
 

 

 

 
 Department of Computer 

Science 

Aarhus University  

Åbogade 34 

DK-8200 Aarhus N 

Denmark 

Tel .: +45 8715 4112  

Fax: +45 8715 4113 

E-mail:  cs@cs.au.dk  

http://www.cs.au.dk  

 

Department of Computer 

Science 

 

Gerth Stølting Brodal  

 

Associate Professor  

 

Date: 31August 2013 

 
 

Mobil : +45 5059 5432 

E-mail:  gerth@cs.au.dk 

 

Web: www.cs.au.dk/ 

 

Sender's CVR no.: 31119103 

 
 

Page 1/5 

DEPARTMENT OF COMPUTER SCIENCE 
FACULTY OF SCIENCE 

AARHUS UNIVERSITY 

Dean Jan Kratochvíl 
Charles University in Prague 
Faculty of Mathematics and Physics 

Evaluation: 

Doctoral Thesis by Milan Straka (version of 12 August 2013) 
 

 

This is an evaluation of the Doctoral Thesis submitted by Milan Straka on 12 Au-
gust 2013.  

The thesis bridges two core computer science research areas: programming lan-
guages and algorithmics. The topic of the thesis is the development of efficient 
functional data structures. Data structures in functional languages is a classic top-
ic, but the algorithmic angle was cultivated by Chris Okasaki in his PhD thesis 
from 1996 at CMU on “Purely Functional Data Structures” – a thesis that was ex-
tended into a text book that now has become a must read for any person interest-
ed in data structures in functional languages. This is an important research area, 
but with quite limited new research since the work of Okasaki.  

The thesis of Milan Straka tries to revoke the area. The thesis has a few minor 
contributions in various directions, but is far from reaching the level of Okasaki’s 
outstanding thesis. The various contributions are discussed below. I would judge 
the work in Chapter 8 of the thesis to be the most important, since the developed 
tuned Haskel library code improves the performance of all programs relying on 
these library packages.  

Part I of the thesis (Sections 2-5) addresses how to make data structures partially 
and fully persistent. These chapters mainly recall existing solutions for making 
data structures persistent, but Straka also contributes with a few new alternative 
details to the existing algorithms.  

Section 2 covers persistent data structures. Sections 2.1-2.3 recall existing tech-
niques for making data structures partially and fully persistent, both with an 
amortized and a worst-case overhead. Many of these techniques require the data 
structure to be pointer based where each node has bounded in-degree. In Section 
2.4 new techniques are considered to make data structures with amortized update 
bounds fully persistent.  Simple lower and upper bounds are proved under the 
condition that the data structures are black boxes with a restricted "rebuild" / 
"update" interface. I have to admit that I found it hard to follow the writing in 
Section 2.4, and was missing some intuition, in particular with respect to the dif-
ferent versions in the version tree. 

Chapter 3 considers the maintenance of the version tree required for implement-
ing fully persistent data structures. This is a technique by Driscoll et al. The con-
tribution of this section is that the core problem of list labeling can be solved in 
worst-case logarithmic time by using the rebalancing scheme of the weight-
balanced trees of Arge and Vitter to control the relabeling of the list. This is a nice 



 

 

    

Page 2/5 

 

DEPARTMENT OF COMPUTER SCIENCE 
FACULTY OF SCIENCE 

AARHUS UNIVERSITY 

new idea. The level of details in the proofs for this (Theorem 3.5) could have been 
slightly higher, since this is the main contribution of the section, but it is other-
wise on the level of detail of Section 3. 

Chapter 4 recalls van Emde Boas trees and discusses variations of van Emde Boas 
trees. In particular Strata gives a simple upper-bound trade-off between query 
time and space by adopting trie ideas to the van Emde Boas trees. This is quite a 
straightforward construction. 

Chapter 5 describes how to make arrays fully persistent. The chapter covers the 
ideas by Dietz from 1989 for making arrays persistent with amortized expected 
bounds. The contributions of this chapter are worst-case bounds that can be ob-
tained by combining the ideas of Dietz with existing worst-case predecessor struc-
tures (described in the earlier chapters). Furthermore the chapter considers how 
to garbage collect unused versions in fully persistent arrays. 

