U [G]. But q ≤ p implies
p ∈ G, and as we assume p  φ(τ1, . . . , τn), we reach contradiction by deducing
φ(τ1G, . . . , τnG)U [G].

This theorem is formalizable and provable in PA. We used metamathematical
induction on the complexity of formulas in the second paragraph of the proof
above, but we can perform this induction in PA. The rest of the proof takes
place in ZFCU using only Theorem 30, that is itself provable in PA, as we noted
above.

Theorem 33. Let P be a forcing notion and G be a P-generic. Then U [G]
satisfies ZFC, i.e. φU [G] holds for every axiom φ of ZFC.

Proof.

• Extensionality: It is immediate from the definition that U [G] is transitive,
therefore extensionality holds.

• Foundation: Foundation holds relativized to any class or set.

• Pairing: Let x, y ∈ U [G] have names τ, σ respectively. Then {〈τ,1〉, 〈σ,1〉}
is the name of their pair in the sense of U [G].

• Separation: Let φ(a, b, x̄) be a formula, σ, τ̄ be names. We want to verify
that

{x ∈ σG;φ(x, σG, τ̄G)U [G]} belongs to U [G].

We construct a name for this set:

{〈π, p〉;π ∈ dom(σ) ∧ p ∈ P ∧ p  (π ∈ σ ∧ φ(π, σ, τ̄))}.
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• Union: We show that for any x ∈ U [G] there exists y ∈ U [G] such that
(
⋃

x ⊆ y)U [G]. This is sufficient, since we may use separation in the sense
of U [G]. Let x = τG, we set π =

⋃

dom(τ). If a ∈ τG and b ∈ a, then
b = σG for some 〈σ, p〉, where p ∈ G and 〈σ, p〉 ∈

⋃

dom(τ). Therefore
b ∈ πG, and πG is the y we look for.

• Power set: Let x ∈ U [G]. We want to show that there exists y ∈ U [G]
such that (∀a ∈ U [G])(a ⊆ x → a ∈ y). Let x = τG. We set P = {σ ∈
UP; dom(σ) ⊆ dom(τ)} and π = {〈σ,1〉;σ ∈ P}. Fix any a ∈ U [G] such
that a ⊆ τG. We show that a ∈ πG, thus concluding the proof. Let a = µG.
We set ϑ = {〈σ, p〉;σ ∈ dom(τ)∧p  σ ∈ µ}. Note that ϑ ∈ P , so ϑG ∈ πG.
To finish the argument, we show that ϑG = µG. Let b ∈ ϑG. Then b = σG

for some 〈σ, p〉 ∈ ϑ, p ∈ G. Since p  σ ∈ µ, by Theorem 32 we have
σG ∈ µG. Thus ϑG ⊆ µG. Let b ∈ µG. Since µG ⊆ τG, there exists
σ ∈ dom(τ) such that b = σG. By Theorem 32, there is a p ∈ G such that
p  σ ∈ µ. So 〈σ, p〉 ∈ ϑ and σG ∈ ϑG. This implies µG ⊆ ϑG.

• Infinity: It holds, since ω̌G = ω ∈ U [G].

• Replacement: Let φ(x, y) be a formula. Again, we suppress mentioning
of any possible parameters in φ for the sake of brevity. Suppose we have
(∀x∃!y(φ(x, y)))U [G]. We want to show that for every x ∈ U [G] there is
y ∈ U [G] such that

((∀a ∈ x)(∃b ∈ y)(φ(a, b)))U [G].

Fix x, and let x = τG. We define

P = {σ ∈ UP; (∃π ∈ dom(τ))(∃p ∈ P)(p  φ(π, σ)))}.

P is a class in the sense of U . We change the definition a little to make
sure we get a set. For given π, p, a name σ gets to P ′ iff p  φ(π, σ) and,
moreover, there is no µ with a smaller rank such that p  φ(π, µ). We define
ϑ = {〈σ,1〉;σ ∈ P ′} and show that ϑG is the y we look for. Let πG ∈ τG.
Then there is some a ∈ U [G] such that φ(πG, a)

U [G] holds. Let a = σG;
by Theorem 32, there is p ∈ G with p  φ(π, σ). Therefore there exists
σ′ ∈ P ′ such that p  φ(π, σ′). So it holds σ′

G
∈ ϑG and φ(σ′

G
, ϑG)U [G].

This concludes the proof.

• Choice: Instead of the axiom of choice, we work with an equivalent state-
ment – for every x we may find some α ∈ Ord such that there exists a
function f with dom(f) = α and rng(f) ⊇ x. Let x = τG ∈ U [G]. By
the axiom of choice in the sense of U , we may enumerate dom(τ) by some
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ordinal α. So dom(τ) = {πβ; β < α}. By a construction similar to the
one we used to prove the axiom of pairing, we may construct for any two
names σ1, σ2 a name 〈〈σ1, σ2〉〉 such that 〈〈σ1, σ2〉〉G = 〈σ1G, σ2G〉. Let
T = {〈〈β̌, πβ〉〉; β < α} and ϑ = {〈t,1〉; t ∈ T}. It is easy to see that ϑG is
the function we look for.

Like all the theorems above and from the same reasons, Theorem 33 can be
formalized and proved in PA.

4.1.2 Formalization of forcing in Peano arithmetic

As we have noted above, the forcing costruction can be formalized in PA. The
next theorem shows that PA also proves the usual consistency results.

Theorem 34. Let ϕ be a ZFC-sentence and let ZFCU prove that there exists a
forcing notion P and a generic G such that ϕU [G] holds. Then PA ⊢ Con(ZFC) →
Con(ZFC + ϕ).

Proof. Let us work in PA. Let α1(v̄1), . . . , αn(v̄n) be a proof in the theory ZFC+ϕ.
We want to show that

ZFCU ⊢ (∃P,G)(∀x̄1, . . . , x̄n ∈ U [G])(α1(x̄1)
U [G] ∧ . . . ∧ αn(v̄x)

U [G]).

By writing P, G we indicate, as usual, that P is a forcing notion, G a generic.
We did drop this supposition above for brevity.

Let us fix P, G as in the assumption of this theorem. If αi is an axiom of ZFC,
its relativization to U [G] holds by Theorem 33. If αi is ϕ, then its relativization
holds by the assumption of this theorem.

Let αi be a logical axiom2. If it is a propositional axiom, then αU [G] is an axiom
as well, since the relativization commutes with logical connectives. The language
of ZFC does not contain function symbols, so the logical axiom of specification
has the form φ(y) → ∃xφ(x). We want to show that the formula φ(y)U [G] →
((∃x ∈ U [G])φ(x)U [G]) is satisfied by any element y of U [G], which is obvious.

Finaly, let αi be deduced by modus ponens or the rule of generalization from
formulas earlier on the list. Generalization allows us to deduce from φ(x) → ψ
the formula ∃xφ(x) → ψ. So suppose φ(x)U [G] → ψU [G] is satisfied by all elements
x of U [G], then (∃x ∈ U [G])φ(x)U [G] → ψU [G] holds. The case for modus ponens
is obvious.

2The version of a predicate calculus we use for this proof can be found in [8].
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Let us suppose ¬Con(ZFC + ϕ); we want to conclude ¬Con(ZFC). Fix a
proof α1, . . . , αn in ZFC + ϕ of some contradiction; e.g. let αn be ∃x(x 6= x).
Then ZFCU ⊢ (∃P,G)(∃x ∈ U [G])(x 6= x). So we have ¬Con(ZFCU), and, by
Corollary 14, we get ¬Con(ZFC).

4.1.3 Forcing as interpretation

Theorem 35. Let ϕ be a sentence. Suppose that for every model of ZFCU there
is a forcing notion P and a P-generic G, such that ϕ holds in U [G]. Then there
exists a model-theoretical intepretation of the theory ZFC + ϕ in ZFCU .

Proof. As we have seen, ZFCU can define U [G] from given P and G. Let us,
for now, write explicitly U [G]

P
to indicate the dependency on P. Let δ(x,P,G)

be the formula x ∈ U [G]
P
. Let further ε(x, y) be x = y and ϕ∈(x, y) be x ∈ y.

We want to show that the parametric translation τ [p1, p2] given by the formulas
δ(x, p1, p2), ε(x, y) and ϕ∈(x, y) is a model-theoretical interpretation of ZFC + ϕ
in ZFCU . Let M be a model of ZFCU and let P, G be as in the assumptions
of this theorem. Realize the parameters p1 and p2 by P and G respectively. We
want to show that certain formulas, given by the Definition 18, hold in M. The
formulas expressing that ε is a congruence hold because τ has absolute equality.
∃x δ(x,P,G) holds as well because U [G]

P
is nonempty. For any formula φ, the

translation φτ (P,G) is φU [G]
P . Therefore, by the Theorem 33, φτ (P,G) holds

in M for every axiom φ of ZFC, and ϕτ (P,G) holds by the assumption of this
theorem.

Theorem 36. Let ϕ be a sentence. Suppose that for every model of ZFCU there
is a forcing notion P and a P-generic G, such that ϕ holds in U [G]. Then there
exists a syntactical intepretation of the theory ZFC + ϕ in ZFCU .

Proof. Let τ [p1, p2] be the model-theoretical interpretation from the proof above.
In the notation of Definition 19, we want to find a suitable formula α(x1, x2).
Let α(x1, x2) be the formula “x1 is a forcing notion ∧ x2 is a x1-generic ∧ϕU [x2]”.
Then ZFCU ⊢ (∃x1, x2)α(x1, x1). Definition 19 demands that ZFCU proves some
more formulas. But their provability is easy consequence of the proof above.

Usually, one does not work with an arbitary P, but a particular forcing notion
is defined for an intended result. So we may get rid of the parameter p1 in τ by
replacing it by the definition of the particular P.

Still, the parameter p2 stays. In this case, the formula α(x2) would be “x2 is
a suitable generic”, where suitable means such that ϕ holds in the corresponding
generic extension.

Sometimes it is possible to get rid of the parameters at all. Many forcing
arguments work with the constructible universe; in our setup this means to work
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in the theory ZFCU + V = L. The axiom V = L implies that there exists a
definable well-ordering of the universe. 3 This allows us to define G as the first
P-generic in this ordering and replace the parameter p2 by this definition.

Finally, note that the forcing construction may be performed in the theory
ZFCU+ψ, for a suitable ψ. The forcing construction is not affected by an ad-
ditional axiom. But the axiom ψU may give us new opportunities for defining
a forcing notion P. Consistency results obtained by forcing in ZFCU+ψ are of
the form Con(ZFC + ψ) → Con(ZFC + ϕ) and the corresponding interpretation
interprets a theory ZFC + ϕ in ZFCU+ψ. Apart from that, all the results proved
in this section for ZFCU hold for ZFCU+ψ as well.

4.1.4 Examples of forcing constructions

As an illustration, we define two well-known forcing constructions – Cohen forc-
ing and Sacks forcing. The details, proofs and many other forcing constructions
can be found in [6] or [5].

We define Cohen forcing for adding a new subset of ω. There are many
variants of Cohen forcing; the original forcing notion used by Cohen adds ω2

distinct subsets of ω. We define the forcing notion for Cohen forcing as follows:
P is the collection of all functions f such that dom(f) is a finite subset of ω and
rng(f) ⊆ {0, 1}; the ordering ≤ is reverse inclusion; the maximal element 1 is ∅.
If G is generic, then

⋃

G is the characteristic function of a new subset of ω. This
subset is called a Cohen generic real.

We say that t ⊆ <ω2 is a tree if t is closed under initial segments. A nonempty
tree t is called perfect if for every a ∈ t there exists b ⊇ a such that both b⌢0
and b⌢1 are in t. The forcing notion for Sacks forcing is defined as follows: P is
the set of all perfect trees; the ordering ≤ is inclusion; 1 is the full binary tree.
Like the Cohen forcing, Sacks forcing adds a new subset of ω – a Sacks real.4

4.2 Forcing over the universe

In this section, we show another approach to forcing. We define a Boolean uni-
verse V B and show how to assing Boolean values to formulas – we construct a
Boolean-valued model. We then show how this Boolean-valued model can be used
to define the usual two-valued model and a corresponding interpretation. The

3This result may be found in [6] as Lemma 4.4.
4Sacks real is a real with minimal degree of constructibility. Definition and details are in [5,

p. 244].
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presentation of this approach closely follows Jech’s book [5] with one important
difference. We do not use generic filters and do not define a generic extension.
Instead, we show how to collapse a Boolean-valued model to a two-valued model
by any ultrafilter.

In the whole section, we work in ZFC.

In the next, B denotes a complete Boolean algebra. The role of B is similar
to the role of a partial ordering P in the previous section. The reason for starting
with a complete Boolean algebra insted of an arbitrary partial ordering is that the
existence of suprema and infima allows us to define Boolean values of formulas
(Definition 38). Neverheless, this is not a crucial restriction as for every forcing
notion P there exists a Boolean algebra B such that P and B produce the same
generic extensions.5

Definition 37. The Boolean universe V B is defined by induction:

1. V B
0 = ∅,

2. V B
α+1 = {f ; f is a function ∧ dom(f) ⊆ V B

α ∧ rng(f) ⊆ B},

3. V B
β =

⋃

α<β V
B
α , if β is a limit ordinal,

4. V B =
⋃

α∈Ord V
B
α .

We assign to every b ∈ V B its rank; rank(b) is the least α such that b ∈ V B
α+1.

If x, y ∈ V B, then x, y are, in fact, functions. Therefore the notation x(t) makes
sense for t ∈ dom(x).

Definition 38. By induction on the complexity of formulas, we define, for each
formula ϕ(v1, . . . , vn) and each x1, . . . , xn ∈ V B, the Boolean value ‖ϕ(x1, . . . , xn)‖.

The definition for atomic formulas proceeds by induction on pairs of ranks
under the canonical well-ordering:

‖x ∈ y‖ =
∑

t∈dom(y)

(‖x = t‖ · y(t)),

‖x ⊆ y‖ =
∏

t∈dom(x)

(−x(t) + ‖t ∈ y‖),

‖x = y‖ = ‖x ⊆ y‖ · ‖y ⊆ x‖.

5The proof can be found in [5] as Lemma 14.13.

30



For non-atomic formulas we define:

‖¬ϕ(x1, . . . , xn)‖ = −‖ϕ(x1, . . . , xn)‖,

‖(ϕ ∧ ψ)(x1, . . . , xn)‖ = ‖ϕ(x1, . . . , xn)‖ · ‖ψ(x1, . . . , xn)‖,

‖(ϕ ∨ ψ)(x1, . . . , xn)‖ = ‖ϕ(x1, . . . , xn)‖ + ‖ψ(x1, . . . , xn)‖,

‖(ϕ→ ψ)(x1, . . . , xn)‖ = ‖(¬ϕ ∨ ψ)(x1, . . . , xn)‖,

‖∃yϕ(y, x1, . . . , xn)‖ =
∑

x∈V B

‖ϕ(x, x1, . . . , xn)‖,

‖∀yϕ(y, x1, . . . , xn)‖ =
∏

x∈V B

‖ϕ(x, x1, . . . , xn)‖.

Formally, we do not define a function mapping formulas to their Boolean
values. We in fact define countably many functions, one for each formula, where
the arity of the function corresponds to the number of free variables in the formula.
E.g. for the formula u ∈ v, we define the function fǫ. The notation ‖x ∈ y‖ stands
for fǫ(x, y).

Let us define the Boolean operation ⇒ as follows: let a, b ∈ B, then a⇒ b =
−a+ b. This allows us to write for the implication ‖ϕ→ ψ‖ = ‖ϕ‖ ⇒ ‖ψ‖. Note
that ‖ϕ→ ψ‖ = 1 iff ‖ϕ‖ ≤ ‖ψ‖.

Lemma 39. The following is provable in ZFC:

a) ‖x = x‖ = 1,

b) ‖x = y‖ = ‖y = x‖,

c) ‖x = y‖ · ‖y = z‖ ≤ ‖x = z‖,

d) ‖x ∈ y‖ · ‖v = x‖ · ‖w = y‖ ≤ ‖v ∈ w‖.

Proof.

a) By induction on rank(x). It suffices to show ‖x ⊆ x‖ = 1. Fix t ∈ dom(x);
by the induction hypothesis, ‖t = t‖ = 1. Then, by definition of ‖t ∈ x‖,
x(t) ≤ ‖t ∈ x‖. So x(t) ⇒ ‖t ∈ x‖ = 1 and ‖x ⊆ x‖ = 1 follows by
definition.

b) Obvious.
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We prove c) and d) together. Note that for d) it suffices to prove that
‖x ∈ y‖ · ‖v = x‖ ≤ ‖v ∈ y‖ and ‖v ∈ y‖ · ‖w = y‖ ≤ ‖v ∈ w‖. If we re-
name the variables it means to show that ‖x ∈ y‖ · ‖x = z‖ ≤ ‖z ∈ y‖ and
‖y ∈ x‖ · ‖x = z‖ ≤ ‖y ∈ z‖. So we prove these two inequalities and c) simulta-
neously by induction on triples of ranks.

For c), it suffices to prove that ‖x ⊆ y‖·‖y = z‖ ≤ ‖x ⊆ z‖ and ‖z ⊆ y‖·‖x =
y‖ ≤ ‖z ⊆ x‖. We prove the first, the second is a just renaming of the first. Let
us fix t ∈ dom(x); we want to show that

(x(t) ⇒ ‖t ∈ y‖) · ‖y = z‖ ≤ x(t) ⇒ ‖t ∈ z‖.

The following holds by the induction hypothesis:

−x(t) + (‖t ∈ y‖ · ‖y = z‖) ≤ −x(t) + ‖t ∈ z‖.

The fact that ‖y = z‖ · (−x(t) + ‖t ∈ y‖) ≤ −x(t) + (‖t ∈ y‖ · ‖y = z‖) finishes
the proof.

The proof of ‖x ∈ y‖ · ‖x = z‖ ≤ ‖z ∈ y‖ and ‖y ∈ x‖ · ‖x = z‖ ≤ ‖y ∈ z‖
is similar. Again, we rewrite the inequalities using Definition 38 and use the
induction hypothesis.