Part II of the thesis (Chapters 6-8) considers the implementation and bench-
marking of data structures in Haskel. 

Chapter 6 considers simple Haskel implementations of fully persistent (function-
al) arrays. This section discards the theory of all the previous sections and just 
gives a very simple implementation using balanced trees using different branch-
ing factors. As a reader this is quite disappointing to realize. The implementation 
is compared experimentally with other approaches for supporting arrays in 
Haskel. The choice of implementation is not particular motivated and the set of 
experiments is not very throughout. E.g., is the chapter missing a comparison 
(both theoretically and experimentally) with the random-access lists of Okasaki 
(Chapter 8 actually does provide an experimental comparison, but I was missing 
this when reading Chapter 6). Parts I and II of the thesis are not very coherent 
with respect to the topic of functional arrays. 

Chapter 7 considers the implementation of a class of binary search trees, known 
as BB-ω trees, a generalization of the weight balanced BB[α]-trees of Nievergelt 
and Reingold from 1972. The main contribution is a correctness analysis fixing er-
rors in previous proofs, and an implementation hereof, fixing problems in 
Haskel’s containers package.  

Chapter 8 is a performance study of various data structure implementations from 
the Haskel standard library. Data structures considered are Sets and Maps, 
Intsets and Intmaps, and Sequences. Using several tricks and tips, the perfor-
mance of many of the data structures have been engineered to achieve improved 
performance.  Some aspects involve improving the compiler by the Haskell devel-
opers, other from insights in the details of how the evaluation of Haskel programs 
is performed. The results achieved in this section are not very deep, but are highly 
relevant to people interested in Haskel as an efficient programming language. 

Detailed comments for the author:  

 

 Page 2: "Because a purely functional language does" ("a" missing). 

 Page 2, footnote: Reference missing for deforestation. 

 Page 3: "an useful" "a useful". 

 Section 1.1.2: I was missing a discussion of Okasaki's result on "Purely 

Functional Random-Access Lists" with logarithmic updates. 

 Section 1.2: Could have cited Tarjan's original paper introducing the con-

cept of amortized analysis. 



 

 

    

Page 3/5 

 

DEPARTMENT OF COMPUTER SCIENCE 
FACULTY OF SCIENCE 

AARHUS UNIVERSITY 

 Page 16: Okasaki had some nice results on the combination of lazy evalu-

ation with data structures with amortized performance, where lazy evalu-

ation was used to handle expensive computations that could be setup in 

advance and prepaid before actually before evaluated. I think this could 

have been discussed. 

 Section 2: The section often mentions the constraint "bounded in-

degree". Is this satisfied in practice? In particular, can this be assumed 

for functional programs. What if the condition gets violated? Can the so-

lutions automatically adapt to the higher in-degree then? 

 Section 2.4, lines 1-2: Please elaborate on "The complexity bounds of the 

discussed methods of making persistent structures do not hold for struc-

tures with amortized bounds". State more explicitly what you mean by 

"do not hold". 

 Page 30, line 14: "in a fully persistent structure, we can repeatedly..." 

(“fully” missing). 

 Page 32, Definition 2.3: "that the structure" (“the” missing). 

 Page 34, "the cost...is amortized...happened before this rebuild" – I think 

it would be appropriate with a comparison with the work of Okasaki at 

this point (the reference is given just below this sentence, but the com-

parison is left to the reader). 

 Page 34: "bounded in-degree" (“ed” missing) 

 Page 36: A more precise definition of "undo" would be appropriate. 

 Page 37, Definition 2.8: "with potential at least b" - is this the total poten-

tial for a sequence of operations or the individual versions? 

 Page 39, last line: A reference would have been appropriate for the lower 

bound (there are references later in Section 3.2.2). 

 Page 40: The need for the extended version list is not described clearly. 

 Page 54, proof of Theorem 3.4: "appropriate direction" could have been 

stated more precisely. Details for "easy to check" could have been includ-

ed. How do "child subranges" relate to "appropriate directions"? There 

are some missing details here. 

 Page 45: In the worst-case relabeling, it is not completely clear to me 

what invariants hold for the various incremental relabelings. This could 

have been stated more precisely, e.g. by a set of invariants. 

 Page 46: "per an insertion", remove "an". 