Lemma 39 shows that all the axioms of equality have Boolean value 1. It is
easy to see that all the other axioms of the predicate calculus have value 1 as
well. If a formula ϕ(x̄) has value 1 for all possible x̄ ∈ V B, then the same is true
for ψ(x̄) derived from it by some rule of the calculus. Thus if ϕ is provable from
α1, . . . , αn and ‖αi‖ = 1 whenever 1 ≤ i ≤ n, then ‖ϕ‖ = 1.

Lemma 40. Let ϕ(v0, . . . , vn) be a formula, x, a1, . . . , an ∈ V B. Then

‖(∃y ∈ x)ϕ(y, a1, . . . , an)‖ =
∑

y∈dom(x)

(x(y) · ‖ϕ(y, a1, . . . , an)‖),

‖(∀y ∈ x)ϕ(y, a1, . . . , an)‖ =
∏

y∈dom(x)

(x(y) ⇒ ‖ϕ(y, a1, . . . , an)‖).

Proof. We prove the first equality, the proof of the second is similar. By definition

‖(∃y ∈ x)ϕ(y, ā)‖ = ‖∃y(y ∈ x ∧ ϕ(y, ā))‖ =
∑

t∈V B

(‖t ∈ x‖ · ‖ϕ(t, ā)‖).
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As
‖t ∈ x‖ =

∑

y∈dom(x)

(‖t = y‖ · x(y));

it holds that
∑

t∈V B

(‖t ∈ x‖ · ‖ϕ(t, ā)‖) ≥
∑

y∈dom(x)

(x(y) · ‖ϕ(y, ā)‖).

To conclude the proof, we show that the inequality ≤ holds as well. Let us fix
t ∈ V B. We want to show that

‖t ∈ x‖ · ‖ϕ(t, ā)‖ ≤
∑

y∈dom(x)

(x(y) · ‖ϕ(y, ā)‖).

Since the formula (t = y ∧ ϕ(t, ā)) → ϕ(y, ā) is provable, we have

‖t = y‖ · ‖ϕ(t, ā)‖ ≤ ‖ϕ(y, ā)‖,

‖t = y‖ · x(y) · ‖ϕ(t, ā)‖ ≤ ‖ϕ(y, ā)‖ · x(y),
∑

y∈dom(x)

(‖t = y‖ · x(y)) · ‖ϕ(t, ā)‖ ≤
∑

y∈dom(x)

(‖ϕ(y, ā)‖ · x(y)).

Definition 41. If x is a set, then it has the canonical name x̌ ∈ V B. Canonical
names are defined by ∈-induction.

1. ∅̌ = ∅,

2. dom(x̌) = {y̌; y ∈ x} and x̌(t) = 1 for all t ∈ dom(x̌).

Let ϕ(x1, . . . , xn) be a ∆0-formula; then, by induction on the complexity of
ϕ, we can prove that ϕ(x1, . . . , xn) is equivalent to ‖ϕ(x̌1, . . . , x̌n)‖ = 1. Thus if
ϕ(x1, . . . , xn) is Σ1, then ϕ(x1, . . . , xn) implies ‖ϕ(x̌1, . . . , x̌n)‖ = 1.

Theorem 42. V B is a Boolean-valued model of ZFC, i.e. ‖ϕ‖ = 1 for every
axiom ϕ of ZFC.

Proof.

• Extensionality: We want to show that ‖∀x(x ∈ y ↔ x ∈ z)‖ ≤ ‖y = z‖.
We first prove that ‖∀x(x ∈ y → x ∈ z)‖ ≤ ‖y ⊆ z‖. By definition

‖∀x(x ∈ y → x ∈ z)‖ =
∏

t∈V B

(‖t ∈ y‖ ⇒ ‖t ∈ z‖)

33



and
‖y ⊆ z‖ =

∏

t∈dom(y)

(y(t) ⇒ ‖t ∈ z‖),

so it suffices to show

∏

t∈V B

(‖t ∈ y‖ ⇒ ‖t ∈ z‖) ≤
∏

t∈dom(y)

(y(t) ⇒ ‖t ∈ z‖).

But this holds since for every t ∈ dom(y) we have ‖t ∈ y‖ ≥ y(t). The
proof of ‖∀x(x ∈ z → x ∈ y)‖ ≤ ‖z ⊆ y‖ is similar. We may then conclude
‖∀x(x ∈ y ↔ x ∈ z)‖ ≤ ‖y = z‖.

• Foundation: Note that for any a, b, c ∈ B, a ⇒ c ≥ b implies a · b ≤ c. Let
x ∈ V B. We prove that

‖∃y(y ∈ x) → (∃y ∈ x)(∀z ∈ y)(z /∈ x)‖ = 1.

We proceed by contradiction. So let b ∈ B be such that

‖∃y(y ∈ x) ∧ (∀y ∈ x)(∃z ∈ y)(z ∈ x)‖ = b 6= 0.

The fact that ‖∃y(y ∈ x)‖ ≥ b implies that there exists y ∈ V B such that
‖y ∈ x‖ · b 6= 0. Let us fix one such y with the least possible rank. Since
‖y ∈ x‖ ⇒ ‖(∃z ∈ y)(z ∈ x)‖ ≥ b, we have ‖y ∈ x‖ · b ≤ ‖(∃z ∈ y)(z ∈ x)‖.
Thus ‖(∃z ∈ y)(z ∈ x)‖ · b 6= 0, so there exists z ∈ dom(y) such that
‖z ∈ x‖ · b 6= 0. Since rank(z) < rank(y), we reached a contradiction.

• Pairing: Let a, b ∈ V B. Let c be such that dom(c) = {a, b} and c(a) =
c(b) = 1. It is easy to verify that ‖a ∈ c∧b ∈ c∧(∀x ∈ c)(x = a∨x = b)‖ = 1.

• Separation: Let x ∈ V B, ϕ(v) be a formula, possibly with parameters from
V B. We want to find some y ∈ V B such that ‖y ⊆ x‖ = 1 and ‖(∀z ∈
x)(ϕ(z) ↔ z ∈ y)‖ = 1. It suffices to define y as follows: dom(y) = dom(x)
and y(t) = x(t) · ‖ϕ(t)‖ for every t ∈ dom(y).

• Union: We show that for every x ∈ V B there is y ∈ V B such that ‖(∀a ∈
x)(∀b ∈ a)(b ∈ y)‖ = 1. This, together with separation, implies that
the axiom of union has value one. For a fixed x we define y as follows:
dom(y) =

⋃

{dom(a); a ∈ dom(x)} and y(t) = 1 for every t ∈ dom(y). It is
easy to check that y satisfies the equality above.

• Power set: As above, we prove a weak version of the power set axiom. The
usual version is implied by the result for the axiom of separation. Hence,
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we want to show that for every x ∈ V B there exists y ∈ V B such that
‖∀a(a ⊆ x→ a ∈ y)‖ = 1. Fix x and define

dom(y) = {a ∈ V B; dom(a) = dom(x) ∧ (∀t ∈ dom(a))(a(t) ≤ x(t))}

and y(a) = 1, for every a ∈ dom(y). We want to check that for every
b ∈ V B it holds that ‖b ⊆ x‖ ≤ ‖b ∈ y‖. So fix b ∈ V B and define a so that
dom(a) = dom(x) and a(t) = x(t) · ‖t ∈ b‖. Obviously, a ∈ dom(y) and
‖a ∈ y‖ = 1. Therefore, by Lemma 39, ‖a = b‖ ≤ ‖b ∈ y‖. To conclude
the proof, it suffices to show that ‖b ⊆ x‖ ≤ ‖a = b‖.

It is easy to check that ‖a ⊆ b‖ = 1. We show that ‖b ⊆ x‖ ≤ ‖b ⊆ a‖ by
proving ‖(∀v ∈ b)(v ∈ x → v ∈ a)‖ = 1. Let us fix t ∈ dom(b); we show
that b(t) ⇒ (‖t ∈ x‖ ⇒ ‖t ∈ a‖) = 1 or equivalently

b(t) · ‖t ∈ x‖ ≤ ‖t ∈ a‖.

This can be written as

b(t) ·
∑

s∈dom(x)

x(s) · ‖s = t‖ ≤
∑

s∈dom(a)

a(s) · ‖s = t‖,

∑

s∈dom(x)

b(t) · x(s) · ‖s = t‖ ≤
∑

s∈dom(a)

x(s) · ‖s ∈ b‖ · ‖s = t‖.

The last inequality holds since dom(x) = dom(a) and, by definition of
‖s ∈ b‖, b(t) · ‖s = t‖ ≤ ‖s ∈ b‖.

• Infinity: It is easy to check that ‖ω̌ is an inductive set‖ = 1.

• Replacement: We show a stronger statement, namely the collection princi-
ple – let ϕ(u, v) be a formula, possibly with parameters form V B; then for
every x ∈ V B there exists y ∈ V B such that

‖(∀u ∈ x)(∃vϕ(u, v) → (∃v ∈ y)ϕ(u, v))‖ = 1.

For a fixed u the value ‖∃vϕ(u, v)‖ is defined as the supremum of values
‖ϕ(u, v)‖ for all v ∈ V B. Note that we can find a set Su ⊆ V B such that the
supremum over V B equals the supremum over Su. So the following holds:

‖∃vϕ(u, v)‖ =
∑

v∈V B

‖ϕ(u, v)‖ =
∑

v∈Su

‖ϕ(u, v)‖.

So it suffices to define dom(y) =
⋃

{Su;u ∈ dom(x)} and y(t) = 1 for every
t ∈ dom(y).
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• Choice: First, note that if α is an ordinal, then ‖α̌ is an ordinal‖ = 1. This
is because the axiom of foundation allows us to express the property of
being an ordinal by a ∆0-formula.

Second, let x be a set, α ∈ Ord and f a bijection between x and α. Then

‖f̌ is a bijection between x̌ and α̌‖ = 1.

Together it gives us that ‖x̌ can be well-ordered‖ = 1, for all x. To conclude
the proof it suffices to show that for any y ∈ V B there is x and f ∈ V B such
that

‖f is a function ∧ dom(f) = x̌ ∧ rng(f) ⊇ y‖ = 1.

Fix y. We define x = dom(y). Let 〈〈a, b〉〉 denote an ordered pair in the
sense of V B. We set dom(f) = {〈〈ž, z〉〉; z ∈ x} and f(t) = 1 for all
t ∈ dom(f). It is easy to check that x and f satisfy the equality above.

Theorem 43. Let ϕ(x, x1, . . . , xn) be a formula, b1, . . . , bn ∈ V B. Then there is
b ∈ V B such that

‖ϕ(b, b1, . . . , bn)‖ = ‖∃xϕ(x, b1, . . . , bn)‖.

We say that V B is full.

Proof. For every b ∈ V B, it holds that ‖ϕ(b, b1, . . . , bn)‖ ≤ ‖∃xϕ(x, b1, . . . , bn)‖.
We want to find b ∈ V B such that ‖ϕ(b, b1, . . . , bn)‖ ≥ ‖∃xϕ(x, b1, . . . , bn)‖. In the
next, we suppress mentioning of b1, . . . , bn for the sake of brevity. Let ‖∃xϕ(x)‖ =
v. Note that there exists a set S ⊆ V B such that

∑

s∈S

‖ϕ(s)‖ = v.

Let V = {‖ϕ(s)‖; s ∈ S}; then sup(V ) = v. Moreover, we can find a set W
such that its elements are pairwise disjoint, sup(W ) = sup(V ) = v and (∀w ∈
W )(∃s ∈ S)(‖ϕ(s)‖ ≥ w). We fix for every w ∈ W one such s and denote it
by sw. We define b as follows: dom(b) =

⋃

{dom(sw);w ∈ W}, and for every
t ∈ dom(b) we set b(t) =

∑

{sw(t) · w;w ∈ W ∧ t ∈ dom(sw)}. Let t ∈ dom(b),
w ∈W . If t ∈ dom(sw), then w · b(t) = w · sw(t) since elements of W are pairwise
disjoint. This implies −b(t) + sw(t) ≥ w. If t /∈ dom(sw), then −b(t) ≥ w. Thus

∏

t∈dom(b)

(b(t) ⇒ ‖t ∈ sw‖) ≥ w,

or equivalently ‖b ⊆ sw‖ ≥ w. Similarly, we can show that ‖sw ⊆ b‖ ≥ w.
So ‖b = sw‖ ≥ w and, by the definition of sw, ‖ϕ(sw)‖ ≥ w, which implies
‖ϕ(b)‖ ≥ w. Since this can be proved for every w ∈W , we have ‖ϕ(b)‖ ≥ v.
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Let us fix an ultrafilter F on B. We use F to define a two-valued model – we
collapse the Boolean values of formulas from B to {0, 1} according to F .

Note that the notation ‖x = y‖ and ‖x ∈ y‖ makes sense only for x, y ∈ V B.
But we may always define ‖a = b‖ = 0 if a /∈ V B or b /∈ V B.

We define a relation ε on V B as follows: ε(x, y) iff ‖x = y‖ ∈ F . By Lemma
39 and the fact that F is a filter, ε is an equivalence relation. Let V B

ε be the
factorization of V B over ε and let [x] denote the factor-class of x. Lemma 39 also
ensures that the following definition of the relation E on V B

ε is correct, i.e. it
does not depend on the choice of representatives. For any x, y ∈ V B we define
that [x]E[y] holds iff ‖x ∈ y‖ ∈ F . So MF = (V B

ε , E) is a model of the language
of ZFC.

Lemma 44. Let MF be defined as above. Then for any formula ϕ(x1, . . . , xn)
and any a1, . . . , an ∈ V B it holds that

MF � ϕ([a1], . . . , [an]) ⇔ ‖ϕ(a1, . . . , an)‖ ∈ F.

Proof. By induction on the complexity of ϕ.
For atomic formulas it holds by definition. Let ϕ = ¬ψ. Then MF � ϕ iff

MF 2 ψ iff ‖ψ‖ /∈ F iff −‖ψ‖ ∈ F iff ‖ϕ‖ ∈ F . Similarly for other connectives.
If ϕ is ∃xψ(x), we use the fact that V B is full. It holds that MF � ∃xψ(x)

iff (∃[a] ∈ V B
ε )(MF � ψ([a])) iff (∃a ∈ V B)(‖ψ(a)‖ ∈ F ) iff ‖∃xψ(x)‖ ∈ F . The

first equivalence is obvious, the second is the induction hypothesis and the third
uses fullness of V B.

By Theorem 42, all axioms of ZFC have the Boolean value 1. So

Corollary 45. MF is a model of ZFC.

Note that the Boolean values of formulas are defined with respect to a given
B, thus we can write ‖ϕ‖B instead of ‖ϕ‖ to make the dependence on B explicit.

Theorem 46. Let ϕ be a sentence. If ZFC proves that there exists a complete
Boolean algebra B such that ‖ϕ‖B 6= 0, then there is a model-theoretical interpre-
tation of ZFC + ϕ in ZFC.

Proof. We define a translation τ [p1, p2] and show that τ [p1, p2] is in fact an inter-
pretation. To define τ [p1, p2] means to specify formulas δ, ε and ϕ∈. We want the
formula δ to define the Boolean universe V B, but instead of B we have to use a
parameter, so δ(x, p1) is x ∈ V p1 . The formula ε is defined as above, but, again,
we replace F by the parameter, so ε(x, y, p1, p2) is ‖x = y‖p1 ∈ p2. Finally, ϕ∈

mimics the relation E from above, so ϕ∈(x, y, p1, p2) is ‖x ∈ y‖p1 ∈ p2.
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Let M be a model of ZFC. Inside M, fix B such that ‖ϕ‖B 6= 0. There
exists an ultrafilter F on B such that ‖ϕ‖B ∈ F . We let B, F be the values of
parameters p1, p2. To show that τ [p1, p2] is an interpretation, we have to argue
that the following formulas are satisfied in M:

• ∃xδ(x,B),

• ∀x(δ(x,B) → ε(x, x,B, F )),

• ∀x, y[δ(x,B) ∧ δ(y,B) → (ε(x, y,B, F ) → ε(y, x,B, F ))],

• ∀x, y, z[δ(x,B) ∧ δ(y,B) ∧ δ(z,B) →
→ (ε(x, y,B, F ) ∧ ε(y, z,B, F ) → ε(x, z,B, F ))],

• ∀x1, x2, y1, y2[δ(x1,B) ∧ δ(y1,B) ∧ δ(x2,B) ∧ δ(y2,B)∧
∧ ε(x1, y1,B, F )∧ ε(x2, y2,B, F ) → (ϕǫ(x1, x2,B, F ) ↔ ϕǫ(y1, y2,B, F ))],

• ϕτ (B, F ),

• ψτ (B, F ), for every axiom ψ of ZFC.

The first formula is ∃x(x ∈ V B) and so is obviously satisfied. The next four
formulas are satisfied as a consequence of Lemma 39 and the fact that F is a
filter.

Let φ(x̄) be a formula; we want to show that φτ (ā,B, F ) ↔ ‖φ(ā)‖B ∈ F for
any ā ∈ V B. We proceed by induction, for brevity we suppress mentioning of
paremeters ā. For atomic formulas, the equivalence follows immediately from the
definition of τ . Let φ = ¬ψ. Then, by the induction hypothesis, ψτ (B, F ) ↔
‖ψ‖B ∈ F . So (¬ψ)τ (B, F ) ↔ ¬ψτ (B, F ) ↔ ‖ψ‖B /∈ F ↔ ‖¬ψ‖B ∈ F . In
the case of the other logical connectives, the proof is similar. Finaly, let φ =
∃xψ(x). Then (∃xψ(x))τ (B, F ) = ∃x(x ∈ V B ∧ ψτ (x,B, F )). By the induction
hypothesis, ∃x(x ∈ V B ∧ ψτ (x,B, F )) implies ∃x(x ∈ V B ∧ ‖ψ(x)‖B ∈ F ). As
‖∃xψ(x)‖B ≥ ‖ψ(x)‖B, it follows that ‖∃xψ(x)‖B ∈ F . For the other direction,
suppose ‖∃xψ(x)‖B ∈ F . By the fullness of V B, it holds that ∃a(a ∈ V B ∧
‖ψ(a)‖B ∈ F ). By the induction hypothesis, it implies (∃xψ(x))τ (B, F ).