 Page 50: "polynomial space" should be "a range of polynomial size". 

 Page 53: Last two paragraphs: It could be nice with a discussion of the 

role of being independent of the word size w=log U, i.e. a discussion of 

trans-dichotomous algorithms. 

 Page 55: Space is here denoted S, while on page 59 space is denoted C. 

Please use consistent notation.  

 Page 55, Theorem 4.3: The update bounds are "expected amortized" due 

to the application of dynamic perfect hashing. 



 

 

    

Page 4/5 

 

DEPARTMENT OF COMPUTER SCIENCE 
FACULTY OF SCIENCE 

AARHUS UNIVERSITY 

 Page 58, Theorem 4.6: On page 55 space is denoted S whereas here it is 

search time. 

 Page 59, line 5: Please explain why construction time implies a bound on 

the space. 

 Page 65: The results by Demaine et al. [SWAT’08] (missing reference) 

about fully persistent arrays should also be stated in Section 5. 

 Page 66: “Such an implementation has” (“an” missing). 

 Page 70, Section 5.3.1: “amortized” should be “expected amortized”. 

 Page 87: You discard the theory of all previous chapters based on some 

calculations. It would have been interesting to see actual experimental 

comparison with some of these ideas – not necessarily the full theoretical 

constructions.  

 Page 88: Any particular reason why you consider multi-way trees for the 

representation of the arrays? A motivation for this decision would be ap-

propriate. 

 Page 90: You only consider sequential access patterns in your experi-

ments. A more comprehensive set of experiments with different access 

patterns would have been appropriate here. E.g., are there any caching of 

nodes? 

 Page 90: Motivation for the Tree_A implementations is the overhead for 

pattern matching. This immediately raises the question if the pattern 

matching order influences the running time. Did you try to reorganize 

your code? Please give a forward reference to Chapter 8. 

Page 95: Would have been appropriate to mention BB[α] trees up front. 

 Page 96: You have a reference to Chapter 8 for the experimental compari-

son of different search trees. There has been previous experimental work 

on comparing search trees (at least for the imperative setting). It would 

have been nice with a few references, and also a discussion of if results 

are expected to translate to the context of Haskel. 

 Page 101: The experimental evaluation of the validity of the different 

combinations of parameters is a nice idea. Gives you an idea of what to 

prove. Could be nice with a more general theoretical proof, confirming 

the validity of parameter choices for a larger range. 

 Page 106: You refer to the height if a red-black tree of size n, but don’t 

state precisely what the height bound is. 

 Page107: The data in Table 7.4 could have been complimented with the 

height of the generated trees. 

 Page 110: You discuss the extension of the data constructors, and claim 

that it is not advantageous to add a fourth data constructor. In the imper-

ative setting it is known that (2,4)-trees to have good performance be-

cause they adapt better to cache-lines. So I am not completely convinced 

by your argument – but you could be right.  

 Page 117: You state that benchmarking a lazy evaluated language is tricky. 

Would be appropriate to discuss the aspects making the problem tricky. 



 

 

    

Page 5/5 

 

DEPARTMENT OF COMPUTER SCIENCE 
FACULTY OF SCIENCE 

AARHUS UNIVERSITY 

 Page 119: What is the quality of your red-black tree implementation. How 

tuned is it? How much does it e.g. relay on the work of Okasaki? Okasaki 

has shown that top-down rebalancing during insertions can be handled 

efficiently using the pattern matching abilities of functional languages. 

Matt Might described how to handle deletions.  

 Page 121: Why is RBSet missing in the plot at the top, and AVL2 in the 

two bottom plots? 

 Page 126: You mention Okasaki’s Random-Access-List implementation 

here for the first time.  Would have been appropriate to mention the ex-

istence of this structure much earlier. 

 Page 129: The choice of only focusing on improving BB-ω trees appears 

arbitrary. Did you try to optimize the other data structures? 

 Page 130: You discuss optimizing the repeated pattern matching. That the 

appropriate usage of pattern matching can speed up data structures was 

e.g. shown by Okasaki for red-black trees. 

 Page 148: Is “performant” an English word? 

 

 

 

Sincerely, 

 

 
 

Gerth Stølting Brodal  

Aarhus University 