So ϕτ (B, F ) holds as F was chosen to contain the Boolean value of ϕ. If ψ is
an axiom of ZFC, then ψτ (B, F ) holds since, by the Theorem 42, ‖ψ‖B = 1.

The next theorem shows that under the assumptions of the theorem above,
there exists not only a model-theoretical interpretation but even a syntactical
one.

Theorem 47. Let ϕ be a sentence. If ZFC proves that there exists a complete
Boolean algebra B such that ‖ϕ‖B 6= 0, then there is a syntactical interpretation
of ZFC + ϕ in ZFC.
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Proof. Let τ [p1, p2] be as in the proof of the previous theorem. By Definition 19,
we have to find a suitable formula α(x1, x2). We take for α(x1, x2) the formula
“x1 is a complete Boolean algebra such that ‖ϕ‖x1

6= 0 and x2 is an ultrafilter on
x1 such that ‖ϕ‖x1

∈ x2”.
Then ZFC ⊢ (∃s1, s2)α(s1, s2). The rest of the formulas demanded by Defi-

nition 19 to be provable in ZFC are provable as a consequence of the previous
theorem.

Note that, unlike in the previous section, the interpretation τ does not have
absolute equality. But the remarks about the possibility of obtaining an inter-
pretation without parameters can be repeated here as well. In applications of
forcing we define a particular B to suit our needs, so we may use the definition
of B instead of the parameter p1. And if there exists a definable well-ordering of
the universe, as in the case of the constructible universe, we may define F as the
first suitable ultrafilter in this ordering and use the definition instead of p2.
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Chapter 5

Bi-interpretation

Let τ be an interpretation of a theory S in a theory T . Then, as we discussed in
Chapter 3, this interpretation uniformly defines from any model M of T a model
of S. Let us denote such a model by τ(M).

Definition 48 (Bi-interpretation). Let S, T be theories, τ an interpretation of
S in T , σ an interpretation of T in S. The pair of interpretations 〈τ, σ〉 is a
bi-interpretation of S and T if

• There exists a formula ϕ(x, y) in the language of theory T such that for any
model M � T the formula ϕ(x, y) defines an isomorphism between M and
σ(τ(M)).

• There exists a formula ψ(x, y) in the language of theory S such that for any
model N � S the formula ψ(x, y) defines an isomorphism between N and
τ(σ(N )).

Theories S, T are said to be bi-interpretable if there exists a bi-interpretation of
S and T .

It seems that bi-interpretability is strictly stronger than mutual interpretabil-
ity of two theories. We show that this is really the case by showing that ZFC and
ZF are mutually interpretable, but not bi-interpretable.1

Theorem 49. There exists an intepretation of ZFC in ZF and vice versa; in
other words, ZFC and ZF are mutually interpretable.

Proof. We describe the translations that give rise to the interpretations.
Clearly, ZF ≤ ZFC, as any model of ZFC is, by definition, a model of ZF. The
translation here is trivial: δ(x) is x = x, ε(x, y) is x = y and ϕǫ(x, y) is x ∈ y.

1The structure of this proof is from [2].
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To show that ZFC ≤ ZF, we use the well known result that L is a model of ZFC.
Thus the formula δ(x) in this case should restrict the universe to L. Therefore,
the translation is as follows: δ(x) is x ∈ L, ε(x, y) is x = y and ϕǫ(x, y) is
x ∈ y.

To show that ZFC and ZF are not bi-interpretable, we first prove a general
lemma about groups of automorphisms. Note that the next lemma talks about
all automorphisms, not just definable ones.

Lemma 50. Let S and T be bi-interpretable, τ , σ, ϕ, ψ being as in Definition 48.
Let M � T , then the groups of automorphisms of M and τ(M) are isomorphic.

Proof. We present a proof for the case when τ and σ have absolute equality. A
proof for the general case is similar, only we have to involve factorizations at
several places in the proof. This is not problematic as these factorizations are
definable by formulas, it only makes the notation in the proof more complicated.

First, let us observe that if a is an automorphism of M and ā is its restriction
to the universe of τ(M), then ā is an automorphism of τ(M). This is simply
because τ(M) is defined by T -formulas. Still using the notation ā for the restric-
tion of a, we have a function i mapping automorphisms of M to automorphisms
of τ(M) so that i(a) = ā. We want to show that i is the isomorphism we look
for.

Clearly, if e is identity, then ē is identity as well, so i preserves the identity
element. Similarly, if a ◦ b = e, then ā ◦ b̄ = ē, so i preserves inverses as well.
Finaly, a ◦ b = ā ◦ b̄.

To conclude that i is really an isomorphism, we have to show that i is a
bijection. For injectivity, we prove that if a 6= b, then ā 6= b̄. So let us fix
x, y1, y2 so that a(x) = y1, b(x) = y2 and y1 6= y2. The formula ϕ(x, y) defines
an isomorphism between M and σ(τ(M)), so for every u ∈ M there is a unique
ũ ∈ σ(τ(M)) such that ϕ(u, ũ) holds in M; we use the tilde-notation for this
unique element in the next. Since, by definition, σ(τ(M)) ⊆ τ(M), it holds that
x̃, ỹ1, ỹ2 ∈ τ(M). Therefore, it suffices to show that a(x̃) = ỹ1, b(x̃) = ỹ2 and
ỹ1 6= ỹ2. It holds in M that ϕ(x, x̃) and a is an automorphism, so ϕ(a(x), a(x̃))
holds as well. We have a(x) = y1, so also ϕ(y1, a(x̃)) holds, and ỹ1 is the unique
element such that ϕ(y1, ỹ1), so a(x̃) = ỹ1. The proof of b(x̃) = ỹ2 is similar.
Finally, y1 6= y2 and ϕ defines an isomorphism, so ỹ1 6= ỹ2.

For surjectivity, fix an automorphism b of τ(M); we want to find an auto-
morphism a of M such that ā = b. We write b̄ for a restriction of b to σ(τ(M)).
There is a natural way how to define an automorphism of M from b̄ using ϕ(x, y)
– namely take the “ϕ-isomorphic image” of b. We denote such an automorphism
b̄ϕ; it holds that b̄ϕ(x) = y iff b̄(x̃) = ỹ. We show that b̄ϕ is the a we look for.
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Fix u, v ∈ τ(M) so that b(u) = v. It suffices to show that b̄ϕ(u) = v. From
b(u) = v we get b(ũ) = ṽ as in the argument for injectivity. As ũ, ṽ ∈ σ(τ(M)),
we have b̄(ũ) = ṽ. From the definition of b̄ϕ, we get b̄ϕ(u) = v concluding the
argument.

Let us recall that an automorphism a has order two iff a is not the identity,
but a ◦ a is.

Theorem 51. No model of ZFC admits an automorphism of order two.

Proof. Let us fix M � ZFC.
First, we show that any automorphism a of M of order two preserves ordinals;

i.e. a(α) = α for any α ∈ Ord. If a(α) = β, then a(β) = α, as a is of order two.
Suppose α < β, then also a(α) < a(β), so α < β < α, which is a contradiction.
Similarly, it may not happen that α > β.

Now, we show that any automorphism of M preserving ordinals is the iden-
tity. Let us fix x ∈ M. We write trcl(x) for the transitive closure of x. By
the axiom of choice, there exists a function f and an ordinal α such that f is
a bijection between α and trcl(x). Let X = {〈u, v〉;u, v ∈ trcl(x) ∧ u ∈ v}
and A = {〈β, γ〉; β, γ ∈ α ∧ 〈f(β), f(γ)〉 ∈ X}. The relation A is well-founded,
set-like and extensional on α because X is. Let C be the Mostowski collaps-
ing function of α, A; the relation A was defined straightforwadly to satisfy
C(f−1(y)) = y for any y ∈ trcl(x). This fact is expressible by a ZFC-formula;
so fix ϕ(x, y, z, v) meaning “the Mostowski collapsing function of x, y maps z to
v”. In particular, ϕ(α,A, f−1(x), x) holds in M. Let a be an automorphism
of M preserving ordinals, then also ϕ(a(α), a(A), a(f−1(x)), a(x)) holds. As
α, f−1(x) ∈ Ord, A ⊆ α×α and a preserves ordinals, we have a(α) = α, a(A) = A
, a(f−1(x)) = f−1(x). Combining ϕ(α,A, f−1(x), x) and ϕ(α,A, f−1(x), a(x)), we
get a(x) = x.

Theorem 52. ZFC and ZF are not bi-interpretable.

Proof. In the next section, we show that there is a model of ZF that admits an
automorphism of order two. Let M be such a model and a be an automorphism
of M of order two. Suppose, for contradiction, that 〈τ, σ〉 is a bi-interpretation of
ZFC and ZF. By Lemma 50, the groups of automorphisms of M and τ(M) are
isomorphic. Clearly, automorphisms of order two are mapped by any isomorphism
on automorphisms of order two. Moreover, τ(M) is a model of ZFC, so the
isomorphic image of a is its automorphism of order two. This contradicts Theorem
51.
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5.1 Model of ZF with an automorphism of order

two

In this section, we construct a model of ZF that admits an automorphism of order
two. A construction of such a model is sketched in Cohen’s article [1], but the
details of the construction are missing. Yet, it is the details that are insteresting
as they involve an interplay between a non-standard model of ZFC and a meta-
mathematical level of the construction. We develop a method that allows such
an interplay during the construction. As far as we know, this method is original.

As we have already mentioned, the usual approach to forcing starts with a
countable transitive model, the ground model. In the following construction, the
ground model M will be non-standard; more precisely, it will be a model with
non-standard ω. The problem here is to choose the point of view from which M is
non-standard. In the forcing construction, we have to step outside of M to choose
the generic filter, and this step outside deserves some preliminary comments. We
could step outside from M to our real, metamathematical world, from which
we know M is non-standard. Further on, we call this metamathematical world
external. We say we work externally to express that we work in the external
world. So we could choose a generic filter G externally. But problems would
soon arise as how to construct the generic extension. M-names are defined by
transfinite induction inside M and their G-interpretations should take place in a
model which admits such an induction; in particular, this model should have the
same ω as M. The solution to this problem will be similar to our approach to
forcing in Section 4.1. We will, in fact, start with V � ZFC such that there is
M ∈ V, model of ZFC, countable and transitive in the sense of V. Inside V, we
use forcing over M as usual.

5.1.1 Models M, V and forcing conditions

Theory ZFC+ is a theory in the language L = {∈,M, n}, where ∈ is a binary
relation symbol and M , n are constant symbols. Axioms of ZFC+ are:

• all axioms of ZFC,

• n ∈ ω,

• n > i, for each i ∈ N,

• φM , for all φ axioms of ZFC,

• “M is transitive and countable”.
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Note that, in this definition, N stands for the external, i.e. standard, natural
numbers while ω is, as usual, defined inside the theory.

If ZFC is consistent, then by the reflection principle every finite subtheory of
ZFC+ is consistent, and by compactness theorem ZFC+ is consistent. For the
rest of the construction, let us fix an (externally) countable model of ZFC+. We
denote this fixed model by V and write M, n for the realizations of symbols M ,
n inside V.

By Lemma 11, axioms of ZFC+ ensure that M is a countable transitive model
of ZFC. We know that ω is absolute for transitive models, so ωV = ωM and, from
transitivity, n ∈ M. M has the same non-standard natural numbers as V. It is
crucial to realize that from the point of view of V and M, n is not non-standard.
Non-standardness is an external notion. Therefore, if we say that we use forcing
over a non-standard model, it is an external statement. From the point of view
of V and M, where the whole forcing construction takes place, there are no non-
standard numbers.

In the rest of this section, we work mainly inside M. Our goal is to add ω-
many new sets of each rank from ω to ω+n. To do so, we define a suitable forcing
notion.

Definition 53 (Atomic condition, forcing notion P).
Atomic conditions are:

• {a, 〈i,m〉}, where a ∈ Mω, i ∈ ω, m ∈ {0, 1},

• {〈α, j〉 , 〈i,m〉}, where α = ω + l for some 1 ≤ l ≤ n, j, i ∈ ω, m ∈ {0, 1}.

We say that a set p of atomic conditions is consistent if there are no c1, c2 ∈ p
such that c1 = {〈α, j〉 , 〈i, 0〉} (resp. c1 = {a, 〈i, 0〉}) and c2 = {〈α, j〉 , 〈i, 1〉}
(resp. c2 = {a, 〈i, 1〉}).

P is the collection of all finite consistent sets of atomic conditions. The or-
dering of P is by reverse inclusion.

Note that an atomic condition is not, in fact, a condition of P, nevertheless
if c is an atomic condition, then {c} is a P-condition. So we identify atomic
conditions with their singletons where necessary.

Notation 54 (xjα ∈ xiα+1).
We write xjα ∈ xiα+1 (resp. xjα /∈ xiα+1) instead of {〈α, j〉 , 〈i, 1〉} (resp.

{〈α, j〉 , 〈i, 0〉}) and a ∈ xiω (resp. a /∈ xiω) instead of {a, 〈i, 1〉} (resp. {a, 〈i, 0〉}.

The obvious abuse of language present in this notation should be justified by
Lemma 56.
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Definition 55 (Names x̂iω, x̂
i
α). For a ∈ M, let ǎ be the canonical name of

a. We set x̂iω = {〈ǎ, {a ∈ xiω}〉 ; a ∈ Mω}. By induction, we define x̂iα+1 =
{
〈

x̂jα, {x
j
α ∈ xiα+1}

〉

; j ∈ ω}, for ω ≤ α < ω + n.

Lemma 56. Let G be a generic filter for P, M[G] the generic extension of M.
Then the following holds:

1. Let i ∈ ω. Then x̂iω is a name and x̂iωG has rank ω. For all j 6= i, it holds
that x̂iωG 6= x̂jωG, and for all a ∈ M, it holds that x̂iωG 6= ǎG. Moreover,
x̂iωG = {a; condition a ∈ xiω is in

⋃

G}.

2. Let i ∈ ω, ω+1 ≤ α ≤ ω+n. Then x̂iα is a name and x̂iαG has rank α. For
all j 6= i, it holds that x̂iαG 6= x̂jαG, and for all a ∈ M, it holds that x̂iαG 6= a.
Moreover, x̂iαG = {x̂jα−1G; condition xjα−1 ∈ xiα is in

⋃

G}.

Proof.

1. x̂iω is a name by definition. Let us first show x̂iωG = {a; condition a ∈ xiω
is in

⋃

G}. It follows immidiately from the definition of x̂iω that x̂iωG = {a;
{a ∈ xiω} is in G}, so it suffices to show that for any atomic condition c:
c ∈

⋃

G ⇔ {c} ∈ G. The right-to-left direction is obvious. The opposite
direction follows from the fact that if c ∈ p ∈ G, then {c} ≥P p and
therefore {c} ∈ G.

a ∈ xiω is an atomic condition only for a ∈ Mω; from above, we can conclude
x̂iωG ⊆ Mω = M[G]ω. To prove rk(x̂iωG) = ω, we need to show that x̂iωG /∈
Mω. Let a ∈ M, a ⊆ Mω; we set Da = {p ∈ P; (∃b ∈ Mω)(b ∈ xiω is in
p∧b /∈ a)∨(b ∈ a∧b /∈ xiω is in p)}. Da is dense and ∀p ∈ Da : p  (ǎ 6= x̂iω).
It follows that x̂iωG 6= ǎG and rk(x̂iωG) = ω.

It is clear that for all a ∈ M it holds that x̂iωG 6= ǎG, as we have proved
both x̂iωG ⊆ Mω and for all a ∈ M: (a ⊆ Mω) → (x̂iωG 6= ǎG).

We use a density argument to show that, for all j 6= i, it holds that x̂iωG 6=
x̂jωG. For fixed i 6= j, let us set D = {p ∈ P; (∃a ∈ Mω)(a ∈ xiω is in
p ∧ a /∈ xjω is in p)}. D is dense and all p ∈ D force x̂iω 6= x̂jω.

2. Similar, by induction on l.

5.1.2 Permutation σ

Inside V, let us fix G, a generic filter for P. Our goal is to construct some
automorphism of order two. Nevertheless, by Theorem 51, there is no such auto-
morphism on M[G], as M[G] � ZFC. The idea is to define a suitable permutation
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on some set X, construct a model M∗ of ZF consisting of sets definable from X
and then show how to extend the permutation to an automorphism of the model
M∗.

In this section, we define σ, a permutation on

X = {xiα;ω ≤ α ≤ ω + n, i ∈ ω}.

X is the set of all “symbols” occuring in atomic conditions of P. Formally, X
would be the set of all 〈α, i〉, for ω ≤ α ≤ ω + n, i ∈ ω; but, as in Notation 54,
we identify 〈α, i〉 with xiα. Obviously, X ∈ M.

We want σ to satisfy the following:

1. σ is a permutation on X,

2. σ preserves ranks; that is if σ(xiα) = xjβ, then α = β,

3. σ2 = Id,

4. xiα ∈ xjα+1is in
⋃

G ⇔ σ(xiα) ∈ σ(xjα+1) is in
⋃

G,

5. a ∈ xiω is in
⋃

G ⇔ a ∈ σ(xiω) is in
⋃

G,

6. if σ(xiα) 6= xiα, then α = ω + m where m is non-standard; we say that σ
moves only objects of non-standard rank.

The last condition talks about non-standard numbers. We can not use the
notion of non-standardness inside M[G] or V, so the condition 6 is formulated
externally. We construct σ externally, but during the construction we pay some
respect to M[G]. The model M∗ will be defined inside M[G] and we would en-
counter problems when trying to extend the purely external σ to M∗. Thus we
choose a halfway approach. We define σ as the union of {σi}i∈N, where N denotes
the external, standard natural numbers, but we make sure that for every i ∈ N

it holds that σi ∈ M[G], in fact σi ∈ M.

S(p) denotes all “symbols” occuring in p, i.e. for an atomic condition we
set S(xjα ∈ xkα+1) = {xjα, x

k
α+1} (resp. S(a ∈ xiω) = {xiω}). For p a condition,

S(p) =
⋃

{S(a); a ∈ p}. As with X, a formally correct definition of S(p) would
use 〈α, i〉 instead of xiα. We call a condition p full if for all a ∈ Mω occuring in
p and all xiω, x

j
α, x

k
α+1 ∈ S(p) either a ∈ xiω (resp. xjα ∈ xkα+1) or a /∈ xiω (resp.

xjα /∈ xkα+1) is in p. Inside M[G], we define

Gf = {p ∈ G; p is full}.
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Let us choose some non-standard natural number m ∈ M[G],m < n. By a
density argument, there is some g ∈ Gf such that for some i, j, k, l ∈ ω

g = {xiω+m ∈ xjω+m+1, x
k
ω+m ∈ xlω+m+1, x

i
ω+m /∈ xlω+m+1, x

k
ω+m /∈ xjω+m+1}.

Let us recall that we supposed V to be countable. Therefore we can, externally,
enumerate Gf starting with g. We denote this enumeration {gi}i∈N, so we have
g0 = g.

The next lemma uses notation gn and σn that has not been explained yet. For
the purpose of this lemma, we may understand gn and σn as arbitrary sets. The
use of this notation will be justified later.

Lemma 57. Inside M[G]. Let gn, gn+1 ∈ Gf . Let σn satisfy conditions:

1’ σn is a permutation on S(gn),

2’ σn preserves rank,

3’ σ2
n = Id,

4’ xiα ∈ xjα+1is in gn ⇔ σn(x
i
α) ∈ σn(x

j
α+1) is in gn,

5’ a ∈ xiω is in gn ⇔ a ∈ σn(x
i
ω) is in gn,

6’ σn moves only objects of non-standard rank.

Then there are σn+1, gn+1 such that:

• σn+1 is a permutation extending σn,

• σn+1 satisfies conditions 1’ – 6’ with n replaced by n+ 1,

• gn+1 ∈ Gf ,

• gn+1 ≤P gn ∪ gn+1.

Proof. Let us denote g′ = gn ∪ gn+1. It holds that g′ ∈ G. g′ may not be full,
but there is some g ∈ Gf such that g ≤P g

′. Let N = {x ∈ S(g) − S(gn);∃y ∈
S(gn): σn(y) 6= y and rk(x) is one greater or one less than rk(y)}.

N contains all the symbols that σn+1 may have to move to satisfy conditions
4’ and 5’. We want to find some N ′, an image-to-be of N under σn+1. Let us set

D = {p ∈ P; (∃N ′ ⊆ S(p))(∃f : N ′ → N) such that a)–c) are fulfilled}

a) f is a rank-preserving bijection,
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b) N ′ ∩ S(g) = ∅; we say that N ′ contains fresh symbols,

c) (∀n ∈ N ′): if x ∈ S(g) ∪ N ′ is of an appropriate rank, i.e. one less (resp.
one greater) than rank of n, then one of x ∈ n, x /∈ n (resp. n ∈ x, n /∈ x)
is in p and it holds that

• for x ∈ N : conditions x /∈ n, n /∈ x are in p,

• for x ∈ N ′: x ∈ n (resp. n ∈ x) is in p ⇔ f(x) ∈ f(n) (resp.
f(n) ∈ f(x)) is in g,

• for x ∈ S(gn): x ∈ n (resp. n ∈ x) is in p ⇔ σn(x) ∈ f(n) (resp.
f(n) ∈ σn(x)) is in g,

• for x ∈ S(g) − (N ∪ S(gn)): x ∈ n (resp. n ∈ x) is in p ⇔ x ∈ f(n)
(resp. f(n) ∈ x) is in g.

It is easy to check that D is dense; for any P-condition p, we may choose a
set of fresh symbols of respective ranks (with respect to the ranks of symbols in
N) to satisfy a) and b) and add to p conditions in which these fresh symbols
occur to satisfy c). Let us fix some p′ ∈ D∩G; let us fix corresponding N ′ and f
witnessing that p′ belongs to D. We denote by p the restriction of p′ to conditions
in which only symbols from N ′ ∪ S(g) occur.

We put gn+1 = g∪p. It is gn+1 ∈ G as g ∈ G and p ∈ G (since p is a restriction
of p′ ∈ G). g is full and p contains, by c), all conditions needed to conclude that
gn+1 is full as well. So, in fact, gn+1 ∈ Gf . Clearly, gn+1 ≤P g ≤P g

′ = gn ∪ gn+1,
thus we have gn+1 ≤P gn ∪ gn+1.

We finish the proof by defining σn+1:

• for x ∈ N ′: σn+1(x) = f(x),

• for x ∈ N : σn+1(x) = f−1(x),

• for x ∈ S(gn): σn+1(x) = σn(x),

• for other x ∈ S(gn+1): σn+1(x) = x.

σn+1, clearly, extends σn. To finish the proof, we have to show that it satisfies
1’–6’. 1’–3’ are easy. By the assumption, σn moves only objects of non-standard
rank. σn+1 moves only objects that σn already moves plus objects from N ∪N ′.
Every element of N ∪ N ′ has rank one greater or one less than rank of some
object moved by σn and thus is of non-standard rank. Therefore σn+1 moves only
objects of non-standard rank.

We show that σn+1 satisfies conditions 4’ and 5’. Suppose a, b ∈ S(gn+1) have
appropriate ranks. We want to show that a ∈ b is in gn+1 ⇔ σn+1(a) ∈ σn+1(b)
is in gn+1. S(gn+1) = S(g) ∪N ′. We distinguish possible cases.
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Suppose a ∈ S(gn).

• Let b ∈ S(gn). This case is immediate from the assumptions about σn.

• Let b ∈ N . We want to show that a ∈ b is in gn+1 ⇔ σn(a) ∈ f−1(b) is in
gn+1. It holds that σn(a) ∈ S(gn), f

−1(b) ∈ N ′. The equivalence holds as a
consequence of the third bullet in c).

• Let b ∈ N ′. This case is, again, a consequence of the third bullet in c).

• Let b ∈ S(g)− (N ∪S(gn)). The fact that b /∈ N implies that a is not moved
by σn. Therefore, σn+1 does not move either of a, b and the equivalence is
trivial.

The other cases are similar.

We now construct, externally, sequences {gi}i∈N and {σi}i∈N from the sequence
{gi}i∈N. We set g0 = g0 and define σ0, a permutation on S(g0):

σ0(x
i
ω+m) = xkω+m,

σ0(x
k
ω+m) = xiω+m,

σ0(x
j
ω+m+1) = xlω+m+1,

σ0(x
l
ω+m+1) = xjω+m+1.

It is easy to check that σ0 and g0 satisfy the conditions 1’–6’ for n = 0. Thus
we may apply Lemma 57 and define {gi}i∈N, {σi}i∈N by external induction using
the elements of the sequence {gi}i∈N. Note that σ0, g0 ∈ M. The construction
of Lemma 57 uses G, which might seem to imply that σn, gn are not necessarily
elements of M. But gn ∈ P, so in fact gn ∈ M, although inside M we may not be
able to decide gn+1 from gn, gn+1 and σn. Similarly, σn ∈ M.

The elements of the sequence extend each other, so we may set σ =
⋃

{σi}i∈N.
We now check that conditions 1–6 hold for σ. σ is a permutation on X, as every
xiα is in S(gn) for some n ∈ N, and σn is a permutation on S(gn). It is rank
preserving as every σn is and similarly for conditions 3–6.

5.1.3 Model M∗ and automorphism σ∗

In the next, π denotes a rank-preserving permutation on X, such that π2 = Id.
Such a π can be naturally extended to act on P-conditions and names. For an
atomic condition x ∈ y (resp. x /∈ y), we define π(x ∈ y) = π(x) ∈ π(y) (resp.
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π(x /∈ y) = π(x) /∈ π(y)). If, in the previous, x ∈ Mω, then we write x instead
of π(x). For p a P-condition, π(p) = {π(c); c ∈ p}. For ȧ a P-name, we define by
induction π(ȧ) = {〈π(ḃ), π(p)〉; 〈ḃ, p〉 ∈ ȧ}.

It is obvious that π preserves finiteness and ranks and easy to check that p is
consistent iff π(p) is consistent. Thus p is a P-condition iff π(p) is a P-condition.
Also, p ≤P q iff π(p) ≤P π(q).

Lemma 58. Inside M. Let π be a rank-preserving permutation on X, π2 = Id,
a1, a2, . . . , an names, p a P-condition, φ a formula. It holds that:

a) p 
∗ a1 = a2 ⇔ π(p) 

∗ π(a1) = π(a2)

p 
∗ a1 ∈ a2 ⇔ π(p) 

∗ π(a1) ∈ π(a2)

b) p 
∗ φ(a1, . . . , an) ⇔ π(p) 

∗ φ(π(a1), . . . , π(an))

Proof.

a) By induction on the ranks of the names. For the left-to-right direction in the
first statement we have to show, by Definition 28, that if for all 〈b1, s1〉 ∈ a1

D〈b1,s1〉 = {q ≤ p; q ≤ s1 → ∃〈b2, s2〉 ∈ a2(q ≤ s2 ∧ q 
∗ b1 = b2)}

is dense below p, then for all 〈b′1, s
′
1〉 ∈ π(a1)

D〈b′
1
,s′

1
〉 = {q ≤ π(p); q ≤ s′1 → ∃〈b′2, s

′
2〉 ∈ π(a2)(q ≤ s′2 ∧ q 

∗ b′1 = b′2)}

is dense below π(p). Let us fix some 〈b′1, s
′
1〉 ∈ π(a1), we want to show

that D〈b′
1
,s′

1
〉 is dense below π(p). 〈b′1, s

′
1〉 is in fact 〈π(b1), π(s1)〉 for some

〈b1, s1〉 ∈ a1, and it holds that D〈π(b1),π(s1)〉 = {π(q); q ∈ D〈b1,s1〉}. Thus if
D〈b1,s1〉 is dense below p, then D〈π(b1),π(s1)〉 is dense below π(p). To complete
the left-to-right direction we have to show that if for all 〈b2, s2〉 ∈ a2 the set
D〈b2,s2〉 is dense below p, then for all 〈b′2, s

′
2〉 ∈ π(a2) the set D〈b′

2
,s′

2
〉 is dense

below π(p). The proof is similar, as are the proofs of the opposite direction
and of the second statement.

b) By induction on the complexity of formula φ.

In the previous subsection, we have constructed sequences {gi}i∈N and {σi}i∈N.
Every σi is a permutation on S(gi). Using the notation from above, conditions 4’
and 5’ of Lemma 57 can be written as σi(gi) = gi. σi is not defined on the whole
X, but we can suppose that σi acts on X and put σi(x) = x for x /∈ S(gi).
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Lemma 59. Let π be a rank-preserving permutation on X. If π(xiα) = xjα, then
π(x̂iα) = x̂jα.

Proof. By induction on α. Let α = ω and π(xiω) = xjω. Then it holds that
x̂iω = {〈ǎ, {a ∈ xiω}〉; a ∈ Mω}, so π(x̂iω) = {〈π(ǎ), {a ∈ π(xiω)}〉; a ∈ Mω} =
{〈π(ǎ), {a ∈ xjω)}〉; a ∈ Mω}. To conclude that π(x̂iω) = x̂jω it suffices to show
that π(ǎ) = ǎ. But ǎ is a canonical name, and the only condition used to define a
canonical name is 1P = ∅. Since π(∅) = ∅, we have π(1P) = 1P and thus π(ǎ) = ǎ.

The induction step: Let π(xiα+1) = xjα+1. Then the following holds: x̂iα+1 =

{〈x̂kα, {x
k
α ∈ xiα+1}〉; k ∈ ω}, π(x̂iα+1) = {〈π(x̂kα), {π(xkα) ∈ xjα+1}〉; k ∈ ω}. π is a

rank-preserving permutation on X, so (∀l ∈ ω)(∃k ∈ ω) such that π(xkα) = xlα.
Thus, in fact, π(x̂iα+1) = {〈x̂lα, {x

l
α ∈ xjα+1}〉; l ∈ ω} = x̂jα+1.

We denote by X̂ the name {〈x̂iα,1P〉;x
i
α ∈ X} and write XG for X̂G, so

XG = {x̂iαG;ω ≤ α ≤ ω + n, i ∈ ω}. Similarly, S(gi)G = {x̂jαG;xjα ∈ S(gi)}.

Definition 60. Inside M[G]. M∗ = HOD(XG)

It is a classical result that for any A the class HOD(A) is a transitive model
of ZF.2

First, we define an automorphism of the class OD(XG). Let us recall that
this class can be defined using Gödel operations in the following way:

OD(XG) =
⋃

α∈Ord

cl({Vβ; β < α} ∪ {XG} ∪XG).

We started with a countable model; thus, externally, there exists an enumer-
ation {αi}i∈N of the class of ordinals. So

OD(XG) =
⋃

i∈N

cl({Vβ; β < αi} ∪ {XG} ∪XG).

Moreover, for a construction of any s ∈ OD(XG) using Gödel operations we need
only finitely many (in the sense of M[G]) members of XG. Let Xs be a finite
set containing all the elements needed for some construction of s. Then there is
some i, such that Xs ⊆ S(gi), as conditions are arbitrarily finitely large. It holds
that XG =

⋃

i∈N
S(gi)G and S(gi)G ⊆ S(gi+1)G. Thus in fact

OD(XG) =
⋃

i∈N

cl({Vβ; β < αi} ∪ {XG} ∪ S(gi)G).

2The proof and other details about ordinal-definable set can be found in the Jech’s book [5]
in Chapter 13.
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Lemma 61. Let us have A ⊆ B, πA, πB permutations on A,B respectively, πB
extending πA. If πA, πB are partial automorphisms on A,B, i.e. for any formula
ϕ it holds that

ϕ(a1, . . . , an) ⇔ ϕ(πA(a1), . . . , πA(an)),

ϕ(b1, . . . , bn) ⇔ ϕ(πB(b1), . . . , πB(bn)),

where ai ∈ A, bi ∈ B, then πA, πB can be extended to partial automorphisms on
cl(A), cl(B) so that πB still extends πA.

Proof. By induction, we extend πA, πB in the natural way. Let G be a Gödel
operation. For πA we define

πA(G(x1, x2)) = G(πA(x1), πA(x2)), or

πA(G(x)) = G(πA(x)),

depending on the arity of G. Similarly, we extend πB. It is clear that πB still
extends πA.

By induction again, we prove ϕ(a1, . . . , an) ⇔ ϕ(πA(a1), . . . , πA(an)) for the
extended πA and ai ∈ cl(A). Assume that, for every 1 ≤ i ≤ n, ai is the value
of a Gödel operation Gi on x̄i (x̄i contains either one or two elements, depending
on the arity of Gi). The induction hypothesis implies that

ϕ(G1(x̄1), . . . , G
n(x̄n)) ⇔ ϕ(G1(πA(x̄1)), . . . , G

n(πA(x̄n)).

Therefore, ϕ(a1, . . . , an) ⇔ ϕ(πA(a1), . . . , πA(an)). Similarly for πB.

We have defined {σi}i∈N so that σi is a permutation on S(gi). Using σi, we
now define σ∗

i as a permutation on {Vβ; β < αi}∪{XG}∪S(gi)G in the following
way:

σ∗
i (XG) = XG,

σ∗
i (Vβ) = Vβ,

σ∗
i (x̂

j
αG) = (σi(x̂

j
α))G, for any x̂jαG ∈ S(gi)G.

Lemma 62. For any i ∈ N, x1G, . . . , xkG ∈ S(gi)G and α1, . . . , αn ∈ Ord it holds
that

M[G] � ϕ(Vα1
, . . . , Vαn

, XG, x1G, . . . , xkG) ↔

↔ ϕ(Vα1
, . . . , Vαn

, XG, σ
∗
i (x1G), . . . , σ∗

i (xkG)).
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Proof. We prove the left-to-right direction, the opposite direction is similar. Let

M[G] � ϕ(Vα1
, . . . , Vαn

, XG, x1G, . . . , xkG).

Then there is some p ∈ G such that

p  ϕ(V̌α1
, . . . , V̌αn

, X̂, x̂1, . . . , x̂k)

and some j ∈ N such that gj < p. Let m = max(i, j), then σi ⊆ σm and

gm  ϕ(V̌α1
, . . . , V̌αn

, X̂, x̂1, . . . , x̂k).

By Lemma 58, it holds

σm(gm)  ϕ(V̌α1
, . . . , V̌αn

, X̂, σm(x̂1), . . . , σm(x̂k)),

as σm(V̌α) = V̌α and σm(X̂) = X̂. But σm(gm) = gm, so

gm  ϕ(V̌α1
, . . . , V̌αn

, X̂, σm(x̂1), . . . , σm(x̂k)).

σm was chosen so that σm(x̂1) = σi(x̂1), . . . , σm(x̂k) = σi(x̂k), and gm ∈ G, thus

M[G] � ϕ(Vα1
, . . . , Vαn

, XG, σ
∗
i (x1G), . . . , σ∗

i (xkG)).

{σ∗
i }i∈N is a sequence of permutations, where σ∗

i+1 extends σ∗
i . By Lemma

62, every σ∗
i is a partial automorphism on {Vβ; β < αi} ∪ {XG} ∪ S(gi)G. By

Lemma 61, we can extend each σ∗
i to a partial automorphism on cl({Vβ; β <

αi} ∪ {XG} ∪ S(gi)G). For these extensions it still holds σ∗
i ⊆ σ∗

i+1. We then put
σ∗ =

⋃

i∈N
σ∗
i . σ

∗ is an external permutation of OD(XG) and being the union of
partial automorphisms it is in fact an automorphism of the class OD(XG).

Theorem 63. σ∗ restricted to HOD(XG) is an automorphism of order two.

Proof. We have already argued that σ∗ is an automorphism of the class OD(XG),
so

s ∈ HOD(XG) ⇔ σ∗(s) ∈ HOD(XG)

and the restriction of σ∗ is an automorphism of HOD(XG). For every i ∈ N,
we proved σ2

i = Id. By checking the inductive definition of σ∗
i , it is clear that

σ∗
i
2 = Id. Because of the choice of σ0, σ

∗ is not the identity. Therefore σ∗ is an
automorphism of order two.
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